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Abstract  

The use of pharmacogenetic guidelines in personalizing treatments has shown the potential to 

reduce interindividual variability in drug response by enabling genotype-matched dosing and drug 

selection. However, other important factors, such as patient gender, may interact strongly with 

pharmacogenetics in determining the individual profile of toxicity and efficacy, but are still rarely 

considered when planning pharmacological treatment. The literature indicates that males and 

females respond differently to drugs, with women being at higher risk for toxicity and having 

different plasma exposure to drugs at standard doses. Recent studies have shown that 

pharmacogenetic variants may have different predictive value in different sexes, as in the case of 

treatment with opioids, ACE inhibitors, or proton pump inhibitors. Of particular interest is the case 

of treatment with fluoropyrimidines for cancer. A significant increase in toxicity has been described 

in female patients, with a more pronounced effect of specific DPYD and TYMS polymorphisms also 

noted. This manuscript reviews the major findings in the field of sex-specific pharmacogenomics. 
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Significance Statement 

Interindividual variability in drug response is an emerging issue in pharmacology. The genetic 

profile of patients, as well as their gender, may play a role in the identification of patients more 

exposed to the risk of adverse drug reactions or poor efficacy. This article reviews the current state 

of research on the interaction between gender and pharmacogenetics in addressing interindividual 

variability. 
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Introduction  

It is well known that there are significant interindividual differences in drug response and toxicity in 

patients treated with the same therapy. The safety and efficacy of drugs depend on many factors that 

influence their utilization in the body (Lichtman et al., 2003; Wilkinson, 2005; Scripture and Figg, 

2006). Drug-related interindividual variability factors include dosage, dosage form, and therapeutic 

regimen, which are responsible for drug-drug interactions. Patient-specific factors include age, 

gender, diet, natural physiological cycles, pregnancy, acute illness, liver and kidney dysfunction, 

and other chronic diseases (Huang and Temple, 2008). One of the principal causes of variability in 

drug effects is the patient's own metabolism. Approximately one third of variability among 

individuals in drug response is correlated with genetic single nucleotide polymorphisms (SNPs) in 

genes encoding phase 1 and phase 2 enzymes.  

In the lengthy and costly development of drugs, patients' gender and genetics have been 

inadequately considered, resulting in biased dosing strategies for most of the available drugs. The 

lack of consideration of the genetic makeup of participating patients, which may lead to enrolment 

of patients in the clinical trial who are carriers of high-impact mutations, is emerging as a critical 

problem. In addition, analysis of clinical trial quality by several authors has shown that women are 

significantly underrepresented in pivotal phase 1, 2, and 3 clinical trials. Traditionally, studies have 

primarily included adult white, Caucasian males, particularly in phase I clinical trials (Fisher and 

Kalbaugh, 2011). The inclusion of women is central to all phases of drug development to rationalize 

the costs of the research and to improve drug safety and efficacy based on a personalized approach 

(Woodruff, 2014). Optimization of drugs in early phases of preclinical development, performed 

specifically on cells or mice of one sex, can lead to sex bias that is perpetuated in later phases of 

drug development. To get an idea of how topical this issue is, one might note, for example, that also 

for research on SARS-CoV-2 (COVID -19) at the moment only one of the four human cell lines 

used is female (Takayama, 2020). 
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In this context, personalized medicine or precision medicine is a model of healthcare that tailor 

pharmacological treatments and, more generally, medical interventions, to each individual based on 

the risk factors for treatment failure or for the disease (Mathur and Sutton, 2017; Manson et al., 

2017).  
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Pharmacogenetics and its implementation in the clinical practice 

Personalized medicine has gained importance in recent years in light of increasing diagnostic and 

informatics approaches, particularly in the genetic field. In particular, the use of genetic information 

has played such a critical role in personalized medicine that the term pharmacogenomics was first 

used in the context of genetics and then evolved into a new branch of pharmacology (Burke et al., 

2014). 

