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Abstract 

Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) have become a promising cell 

source for cardiovascular research. The electrophysiological characteristic of hESC-CMs has 

been generally studied, but little is known about electrophysiological response to adrenergic 

adrenoreceptor (AR) activation. This study aims to characterize electrophysiological response of 

hESC-CMs to adrenergic stimulation, in terms of the conduction velocity (CV) and action 

potential (AP) shape. The H9 hESC-CMs were acquired by a classical differentiation protocol and 

cultured to achieve confluent cell monolayers. The AP shape and CV among the monolayers 

were recorded using optical mapping during electrophysiological and pharmacological 

stimulation experiments. RT-qPCR and Western blot were adopted to determine the expression 

levels of connexin and ion channel gene and protein. Chronic b-AR stimulation by isoproterenol 

for 24h in hESC-CMs monolayers increased CV by approximately 50%, while a-AR or acute b-AR 

stimulation had no significant effect; Chronic b-AR stimulation resulted in a significant Cx43 and 

Nav1.5 up-regulation at both protein and mRNA level. Isoproterenol induced CV accelerating and 

Cx43, Nav1.5 up-regulation in hESC-CMs, which was attenuated by selective β1-adrenoceptor 

antagonist CGP-20712A, but not selective β2-antagonist ICI-118551. Moreover, pretreatment 

with PKA inhibitor H89, MEK inhibitor SB203580 and MAPK inhibitor PD98059 suppressed the 

isoproterenol-induced CV accelerating and Cx43 up-regulation, whereas had no significant 

effect on Nav1.5 up-regulation. The AP shape in hESC-CMs monolayers was less susceptible by 

either b-AR or a-AR stimulation. It is β1-AR, not β2-AR contributing to the modification of 

conduction velocity among hESC-CMs monolayers. Chronic β1-AR stimulation accelerates CV by 

up-regulating Cx43 via PKA/MEK/MAPK pathway. 
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Statement of Significance  

These provide new insight into the electrophysiologic characteristics of human embryonic stem 

cell-derived cardiomyocytes(hESC-CMs) and depict a concise signaling pathway in the ARs 

regulation of action potential shape and electrical propagation across hESCs-CMs monolayer. It 

is β1-AR, not β2-AR contributing to the modification of conduction velocity in hESC-CMs and 

accelerates conduction velocity by up-regulating Cx43 via PKA/MEK/MAPK pathway.   
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Introduction 

Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs), including induced 

pluripotent and embryonic stem cell-derived cardiomyocytes (hiPSC-CMs and hESC-CMs, 

respectively), has become an important cell resource for cardiac regeneration, drug screening, 

and model of cardiovascular disease. (Dakhore et al., 2018; Protze et al., 2019; Samak and 

Hinkel, 2019). One particularly crucial for the usages of hPSC-CMs is an profound understanding 

of their electrophysiological property (Liu et al., 2016). The electrophysiologic characteristics of 

hPSC-CMs have been investigated by several studies, mostly of which focused on the properties 

of specific ion transporters, including sodium current (INa), calcium current (ICa), potassium 

current(Ik) and so on, whereas the relationship between adrenergic receptor (AR) signaling and 

electrophysiologic characteristics of hPSC-CMs, has not yet been revealed (van den Heuvel et 

al., 2014; Wang et al., 2019). 

As a canonical signaling pathway for the cardiomyocyte, the stimulation of AR system 

increases beating rate, force of contraction and velocity of contraction/relaxation in adult 

cardiomyocytes (Campbell et al., 2014). While attention has been given primarily to the 

regulatory mechanisms of AR signaling on the beating rate and contractility, few studies 

explored the effect of AR signaling on the electrophysiological characters and electrical 

propagation among hPSC-CMs (Brito-Martins et al., 2008; Pillekamp et al., 2012). Little is known 

about electrophysiological response of  hPSC-CMs to adrenergic adrenoreceptor (AR) and the 

effect of AR activation on action potential (AP) and conduction velocity (CV) is unclear. 

(Veeraraghavan et al., 2014).  
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Thus, the present study aims to (a) culture hESC-CMs to achieve confluent monolayers and 

perform electrophysiological and pharmacological studies using optical mapping method, (b) 

evaluate the alteration in APDs and average CV among the hESC-CMs monolayer following a- or 

b-AR stimulation, and (c) identify the possible adrenoceptor receptor subtype(s) and 

mechanisms involved in this process. 

