Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

AAV-mediated gene transfer of tissue inhibitor of metalloproteinases-1 inhibits vascular tumor growth and angiogenesis in vivo

Abstract

The activity of matrix metalloproteinases (MMPs) is a universal feature of cellular invasion, tumor angiogenesis and metastasis, which is counterbalanced and regulated by the natural tissue inhibitors of MMPs (Timps). Here we show that Timp1 gene transfer delivered by an adeno-associated virus (AAV) vector inhibits tumor growth in a murine xenotransplant model. A human Kaposi's sarcoma cell line, forming highly vascularized tumors in vivo and having a high natural permissivity to AAV gene transfer, was transduced to express the Timp1 cDNA. AAV-Timp1-transduced cells secreted high levels of Timp1 that inhibited MMP2 and MMP9 gelatinolytic activity. Following subcutaneous inoculation in nude mice, the AAV-Timp1-transduced cells showed significantly reduced tumor growth when compared to control AAV-LacZ-transduced cells. In addition, direct intratumoral injection of AAV-Timp1 into pre-existing tumors significantly impaired the further expansion of the tumor mass. Histological analyses showed that the AAV-Timp1-transduced tumors had limited development of vascular structures and extensive areas of cell death, suggesting that Timp1 overexpression had an antiangiogenic effect. To further support this conclusion, we demonstrated that AAV-Timp1 transduction significantly reduced endothelial cell migration and the invasion of a Matrigel barrier and strongly inhibited angiogenesis in the chick chorioallantoic membrane assay. These results indicate that transfer and overexpression of the Timp1 gene is a promising therapeutic strategy to target tumor-associated angiogenesis in cancer gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Brinckerhoff CE, Rutter JL, Benbow U . Interstitial collagenases as markers of tumor progression. Clin Cancer Res. 2000;6:4823–4830.

    CAS  PubMed  Google Scholar 

  2. Folkman J, Watson K, Ingber D, Hanahan D . Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature. 1989;339:58–61.

    Article  CAS  PubMed  Google Scholar 

  3. Nagase H, Woessner Jr JF . Matrix metalloproteinases. J Biol Chem. 1999;274:21491–21494.

    Article  CAS  PubMed  Google Scholar 

  4. Egeblad M, Werb Z . New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2002;2:161–174.

    Article  CAS  PubMed  Google Scholar 

  5. Stetler-Stevenson WG, Yu AE . Proteases in invasion: matrix metalloproteinases. Semin Cancer Biol. 2001;11:143–152.

    Article  CAS  PubMed  Google Scholar 

  6. DeClerck YA, Imren S, Montgomery AM, et al. Proteases and protease inhibitors in tumor progression. Adv Exp Med Biol. 1997;425:89–97.

    Article  CAS  PubMed  Google Scholar 

  7. Murphy G, Cawston TE, Reynolds JJ . An inhibitor of collagenase from human amniotic fluid. Purification, characterization and action on metalloproteinases. Biochem J. 1981;195:167–170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stetler-Stevenson WG . Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention. J Clin Invest. 1999;103:1237–1241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bloomston M, Shafii A, Zervos EE, Rosemurgy AS . TIMP-1 overexpression in pancreatic cancer attenuates tumor growth, decreases implantation and metastasis, and inhibits angiogenesis. J Surg Res. 2002;102:39–44.

    Article  CAS  PubMed  Google Scholar 

  10. Kawamata H, Kawai K, Kameyama S, et al. Over-expression of tissue inhibitor of matrix metalloproteinases (TIMP1 and TIMP2) suppresses extravasation of pulmonary metastasis of a rat bladder carcinoma. Int J Cancer. 1995;63:680–687.

    Article  CAS  PubMed  Google Scholar 

  11. Li G, Fridman R, Kim HR . Tissue inhibitor of metalloproteinase-1 inhibits apoptosis of human breast epithelial cells. Cancer Res. 1999;59:6267–6275.

    CAS  PubMed  Google Scholar 

  12. Yamauchi K, Ogata Y, Nagase H, Shirouzu K . Inhibition of liver metastasis from orthotopically implanted colon cancer in nude mice by transfection of the TIMP-1 gene into KM12SM cells. Surg Today. 2001;31:791–798.

    Article  CAS  PubMed  Google Scholar 

  13. Rigg AS, Lemoine NR . Adenoviral delivery of TIMP1 or TIMP2 can modify the invasive behavior of pancreatic cancer and can have a significant antitumor effect in vivo. Cancer Gene Ther. 2001;8:869–878.

    Article  CAS  PubMed  Google Scholar 

  14. Guedez L, Courtemanch L, Stetler-Stevenson M . Tissue inhibitor of metalloproteinase (TIMP)-1 induces differentiation and an antiapoptotic phenotype in germinal center B cells. Blood. 1998;92:1342–1349.

    CAS  PubMed  Google Scholar 

  15. Albini A, Paglieri I, Orengo G, et al. The beta-core fragment of human chorionic gonadotrophin inhibits growth of Kaposi's sarcoma-derived cells and a new immortalized Kaposi's sarcoma cell line. AIDS. 1997;11:713–721.