Pharmacogenomics and pharmacogenetics (PGx) aim to personalize therapy based on the genetic 

predisposition of patients (Pirmohamed, 2001; Katara and Yadav, 2019). According to many 

authors, adjusting dosages and medications to take genetic variants into account is the first true 

clinical application of genetics in the post-genomic era (Swen et al., 2007).  

Indeed, the presence of a variant in a gene encoding metabolic enzymes may increase or decrease 

its enzymatic activity, with significant implications for efficacy and/or the development of toxicity. 

Genetic variants could be related to i) lower or higher drug exposure, ii) increased toxic metabolite 

concentration, iii) altered interaction with the target drug, and iv) idiosyncratic drug toxicity due to 

immune activation (Pinto and Dolan, 2011). An estimated 90% of the population carries at least one 

variant in a gene related to drug metabolism or mechanism of action, or a variant indicating a higher 

risk for hypersensitivity reactions (Uetrecht, 2007; Van Driest et al., 2014). The protein phenotype 

predicted based on the genetic profile of the encoding gene could be classified into the following 

groups: - "Ultrarapid Metabolizers" with increased enzyme activity; - "Normal Metabolizers" with a 

normal and weak enzyme activity; - "Intermediate Metabolizers" with an intermediate enzyme 

functionality; - "Poor Metabolizers", when the enzyme is completely dysfunctional (Caudle et al., 

2017). 

It was reported that 7% of the 1200 drugs approved by the Food and Drug Administration (FDA) 

are linked to a clinically effective variant, and these drugs account for 18% of about 4 billion 

prescriptions in the United States (Budnitz et al., 2006; Relling and Evans, 2015; Caraballo et al., 
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2017). Consequently, the inability to obtain appropriate therapy, even when PGx information is 

used, means the so-called "therapeutic odyssey" for the patient. This condition is characterized by 

the constant search for the most effective therapy, ineffective treatments, frequent visits to the 

doctor, alternative treatment regimens based on the use of dietary supplements, phytotherapeutics, 

or polytherapeutic agents, the deterioration of the patient's condition, and the failure of treatment. 

PGx testing before treatment could curb this phenomenon and many of the above cases could be 

identified a priori to avoid side effects or therapeutic inefficacy (Lazaridis, 2017).  

Currently, the slow clinical adoption of PGx is primarily due to barriers that delay its introduction 

into clinical practice. The lack of standardized PGx guidelines and their difficult interpretation by 

clinicians who have been resistant to PGx information are just some of these obstacles (Swen et al., 

2007; Dunnenberger et al., 2015). Nowadays, authoritative consortia worldwide have developed 

guidelines that can help clinicians translate available genetic test results into clinical decisions. The 

Royal Dutch Association for the Advancement of Pharmacy - Pharmacogenetics Working Group 

(DPWG), Clinical Pharmacogenetics Implementation Consortium (CPIC), the Canadian 

Pharmacogenomics Network for Drug Safety (CPNDS), and additional scientific consortia are 

working to facilitate the incorporation of PGx testing into clinical practice and to translate genetic 

information into prescribing recommendations (Clinical Pharmacogenetics Implementation 

Consortium, https://cpicpgx.org) (Swen et al., 2008, 2018; Caudle et al., 2014; Abdullah-Koolmees 

et al., 2020). The PharmGKB website, a National Institutes of Health (NIH)-funded resource, 

collects international guidelines and provides information on how genetic variations affect drug 

response, making this knowledge accessible to clinicians and researchers. To date, 249 clinical 

guidelines by either CPIC, DPWG, or other consortia are available for 147 drugs 

(https://www.pharmgkb.org). 

Since the early 2000s, PGx clinical programs with implementation models have been reported in 

various contexts of healthcare, using both preventive testing or at the point-of-care (Luczak et al., 

2021). In this context, the European Union-funded Ubiquitous Pharmacogenomics (U-Pgx) study 
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tested the impact of implementing PGx guidelines on the safety of a list of 43 commonly prescribed 

drugs at 7 clinical sites in Europe as part of a randomized and prospective clinical trial 

(PREemptive Pharmacogenomic testing for prevention of Adverse drug Reactions - PREPARE) 

(Cecchin et al., 2017; Swen et al., 2023).  

