PT - JOURNAL ARTICLE AU - Mark R. Kelley AU - James H. Wikel AU - Chunlu Guo AU - Karen E. Pollok AU - Barbara J. Bailey AU - Randy Wireman AU - Melissa L. Fishel AU - Michael R. Vasko TI - Identification and Characterization of New Chemical Entities Targeting Apurinic/Apyrimidinic Endonuclease 1 for the Prevention of Chemotherapy-Induced Peripheral Neuropathy AID - 10.1124/jpet.116.235283 DP - 2016 Nov 01 TA - Journal of Pharmacology and Experimental Therapeutics PG - 300--309 VI - 359 IP - 2 4099 - http://jpet.aspetjournals.org/content/359/2/300.short 4100 - http://jpet.aspetjournals.org/content/359/2/300.full SO - J Pharmacol Exp Ther2016 Nov 01; 359 AB - Chemotherapy-induced peripheral neuropathy (CIPN) is a potentially debilitating side effect of a number of chemotherapeutic agents. There are currently no U.S. Food and Drug Administration–approved interventions or prevention strategies for CIPN. Although the cellular mechanisms mediating CIPN remain to be determined, several lines of evidence support the notion that DNA damage caused by anticancer therapies could contribute to the neuropathy. DNA damage in sensory neurons after chemotherapy correlates with symptoms of CIPN. Augmenting apurinic/apyrimidinic endonuclease (APE)-1 function in the base excision repair pathway reverses this damage and the neurotoxicity caused by anticancer therapies. This neuronal protection is accomplished by either overexpressing APE1 or by using a first-generation targeted APE1 small molecule, E3330 [(2E)-2-[(4,5-dimethoxy-2-methyl-3,6-dioxo-1,4-cyclohexadien-1-yl)methylene]-undecanoic acid; also called APX3330]. Although E3330 has been approved for phase 1 clinical trials (Investigational New Drug application number IND125360), we synthesized novel, second-generation APE1-targeted molecules and determined whether they would be protective against neurotoxicity induced by cisplatin or oxaliplatin while not diminishing the platins’ antitumor effect. We measured various endpoints of neurotoxicity using our ex vivo model of sensory neurons in culture, and we determined that APX2009 [(2E)-2-[(3-methoxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)methylidene]-N,N-diethylpentanamide] is an effective small molecule that is neuroprotective against cisplatin and oxaliplatin-induced toxicity. APX2009 also demonstrated a strong tumor cell killing effect in tumor cells and the enhanced tumor cell killing was further substantiated in a more robust three-dimensional pancreatic tumor model. Together, these data suggest that the second-generation compound APX2009 is effective in preventing or reversing platinum-induced CIPN while not affecting the anticancer activity of platins.