    Article  CAS  PubMed  Google Scholar 

  16. Bussolino F, Arese M, Montrucchio G, et al. Platelet activating factor produced in vitro by Kaposi's sarcoma cells induces and sustains in vivo angiogenesis. J Clin Invest. 1995;96:940–952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Marchisone C, Del Grosso F, Masiello L, et al. Phenotypic alterations in Kaposi's sarcoma cells by antisense reduction of perlecan. Pathol Oncol Res. 2000;6:10–17.

    Article  CAS  PubMed  Google Scholar 

  18. Cassoni P, Sapino A, Deaglio S, et al. Oxytocin is a growth factor for Kaposi's sarcoma cells: evidence of endocrine-immunological cross-talk. Cancer Res. 2002;62:2406–2413.

    CAS  PubMed  Google Scholar 

  19. Zentilin L, Marcello A, Giacca M . Involvement of cellular double-strand DNA break-binding proteins in processing of recombinant adeno-associated virus (AAV) genome. J Virol. 2001;75:12279–12287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Albini A, Fontanini G, Masiello L, et al. Angiogenic potential in vivo by Kaposi's sarcoma cell-free supernatants and HIV-1 tat product: inhibition of KS-like lesions by tissue inhibitor of metalloproteinase-2. AIDS. 1994;8:1237–1244.

    Article  CAS  PubMed  Google Scholar 

  21. Albini A, Marchisone C, Del Grosso F, et al. Inhibition of angiogenesis and vascular tumor growth by interferon-producing cells: a gene therapy approach. Am J Pathol. 2000;156:1381–1393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cai T, Fassina G, Morini M, et al. N-acetylcysteine inhibits endothelial cell invasion and angiogenesis. Lab Invest. 1999;79:1151–1159.

    CAS  PubMed  Google Scholar 

  23. Fisher KJ, Jooss K, Alston J, et al. Recombinant adeno-associated virus for muscle directed gene therapy. Nat Med. 1997;3:306–312.

    Article  CAS  PubMed  Google Scholar 

  24. Snyder RO, Spratt SK, Lagarde C, et al. Efficient and stable adeno-associated virus-mediated transduction in the skeletal muscle of adult immunocompetent mice. Hum Gene Ther. 1997;8:1891–1900.

    Article  CAS  PubMed  Google Scholar 

  25. Monahan PE, Samulski RJ . AAV vectors: is clinical success on the horizon? Gene Therapy. 2000;7:24–30.

    Article  CAS  PubMed  Google Scholar 

  26. Jiang Y, Goldberg ID, Shi YE . Complex roles of tissue inhibitors of metalloproteinases in cancer. Oncogene. 2002;21:2245–2252.

    Article  CAS  PubMed  Google Scholar 

  27. Cesarman E, Mesri EA, Gershengorn MC . Viral G protein-coupled receptor and Kaposi's sarcoma: a model of paracrine neoplasia? J Exp Med. 2000;191:417–422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Harris AL . Antiangiogenesis for cancer therapy. Lancet. 1997;349:SII13–SII15.

    Article  PubMed  Google Scholar 

  29. Tosetti F, Ferrari N, De Flora S, Albini A . Angioprevention: angiogenesis is a common and key target for cancer chemopreventive agents. FASEB J. 2002;16:2–14.

    Article  CAS  PubMed  Google Scholar 

  30. Toschi E, Barillari G, Sgadari C, et al. Activation of matrix-metalloproteinase-2 and membrane-type-1-matrix-metalloproteinase in endothelial cells and induction of vascular permeability in vivo by human immunodeficiency virus-1 Tat protein and basic fibroblast growth factor. Mol Biol Cell. 2001;12:2934–2946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zucker S, Cao J, Chen WT . Critical appraisal of the use of matrix metalloproteinase inhibitors in cancer treatment. Oncogene. 2000;19:6642–6650.

    Article  CAS  PubMed  Google Scholar 

  32. Bergers G, Javaherian K, Lo KM, et al. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science. 1999;284:808–812.

    Article  CAS  PubMed  Google Scholar 

  33. Edgell CJ, McDonald CC, Graham JB . Permanent cell line expressing human factor VIII-related antigen established by hybridization. Proc Natl Acad Sci USA. 1983;80:3734–3737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Marchisone C, Benelli R, Albini A, et al. Inhibition of angiogenesis by type I interferons in models of Kaposi's sarcoma. Int J Biol Markers. 1999;14:257–262.

    Article  CAS  PubMed  Google Scholar 

  35. Deodato B, Arsic N, Zentilin L, et al. Recombinant AAV vector encoding human VEGF165 enhances wound healing. Gene Therapy. 2002;9:777–785.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Progetto Finalizzato “Genetica Molecolare” of the Consiglio Nazionale delle Ricerche, Italy, from the Fondazione Cassa di Risparmo of Trieste, Italy, from the Associazione Italiana per la Ricerca sul Cancro, Italy and from the Istituto Superiore di Sanità-AIDS project. Raffaella dell’Eva is recipient of a Federazione Italiana Sclerosi Multipla (FISM) fellowship. We are very grateful to Barbara Boziglav and Mauro Sturnega for excellent technical support and to Suzanne Kerbavcic for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Giacca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zacchigna, S., Zentilin, L., Morini, M. et al. AAV-mediated gene transfer of tissue inhibitor of metalloproteinases-1 inhibits vascular tumor growth and angiogenesis in vivo. Cancer Gene Ther 11, 73–80 (2004). https://doi.org/10.1038/sj.cgt.7700657

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700657

Keywords

This article is cited by

Search

Quick links