 

Sex medicine in the context of personalized medicine 

Among all drug classes, women are almost 2-fold more likely than men to experience adverse drug 

reactions (ADRs) and at increased risk of hospitalization for an ADR (Zucker and Prendergast, 

2020; Madla et al., 2021; Zucker et al., 2022). Many drugs administered to both sexes at the same 

dose should be re-evaluated for gender-specific dose adjustment, such as the representative case of 

the sedative-hypnotic zolpidem, for which gender-specific dose adjustment was required after 

decades in which post marketing reports highlighted that women were reporting cognitive deficits 

when receiving the standard dose of drug for male (Zucker et al., 2022). In the United States, 

between 1997 and 2000, among eight of 10 drugs were withdrawn from the market because of very 

severe side effects encountered mostly in women (Schiebinger et al., 2016). Sex medicine is an 

innovative approach to precision medicine that aims to improve care and treatment for both men 

and women, overcoming milligram/kilogram-based or "one size fits all" drug administration, which 

often leads to treatment errors (Baggio et al., 2013; Wagner et al., 2019). Sex differences affecting 

virtually all body areas correlate with protection from or susceptibility to cancer, cancer 

progression, and response to therapy (Dong et al., 2020; Zucker and Prendergast, 2020). 

Patient sex could influence both PK and PD drug pathways, leading to sex differences in ADRs 

(Soldin and Mattison, 2009; Soldin et al., 2011; Dong et al., 2020). For most of the FDA-approved 

drugs studied (88%) for which sex-specific data were available PK, increased blood concentrations 

and longer elimination times were found in women in more than 10 therapeutic categories, and 

these PKs were strongly associated with sex differences in ADRs. FDA reviewed 300 new drug 
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applications between 1995 and 2000, and only 54% included an analysis of gender. In addition, 8% 

of these drugs presented a difference of around 40% in pharmacokinetics when comparing males 

and females, yet gender was not accounted for in dosing recommendations (Anderson, 2005). The 

lack of published sex-specific data regarding PK for many different drugs raises concerns that other 

drugs could present PK differences according to sex but data are not made publicly available 

(Zucker and Prendergast, 2020; Zucker et al., 2022). 

Women are more prone to overdose due to lower volume of distribution, higher body fat percentage 

(13.5-16.5 kg in women), larger free fraction of the drug, and slower xenobiotic clearance. Body 

composition parameters that could affect drug distribution include body fluids composition and 

distribution which volume is greater in males than females, resulting in different responses to the 

drug. Plasma protein binding has also been shown to vary between the two sexes due to the 

influence of estrogens, which increase the concentration of serum binding globulins. The use of oral 

contraceptives, pregnancy or menopause status are cited as sex-specific conditions that affect the 

PK and PD of various drugs. Another important difference between the two sexes is related to the 

composition of the gut microbiota (Mueller et al., 2006; Wen et al., 2008). In addition, lifestyle 

factors such as use of tobacco or excessive alcohol consumption, diet and physical inactivity, which 

are known to have a direct impact on drug response, differ greatly between men and women, as 

reported in several studies. In addition, women tend to take a greater number of medications than 

men, leading to increased drug-drug interactions. 

Sex hormones have secondary effects that up- or down-regulate genes contributing to exacerbate 

gender differences in treatment outcomes (Pinsonneault and Sadée, 2003). Transcriptional processes 

promoting the expression of absorption, distribution, metabolism, and excretion (ADME) genes 

may be activated by estrogens by binding specific nuclear receptors causing a significant difference 

in the activity of phase I and phase II metabolic enzymes by sex. The phase I enzymes CYP3A4 and 

CYP2D6 are more active in females, while CYP1A family enzymes have higher metabolic activity 
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in males. These differences result in sex-specific changes in exposure to various drugs, including 

clomipramine, clozapine, olanzapine, acetaminophen, codeine, diazepam, fentanyl, statins, and 

tamoxifen. Phase 2 enzymes such as UDP-glucuronosyltransferases and methyltransferases have 

been found to be more active in males than females and directly affect the clearance of ibuprofen, 

acetaminophen, azathioprine, dopamine, oxazepam, and levodopa (Yang et al., 2012; Franconi and 

Campesi, 2014). 