 

Methods 

hESCs culture and differentiation 

We cultured H9 human embryonic stem cells (hESCs) in a monolayer-based protocol 

(Bhattacharya et al., 2014). To be short, undifferentiated hESCs were cultured in Geltrex 

(Thermofisher Scientific, Waltham, MA)-coated tissue culture plates and incubated in E8 media 

(Thermofisher Scientific) for 4 days before differentiation. Then, the cells were incubated in 

RPMI 1640 (Thermofisher Scientific) with B27 without insulin (Thermofisher Scientific) to begin 

the differentiation. Media was supplemented with 6µM CHIR99021 (Selleckchem, Houston, TX) 

for the first 48 hours, then 5µM IWR-1 (Sigma-Aldrich, St. Louis, MO) for the following 48 hours. 

The media was then replaced with RPMI 1640 with B27 and insulin (Thermofisher Scientific) on 

day 9 of the differentiation.  hESC-CMs monolayers were harvested using 0.05% trypsin 

between 10-12 days of the differentiation and re-plated at a density of 250,000 cells/cm2 to 

form a confluent monolayer, which be cultured for extra 30 days (day 40-45 post-

differentiation) for the experiments. 

 

Pharmacological experiments  
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Targets were first dissolved with either ddH2O or DMSO as the stock solution and then 

diluted to certain concentration with Tyrode’s solution as the working solution. Isoproterenol 

(ISO, Sigma-Aldrich) dissolved in ddH2O to 1 mM was used as the stock solution and then 

diluted to 1 µM in Tyrode’s solution when used. CGP 20712A (Tocris, Minneapolis, MN) was 

dissolved in ddH2O to 1mM as the stock solution and diluted to 0.3 µM in Tyrode’s solution 

when used. Epinephrine (Sigma-Aldrich) was dissolved with DMSO to 10mM and diluted to 

10µM in Tyrode’s solution. ICI 118551 (Tocris) was also dissolved in DMSO at 10 µM as the 

stock solution and serially diluted to 50nM as the working solution. H89 (Sigma) was dissolved 

in DMSO at 1M as the stock solution and serially diluted to 10 mM as the working solution. 

SB203580 (Tocris) was dissolved in DMSO at 1 mM as the stock solution and diluted to 20µM as 

the working solution. PD98059 (Tocris) was dissolved in DMSO at 1 mM as the stock solution 

and diluted to 20 µM as the working solution. 

Chronic adrenergic stimulation on the hESC-CMs monolayers was performed by 

supplementation of 1 µmol isoproterenol or 10 μmol/L epinephrine to the medium 24h before 

the experiments. Acute adrenergic stimulation was performed by supplementation of 1 µmol 

isoproterenol or 10 μmol/L epinephrine 10mins before the experiments.  For some 

experiments, the specific inhibitors were added 1h prior to chronic stimulation with ISO.  

 

Electrophysiological experiments  

Optical mapping: hESC-CMs monolayers (250,000 cells/cm2) were first incubated in 

Tyrode’s solution and stained with voltage-sensitive dye di-4-ANEPPS (10 µM) (Sigma-Aldrich, 

St. Louis, MO) for 10 min on a 35 mm Petri dish. To eliminate cell motion and contraction 
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interference, an 10µM blebbistatin (Sigma-Aldrich) was applied. Point pacing was proceeded at 

least 10 minutes after blebbistatin was added. The experiments was conducted in a 

temperature controlled at 37 °C and a 100x100 pixel CMOS camera (MiCAM Ultima-L, SciMedia, 

Costa Mesa, CA) was used for optical action potentials recording . 

Customized MATLAB scripts were used for mapping data analysis. A 5×5 Gaussian filter 

were applied during optical recordings to remove excessively noisy background or low-signal 

channels. Activation maps were drawn according to the time of maximum AP upstroke rate. CV, 

AP duration at 30% and 80% were calculated from the optical voltage signal. 