 

The role of sex medicine in the pharmacogenomics era 

In the context of the clearly different ability of men and women to metabolise drugs, the role of 

PGx may become crucial. Indeed, a metabolic background already altered by sex-specific factors 

could enhance the effect of specific genetic polymorphisms or otherwise render them negligible 

(Figure 1). Many genetic polymorphisms have been shown to exhibit a sex-specific effect 

(Myburgh et al., 2012). A recent genome-wide association study (GWAS) focused on identifying 

predictive markers associated with psychiatric disorders identified genetic variants that are 

differentially predictive in men and women. Variants in genes related to neuronal development, the 

immune system, and vascular function have been associated with sex-dependent effects on the onset 

of schizophrenia, major depressive disorder, and bipolar disorder (Blokland et al., 2022). However, 

there are no precise studies on the gender effects of PGx on patient treatment, as in other areas of 

pharmacological research. 

The most striking difference between males and females is sex chromosomes. Indeed, an impaired 

drug response was previously related to large genetic aberrations in Y chromosome, inactivation of 

X chromosomes and other genetic and epigenetic alterations (Carè et al., 2018). Immune function is 

regulated by genes located in the X chromosome (e.g., TLR, cytokine receptors, transcription 

factors), therefore immune genes can be up-regulated in  females due to X chromosome 

inactivation, which may explain the gender discrepancy in immunotherapy. Specifically, IL -2, TLR 
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-7, TRL-8, CD-40LG, and FoxP3 are X genes related to the immune response which can lead to 

higher resistance to immunotherapy in females due to X escape, (Irelli et al., 2020). Differential 

response to infection between males and females is one of the aspects related to sex differences in 

the immune system activation. Response to HCV therapy was related to four genetic 

polymorphisms near the IL28B gene in a sex-dependent manner. Women had a better response to 

treatment and HCV clearance than men (Rao et al., 2012). 

Exposure to many drugs was affected by patients sex and related enzymatic activities in several 

cases such as irinotecan, ibuprofen, acetaminophen, dopamine, oxazepam and azathioprine 

metabolised by UGTs; clomipramine, acetaminophen and clozapine, metabolized by CYP1A; 

diazepam, lovastatin, simvastatin and fentanyl metabolized by CYP3A; fluoxetine, codeine, 

tamoxifen, encainide and flecainide, metabolized by CYP2D6 (Soldin and Mattison, 2009). 

The volume of distribution of drugs could be sex-dependently affected by polymorphisms in the 

ABC genes as well as their glomerular filtration (Anderson, 2008). 

Many genetic polymorphisms have been associated with sex differences in drug response (Table 1). 

An interaction between sex and genetics of patients has been highlighted for MC1R gene in 

analgesic therapy. When pentazocine was administered to fair-skinned, red-haired women in 

comparison with red-haired men and women who did not have the variant alleles, better analgesia 

was associated with the presence of two variant alleles of the MC1R in their genome (Mogil et al., 

2003). In a study conducted in 582 opioid-dependent patients randomized to receive methadone or 

buprenorphine/naloxone, no overall effect of genetic polymorphisms in OPRD1 was observed, but a 

specific sex-specific effect was noted for 2 intronic SNPs (rs581111 and rs529520) that were related 

to the outcome of the treatment only in women treated with buprenorphine (Clarke et al., 2014). In 

addition, a genotype analysis of patients treated with opioids, antipsychotics and antiepileptic drugs 

for noncancer chronic pain, showed that the nature of adverse drug reactions (ADRs) differed 

between males and females according to the patients genotype: OPRM1-G allele and COMT-GG 
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genotype were associated with specific side effects (in men vomiting and depression, whereas in 

women dizziness and dry skin). The sexual dysfunction incidence was the same in both sexes 

(Planelles et al., 2020). A recent observational study compared the use of tapentadol (n= 194) or 

oxycodone/naloxone (n= 175) with the prescription of other opioids for the treatment of chronic 

noncancer pain in 585 real-world patients. In addition to clinical endpoints of treatment outcomes, 

some genetic variants of the OPRM1 (rs1799971, A118G) and COMT (rs4680, G472A) genes were 

analyzed. In patients treated with oxycodone/naloxone, patients with the homozygous genotype 

COMT-472AA had a higher rate of erythema and vomiting, especially in women, again indicating a 

gender effect (Barrachina et al., 2022). Transcriptomics signatures was analysed in male and female 

bipolar patients. Although the study did not focus on germline genetic polymorphisms, the authors 

showed that two genes (RBPMS2 and LILRA5) were selectively expressed in men that responded to 

lithium treatment whereas three genes (ABRACL, FHL3, and NBPF14) were expressed in female 

lithium responders (Eugene et al., 2018). About the treatment of cardiovascular disease, 

polymorphisms in ACE gene were associated with a sex-specific differential outcome after 

treatment with ACE inhibitors (ACEIs). They are more effective in women with genotype D/D 

compared with men with genotype D/D and more effective in men with genotype D/D than in men 

with genotype I/D or I/I (Ruggenenti et al., 2000). Hydrochlorothiazide response was also affected 

by ACE polymorphism in a sex-specific manner and I/I women responded better than D/D men 

(Schwartz et al., 2002). Male patients carrying an allelic variant of ABCC2-24C > T and treated 

with atorvastatin for hypercholesterolemia, had a significant lower response than in women carrying 

the same genetic variant (Prado et al., 2018). 

More recently, CYP2C19, involved in the clearance of proton pump inhibitors (PPIs) (such as 

pantoprazole, rabeprazole, omeprazole, lansoprazole and esomeprazole) was studied in relation to 

the prevalence of migraine in the large UK Biobank cohort. A higher migraine prevalence at 

baseline (odds ratio [OR] = 1.25, p < 0.0001) was associated to the CYP2C19 metabolizer 
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phenotype in patients treated with PPIs. In particular, a poor CYP2C19 metabolizer status was 

associated with chronic migraine only in men, suggesting a potentially relevant role of the 

interaction between gender and CYP2C19 phenotype (Pisanu et al., 2021). 

 

The effect of pharmacogenetics- sex interaction on cancer treatment with fluoropyrimidines 

Fluoropyrimidines (FPs), including 5-fluorouracil (5- FU) and capecitabine, are widely used in the 

treatment of tumors and represent an important example of gender disparity in treatment outcomes 

(Stein et al., 1995; Sloan et al., 2000; Mueller et al., 2013). Clearance of FPs is lower in women 

than in men (Milano et al., 1992), resulting in higher toxicity in women and compromising 

therapeutic efficacy (Mader, 2007; Wang and Huang, 2007). Zalcberg et al. reported as early as 

1998 that hematologic and nonhematologic toxicities were influenced by gender after 

administration of 5 FU and leucovorin in patients with advanced colorectal cancer (Zalcberg et al., 

1998). Severe toxicities such as stomatitis, leukopenia, alopecia, and diarrhea occurred more 

frequently in women compared with men during 5- FU based chemotherapy. These data were 

recently confirmed by Wagner et al. in an analysis of women with colon cancer who received 

adjuvant FP -based chemotherapy (Wagner et al., 2021). The mechanism underlying the gender-

dependent PK of 5- FU when administered as an infusion, with lower drug clearance in women, is 

still unclear, but the authors postulated a role in DPD activity (Milano et al., 1992). DPD activity 

has been shown to be decreased by 15% in women (Etienne et al., 1994). This may pave the way to 

investigate the role of gender in predicting DPYD variants in FP-related toxicity, as the proportion 

of toxicity cases explained by DPYD variants may be different in men and women (Amstutz et al., 

2011). Lower DPD activity associated with toxicity in females could be explained by DPD 

enzymatic deficiency (Milano et al., 1999). Four DPYD variants (DPYD*2A, DPYD*13, 