 

Western Blot analysis 

hESC-CMs were harvested and lysed with RIPA buffer (Thermofisher Scientific) cocktail 

supplemented with protease inhibitor (Sigma-Aldrich) and phosphatase inhibitor (Sigma-

Aldrich). Total protein was quantified with a Pierce BCA kit (Thermofisher Scientific). A total 

protein lysate of 30μg were loaded for each lane on 4-12% mini Tris-Bis gels (Bio-Rad, Hercules, 

CA) and transferred onto PVDF membranes for immuno-blotting. Membranes were blocked 

with nonfat milk and then incubated with primary antibodies for Kv11.1 (Santa Cruz, 1:200, sc-

377388), Kv7.1 (Santa Cruz, 1:1000, sc-20816), Nav1.5 (Alomone Labs, 1:200, asc-005), 

Connexin 43 (Sigma, 1:1000, C6219) and GAPDH (EMD Millipor,1:1000, MAB374) overnight at 

4 °C. The membrane was further incubated with secondary antibodies (LI-COR 1:20000, goat 

anti-rabbit or mouse, Lincoln, NE) and imaged by Odyssey CLX (LI-COR) per the manufacturer’s 

protocol. Detailed information of the antibodies was shown in Table 1. ImageJ software was 

used for a quantified and normalized protein intensities analysis. 
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Quantitative RT-PCR 

Quantitative RT-PCR was performed on hESC-CMs monolayers after mRNA was extracted as 

routine. Reverse transcription was performed to create cDNA with the PCR Master Mix kit 

(Thermo Fisher Scientific), using the MyGo Mini PCR system (IT-IS Life Science Ltd., Republic of 

Ireland). RT-qPCR was performed on each target in triplicate. Primer sequence of the PCR 

products were listed below: GJA1-sense, ACAGGTCTGAGTGCCTGAAC and GJA1-antisense, 

CGAAAGGCAGACTGCTCATC; SCN5A-sense, GTGCCCAGAAGCAGGATGAG, SCN5A-antisense, 

GGACATACAAGGCGTTGGTG; CACAN1C- sense, CACGGCTTCCTCGAATCTTG, CACAN1C- 

antisense, CTGTGGAGATGGTCGCATTG; KCNQ1-sense, CCGCCTGAACCGAGTAGAAG, KCNQ1-

antisense, GTGTTGCTGGGCAGGAAGAG. 

 

Statistical Methods  

Data are presented as mean ± standard error of mean (S.E.M.). Data was analyzed with 

Prism 7.0 (GraphPad Software, Inc.). Student's unpaired two-tailed t test was used for two-

group comparisons, and one-way ANOVA followed by Tukey's post hoc tests was conducted for 

multiple comparisons. P<0.05 was considered statistically significant.  

 

Result 

b-AR stimulation on conduction velocity (CV) and action potentials (APs) in hESC-CMs 

monolayers 
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After been point-stimulated at different pacing rates, the action potentials and their 

propagation across hESC-CMs monolayers were recorded using optical mapping. As shown in 

Fig 1A and B, the CV was faster in hESC-CMs monolayers stimulated with 1 µmol ISO for 24h, 

when compared with the control monolayers (11.2±0.3 cm/s vs. 7.8±0.4 cm/s at 1 Hz, P<0.001), 

the same results were observed in the other two different pacing rates (0.5 and 2 Hz). Next, we 

investigated the impact of chronic β-adrenergic receptor stimulation on action potentials in 

hESC-CMs monolayers, Fig 1C shows the recorded APs in control and chronic ISO treatment 

monolayers at standard 1Hz pacing rate. As shown in Fig 1D, these two groups had similar 

APD80, but APD30 became longer, and repolarization rate (reciprocal of triangulation) became 

faster after chronic ISO treatment. 

To determine whether the increasing in CV by chronic β-adrenergic receptor stimulation 

was associated with a regulation on the transcriptional or translational level, we compared the 

mRNA and protein expression of specific molecules between control and chronic ISO treatment 

hESC-CMs. As shown in Fig 2A, we measured the mRNA expression using RT-qPCR, and GJA1, 

SCN5A and CANAN1C expressions of hESC-CMs were significantly increased after stimulation 

with 1 µmol ISO for 24 h. In the protein level, Fig 2B and 2C show the Connexin 43 and Nav1.5 

protein contents were higher in hESC-CMs with chronic ISO treatment, whereas Kv11.1(subunit 

of IKr channel) and Kv7.1(subunit of IKs channel) level did not differ between control and 

chronic ISO treatment hESC-CMs. 