DPYD_c.2846C > T and DPYD-HapB3) have been shown to functionally affect DPD functionality 

and increase the risk of severe toxicity associated with FPs administration. All international 
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guidelines now agree that pretreatment DPYD genotyping is recommended (Amstutz et al., 2018; 

Lunenburg et al., 2020), and recently the EMA also published a document recommending DPD 

screening to increase treatment safety (https://www.ema.europa.eu/en/news/ema-recommendations-

dpd-testing-prior-treatment-fluorouracil-capecitabine-tegafur-flucytosine). According to current 

guidelines, patients who are carriers of an allelic variant within the panel should receive a halved 

initial dose of FPs. If there is a remote possibility that a patient is a carrier of more than one variant 

allele, patients should be phenotyped (i.e., DPD activity should be determined); otherwise, 

treatment with FPs should be avoided. 

A potential interaction between DPYD polymorphisms and patients sex has been investigated 

(Table 2). In a study by Schwab et al. it was shown that the effect of the DPYD*2A variant on 

toxicity associated with 5 FU can be considered gender-specific (Schwab et al., 2008). While a 

significant association with this variant was observed in male patients, no effect was seen in female 

patients. Similarly, Lee et al. observed a stronger effect of DPYD*2A in males compared to females, 

suggesting an interaction between gender and DPYD polymorphisms in the context of treatment 

with FPs (Lee et al., 2014). 

Other genes and the sex-specific effect of their polymorphisms have been investigated for FPs-

based treatments (Table 2). In a multicenter, randomised, noninferiority phase III study conducted 

in patients with high-risk stage II / III colon cancer treated with 6 vs. 3 months of adjuvant 

chemotherapy with FOLFOX-4 or XELOX (TOSCA), Ruzzo A.M. and colleagues analysed how 

the interaction between 17 genetic polymorphisms and patient gender might affect treatment-related 

toxicity. An interaction of rs1801133 (MTHFR) and rs1799793 (ERCC2) on time to onset of grade 

3 hematologic toxicity, of rs13181 (ERCC2) on time to onset of grade 3 gastrointestinal toxicity, 

and of rs11615 (ERCC1) on time to onset of grade 3 neurologic toxicity was found. The rs1799793 

genotype GA (p=0.006) and the A allele (p=0.009) specifically decreased the time to onset of grade 

3 hematologic toxicities in males, while the rs11615 genotype CC worsened the time to onset of 
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grade 3 neurologic toxicities and the rs13181 G allele improved the time to onset of grade 3 

gastrointestinal toxicities in females (Ruzzo et al., 2019). In this case, the effect of genes in DNA 

repair pathways may reflect the effect of oxaliplatin in the combination treatment that patients 

received. 

On the other hand, the sex-specific effect on FPs toxicity observed for the MTHFR polymorphism 

was recently confirmed by Ioannou et al. who genotyped 313 cancer patients treated with FPs for 

the same MTHFR polymorphism rs1801133. They found a specific effect of the polymorphism in 

female patients, in whom the MTHFR c.665 CT and TT genotypes were associated with both the 

need for dose reduction due to toxicity and the percentage of dose reduction. Such differences were 

not present in male patients, again confirming that genetic polymorphisms have a stronger influence 

on toxicity risk in females instead of males (Ioannou et al., 2022). 

Although the role of the TYMS polymorphism in predicting severe adverse effects in patients treated 

with FPs is still debated, a higher rate of ADRs in patients with TYMS-TSER 3R/2R genotype and 

treated with 5 FU /capecitabine was observed in female cancer patients compared to males, possibly 

related to ER regulation of TS expression (Ioannou et al., 2021). TYMS genotype 2R/2R was found 

to have a higher prevalence in African American female patients with adverse effects compared to 

male patients (Khushman et al., 2021). 
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Conclusion and future perspectives 

Pgx is becoming increasingly important in clinics, and several consortia have made specific 

recommendations for genotype-based prescribing. In this context, the impact of patient sex may be 

important, as it is reported to affect the clinical outcome of pharmacological treatment, in terms of 

both toxicity and efficacy. This is often mediated by a different ADME of drugs in men and 

women-a 40% difference between the two sexes (PK) -and by a different reactive immune system. 

However, sex-specific PGx recommendations that take into account both aspects have not yet been 

formulated. Evidence shows that women have a doubled risk to develop an ADR compared to men 

with higher hospitalization rates (Tharpe, 2011). There is growing evidence that the effect of 

genetic polymorphisms may differ in different gender contexts. There are limited and anecdotal data 

on the effects of gender on PGx-directed drug therapy derived from clinical investigations. These 

limitations could be overcome, ensuring adequate representation of both genders in clinical trials. 

Regulatory agencies regularly conduct analyzes to verify gender balance in recruitment, but in 

general the primary and secondary endpoints do not consider separate gender analyzes, particularly 

when addressing gender differences in PGx. 

In recent years, the impact of germline genetic variants on therapeutic outcomes has been 

increasingly studied and is beginning to be used in clinical practice to improve drug efficacy and 

safety. Although there is evidence of sex differences in the efficacy and toxicity of many drugs, 

including chemotherapeutics, sex medicine still remains a mirage. Personalized and precision 

medicine should in the future assess how PGx variants might have a different role in men and 

women. 
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Figure 1. The different background of males and females in terms of drug pharmacokinetics and 

pharmacodynamics interacts with the genetics of specific enzyme players, such as cytochromes and 

intracellular transporters, causing sex-specific pharmacogenomic associations. There is a need to 

develop sex-based pharmacogenomics guidelines to address this topic. 
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Tables 

Table 1. List of studies addressing the interaction between germline genetic polymorphisms and patient sex in defining the risk of toxicity 

or inefficacy. 

Year Drug Number of 

patients 

Gene/SNP 

investigated 

End-point Main findings Reference 

2000 ramipril 352  

(269 M; 83 F) 

ACE I/D 

polymorphism 

Efficacy 

(renoprotection) 

ACE inhibition is uniformly 

renoprotective in women regardless of the 

ACE polymorphism, and in men with the 

DD genotype, but it is virtually devoid of 

beneficial effects in men with the I/I or 

I/D genotype. 

(Ruggenenti 

et al., 2000) 

2002 hydrochlorothiazide 376  

(170 M; 206 

F)  

ACE I/D 

polymorphism 

Efficacy (blood 

pressure control) 

The ACE I/D polymorphism predicts 

blood pressure response to a thiazide 

diuretic in a gender-specific manner: a 

higher response rate in I/I females and 

D/D men was observed. 

(Schwartz et 

al., 2002) 

2003 pentazocine 42  MC1R (R151C, Efficacy (analgesia) A significant influence of MC1R genotype (Mogil et al., 
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(24 M; 18 F) R160W, D294H 

redhead associated 

variants) 

on analgesia was detected in women only. 

Pentazocine at the dose used produced 

modest analgesia in all men. “Classic” 

light-skinned, redheaded women with two 

variant MC1R alleles displayed robust 

pentazocine analgesia. 

2003) 

2014 methadone or 

buprenorphine/naloxone  

582  

(397 M; 185 

F) 

OPRD1 (rs1042114, 

rs678849, 

rs10753331, 

rs529520, rs581111, 

and rs2234918) 

Efficacy (analgesia) A specific sex-related effect was observed 

for 2 intronic SNPs (rs581111 and 

rs529520) that predicted treatment 

outcome only in females treated with 

buprenorphine. s581111 and rs52920 may 

be useful when considering treatment 

options for female opioid addicts. 

(Clarke et 

al., 2014) 

2018 atorvastatin 127  

(49 M, 78 F) 

ABCC2 (rs717620)  Efficacy 

(triglycerides level) 

Triglycerides (TG) levels and the 

TG/HDL-C ratio are affected by the 

rs717620 SNP in Chilean males but not 

female individuals after atorvastatin 

treatment. 