Next, we evaluated the effect of acute b-AR stimulation on CV and APs in hESC-CMs 

monolayers by treatment of the monolayers with 1 µmol ISO for 30min. As shown in Fig 3A and 

B, no significant difference of CV was observed before and after acute ISO treatment (8.4±0.5 
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cm/s vs. 8.7±0.6 cm/s at 1 Hz, P=0.677). Meanwhile, the action potentials of these two groups 

at 1 Hz pacing rate are similar, which are illustrated in Fig 3C and 3D.  

 

a-AR stimulation on CV and APs in hESC-CMs monolayers 

In order to confirm whether the observed AR effects on CV and AP appeared exclusively 

under β-AR stimulation, analog experiments were performed with hESC-CMs monolayers 

treated with 10 μmol/L PE for 24 h as chronic treatments and 30 mins as acute ones. In contrast 

to ISO, PE has no significant effect in altering CV. As shown in Fig 4A and B, there were no 

significant difference of CV among chronic a-AR stimulation, acute a-AR stimulation and 

control groups (8.8±0.4 cm/s vs. 8.7±0.6 cm/s vs. 9.3±0.4 cm/s at 1 Hz, P=0.899 and 0.311). 

Furthermore, upon acute a-AR stimulation, no alterations were detected in action potentials, 

but chronic a-AR stimulation shortens the APD30 (263±21 ms vs. 214±40 ms, P=0.049) and 

increases the APD triangulation (145±6 ms vs. 161±10 ms, P=0.015)(Fig 4C and D). 

 

β1-AR but not β2-AR subtype involved in CV regulation in hESC-CMs  

To further clarify which subtype of β-AR is responsible for the CV and APs changes, hESC-

CMs monolayers were pretreated with selective β1-AR inhibitor CGP 20712A (0.3 μmol/L) or 

β2-AR inhibitor ICI 118551(50 nmol/L) before stimulation with ISO. The working concentration 

of these two inhibitors was according to published literatures(Hakuno et al., 2002; Chakir et al., 

2003). As shown in Fig 5A, the increase of CV after ISO admission was significantly attenuated in 

the presence of CGP 20712A (10.8±0.2 cm/s vs. 8.3±0.4 cm/s, P=0.001), but not in the presence 

of ICI 118551 (10.8±0.2 cm/s vs. 10.3±0.3 cm/s, P=0.145) (Fig 5B). Consistent with the previous 
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results, chronic ISO treatment made APD30 longer and AP triangle lower, but only CGP 20712A 

attenuated these effects. (Fig 5C, D). 

To further characterize how β1-AR and β2-AR involved in respond to modulation of CV and 

APs in hESC-CMs monolayers we examined the gene expression profiles of GJA1, SCN5A, Kv11.1 

and CANAN1C. 24 h ISO treatment increased the expression of GJA1, SCN5A and CANAN1C 

which were consistent with the previous results. Interestingly, the up-regulation of GJA1 and 

SCN5A by chronic β-AR stimulation was only abolished by pre-incubation with CGP 20712A (Fig 

6A). At the protein level, the results were similar with the gene level, ISO increased Cx43 and 

Nav1.5 expression. While pre-exposure to CGP 20712A had no effect (Fig 6B). 

 

b-AR stimulation increasing CV of hESC-CMs by up-regulation of Cx43 expression via the PKA-

MEK-MAPK pathway 

To further investigate the potential mechanism and signal pathway of ISO-induced CV 

increasing, hESC-CMs monolayers were incubated with ISO alone or pretreated respectively 

with 10 mmol/L H89 (specific inhibitor of PKA), or 20 µmol/L SB203580 (specific inhibitor of 

MAPK), or 20 µmol/L PD98059 (specific inhibitor of MEK) for 1 h before ISO admission as 

previously described. As shown in Fig 7A and B, co-administration of H89/SB203580/PD98059 

with ISO all could attenuate the effect to increase CV by b-AR stimulation. In addition, the APs 

change caused by b-AR stimulation was also suppressed by these three specific inhibitors (Fig 

7C), the prolongation of APD30 and acceleration of repolarization rate by ISO was restained in 

the presence of H89, SB203580 or PD98059(Fig 7D). Again, b-AR stimulation or inhibition had 

little effect on APD80. Importantly, inhibition of PKA-MEK-MAPK signaling prevented the 
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increased expression of Cx43 by ISO (Fig 8A) but have no effect on expression of Nav1.5 (Fig. 

8B), suggesting PKA-MEK-MAPK pathway activated by b-AR stimulation only contribute to the 

regulation of Cx43 expression. 

 

Discussion 

Human embryonic stem cells derived cardiomyocytes(hESC-CMs) have emerged as the 

prototypical source for applications in disease modeling and drug screening differentiation(Pal, 

2009; Vidarsson et al., 2010). However, such applications require hESC-CMs faithfully 

recapitulate the physiology of authentic adult cells, especially the electrophysiological 

properties(Liu et al., 2016). Previous studies of authentic cardiomyocytes revealed that 

adrenergic receptors (ARs) play a critical role in the regulation of the electrophysiological 

performance of cardiomyocytes such as the conduction velocity and the action 

potential(Campbell et al., 2014). In this study, we investigated the regulation effect of ARs in 

hESC-CMs’ electrophysiological characters and demonstrated that (1) b-AR stimulation in hESC-

CMs monolayers for 24h increased CV by approximately 50%, which did not occur after a-ARs 

stimulation; (2) β1-ARs, not β2-ARs were involved in the modulation of CV in hESC-CMs 

monolayers; (3) b1-AR stimulation induced marked alterations in the expression of Connexins 43 

and SCN5A, which fits well with the increased CV(4)b1-AR stimulation up-regulated Cx43 

expression via PKA-MEK-MAPK pathway. 

The gap junction protein Connexins play an important role in regulation of CV(Campbell et 

al., 2014). In human heart, the main isoforms of Connexins expressed are Cx43, Cx40, Cx37 and 

Cx45, while Cx43 is the most abundant one(Manring et al., 2018).  Radioactive labelling tests had 
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demonstrated that half-life of Cx43 is only 1–2h, which allows dynamic regulation of its 

expression and further affect the CV(Leithe and Rivedal, 2007). Considerable evidences proved 

that connexin expression could be altered by β-AR stimulation in animal models and primary 

cardiomyocytes. In adult rats, 24h continuous stimulation with isoprenaline infusion in vivo 

resulted in an upregulation of cardiac Cx43 expression while Cx40 remained unchanged(Salameh 

et al., 2006). Increases in CV (~25%) and Cx43 expression in response to 24h incubation with 

isoprenaline were observed in neonatal rat cardiac myocytes (NRCMs)(de Boer et al., 2007). 

Changes in expression of Cx43 only occurred after long exposures to isoprenaline, while some 

studies reported no CV increase to acute β-AR stimulation(Salameh and Dhein, 2011). In the 

present study, we found CV among hESC-CMs monolayers could be increased by ~50% after 24h 

incubation with isoprenaline, while no response was observed when exposure to isoprenaline for 

10min. Moreover, the western blot and RT-qPCR analysis confirmed that expression of Cx43 and 

GJA1 gene was increased by ~1.5 times and ~1.8 times after chronic β-AR stimulation, 

respectively.  

To further understand the role of different β-AR subtypes on Cx43 expression and CV 

regulation, the hESC-CMs were pretreatment with selective β1 or β2-AR inhibitor. We found the 

effect of isoprenaline on CV was only antagonized by β1-AR inhibitor, not β2-AR inhibitor. This is 

inconsistent with the results of a previous study, which suggested β2-AR mediates the up-

regulation of Cx43-NP in NRCMs(Xia et al., 2009). One important issue need clarified is whether 

β2-AR been well expressed in the hESC-CMs with d40-45 post-differentiation, since the 

expression level of ARs has been proved to depend on the culture time.  A literature confirmed 

that β-AR regulate beating rate and contractile responses in hESC-CMs with d29 to d79 after 
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differentiation, and both β1- and β2-AR gene has been detected by qRT–PCR. Moreover, the 

researchers found the increased beating rate after isoprenaline treatment was significantly 

reduced in the presence of β2-AR inhibitor(Brito-Martins et al., 2008). This can be interpreted as 

β2-AR existed in hESC-CMs during this period. Therefore, it is reasonable to assume that β2-AR 

was expressed in hESC-CMs with d40-45 post-differentiation but did not participate in the CV 

regulation.  