(Prado et al., 

2018) 
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2020 Opioids, several molecules 172  

(45 M; 127 F) 

OPRM1 variants and 

COMT  

 

Toxicity (vomiting, 

depression, 

dizziness, sexual 

dysfunction) 

Genotype of OPRM1 and COMT 

(OPRM1-G allele and COMT-GG 

polymorphisms) influenced toxicities for 

vomiting and depression in men, dizziness 

in women and sexual dysfunction in both.  

(Planelles et 

al., 2020) 

2021 omeprazole, esomeprazole, 

lansoprazole, pantoprazole 

and rabeprazole 

468.280  

(214.285 M; 

253.995 F) 

CYP2C19 

 

Toxicity (migraine) Treatment with proton-pump inhibitors 

and CYP2C19 poor metabolizer status 

were associated with higher incidence of 

probable chronic migraine exclusively in 

men 

(Pisanu et 

al., 2021) 

2022 oxycodone/naloxone 

tapentadol 

 

584  

(169 M; 415 

F) 

OPRM1 (rs1799971, 

A118G) and COMT 

(rs4680, G472A) 

Toxicity (erythema 

and vomiting) 

Patients with COMT-472AA homozygote 

genotype evidenced higher rates of 

erythema and vomiting, especially in 

females 

(Barrachina 

et al., 2022) 

SNP, Single Nucleotide Polymorphism; M, Males; F, Females 
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Table 2. List of studies addressing the interaction between germline genetic polymorphisms and patient sex in defining the risk of 

fluoropyrimidines-related toxicity. 

Year Drug Number of 

patients 

Gene/SNP investigated Main findings Reference 

2008 5-FU 683  

(383 M; 300 F)  

DPYD, TYMS, MTHFR A significant interaction was found between sex and 

DPYD*2A, which resulted much more associated with 

toxicity in males than females 

(Schwab et al., 2008) 

2014 5-FU 2594 (1385 M; 

1209 F)  

DPYD A greater effect of DPYD*2A (associated with grade ≥3 

5FU-toxicities) in males compared with females. 

(Lee et al., 2014) 

2019 5-FU 512  

(294 M; 218 F)  

TYMS (rs34743033, 

rs2853542, rs11280056), 

MTHFR (rs1801133, 

rs1801131), ERCC1 

(rs11615), XRCC1 (rs25487), 

XRCC3 (rs861539), XPD 

(rs1799793, rs13181), GSTP1 

(rs1695), GSTT1/GSTM1 

(deletion +/−), ABCC1 

Interactions were detected on time to grade ≥3 

haematological toxicity (TTH) for rs1801133 and 

rs1799793, on time to grade ≥3 gastrointestinal toxicity 

(TTG) for rs13181, and on time to grade ≥2 neurological 

toxicity (TTN) for rs11615.  

Rs1799793 GA genotype and A allele shortened TTH in 

men. In women, the rs11615 CC genotype worsened 

TTN and rs13181 G allele improved the TTG.  

(Ruzzo et al., 2019) 
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(rs2074087), and ABCC2 

(rs3740066, rs1885301, 

rs4148386). 

2021 5-FU/ 

capecitabine 

313  

(160 M; 153 F) 

TYMS-TSER (rs45445694) 

polymorphism 

TYMS-TSER 3R/2R polymorphism was associated with 

incidence of adverse events in female cancer patients. 

(Ioannou et al., 

2021) 

2021 5-FU/ 

capecitabine 

126  

(69 M; 57 F) 

TYMS-TSER (rs45445694) 

polymorphism 

A higher prevalence of 2R/2R TYMS genotype was 

reported in female African American patients developing 

adverse events compared with men. 

(Khushman et al., 

2021) 

2022 5-FU/ 

capecitabine  

313  

(160 M; 153 F) 

MTHFR rs1801133 C>T 

polymorphism  

MTHFR rs1801133 polymorphism was associated with 

fluoropyrimidine dose reduction in female cancer 

patients. 

(Ioannou et al., 

2022) 

SNP, Single Nucleotide Polymorphism; M, Males; F, Females; 5-FU, 5-Fluorouracil; R, repeat 
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