Cx43 can be phosphorylated by PKA, PKC, PKG and MAPK(Marquez-Rosado et al., 2012). β1-

ARs can activate adenylyl cyclase to product cAMP(Fu et al., 2014). As the direct substrate of 

cAMP, PKA has been implicated in the various biological responses of β1-ARs(Saad et al., 2018). 

Our study demonstrated that effect of β1-AR on increasing CV and regulating Cx43 expression 

was driven via PKA/MEK/MAPK pathway in hESC-CMs, as H89-PKA inhibitor, SB203580-MAPK 

inhibitor and PD98059-MEK inhibitor could attenuate the above-mentioned effect. Consistent 

with it, several studies have shown that activation of the cAMP/PKA pathway can regulate Cx43 

expression and a downstream activation of MEK and MAPK was in dependence on PKA following 

isoprenaline in adult rats(Zhang et al., 2005). or in neonatal rat cardiomyocyte(Krishnamurthy et 

al., 2007). 

The other factor which plays a role in modulation of CV is the upstroke of the AP(Perry and 

Illsley, 1986). The sodium channels contribute to the AP upstroke, while the magnitude of sodium 

currents (INa) can be increased by β-AR activation(Frohnwieser et al., 1997; Lu et al., 1999). 

Another study demonstrated the expression of Nav1.5 is upregulated via CaMKII activation after 

β-AR stimulation(Jost et al., 2005). Therefore, the effects of β-AR on the AP upstroke are a 

combination of its effects on increasing the magnitude of INa and up-regulating sodium channel 
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expression. However, some studies indicated the predicted maximal effect of INa on CV is an 

increase of only 4–5% following β-AR stimulation(Boyle et al., 2019). Nevertheless, we believed 

the sodium channel was not the main determinant in modulation of CV by β-AR stimulation in 

hESC-CMs. Although optical action potentials used in our experiment could not provide direct 

measurements of individual sodium currents or AP upstroke, the western blot and qRT-PCR 

analysis confirmed that expression of Nav1.5 and SCN5A increased ~1.5X and ~2× times after 

chronic β-AR stimulation.  

β-AR signaling also influences AP duration. The slowly activating delayed rectifier potassium 

channel (IKs) can be affected by β-AR stimulation via PKA pathway(Jost et al., 2007). In the present, 

we observed a significant prolongation of ADP30 in hESC-CMs after β-AR stimulation, which is 

discordant with the findings of other prior studies. In large mammals, β-AR stimulation increases 

the magnitude of IKs to promote APD shortening(Jost et al., 2005); while addition of isoproterenol 

can increase the steepness of the AP trace and reduces the effective refractory period in the 

whole hearts(Ng et al., 2007). The difference of APD change in hESC-CMs by β-AR stimulation is 

maybe due to the dynamic change of major repolarization potassium channels across different 

stages of differentiation, which was systematically characterized in our prior study, at this phase 

the expression of IKs is at a low level and contributes little to APD(Wang et al., 2019). 

In heart failure, changes in β-AR amount and subtypes can lessen the effect of adrenergic 

regulation on sodium channels and Connexin proteins and attenuate the increase in conduction 

velocity by β-AR stimulation, which may contribute to arrhythmias(Spadari et al., 2018). The 

practical application of human stem cell derived- cardiomyocytes for myocardial Regeneration 

requires a thorough and clear understanding of the adrenoceptor response in order to reduce 
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their pro-arrhythmogenic potential. To our knowledge, this is the first research to systematically 

evaluate the electrophysiological response in hESC-CMs by β-AR and a-AR stimulation, in terms 

of action potential duration and conduction velocity. These findings may rich the knowledge of 

hESC-CMs’ electrophysiological characteristics. 

The study has some limitations. Firstly, we did not conduct the experiments in multiple cell 

lines subjected to its complexity and lengthy time span. We adopted hESCs to derive 

cardiomyocyte since it has been documented as the gold standard in terms of their pluripotency 

and natural development. Among different hESC lines, H9 line has been shown to have good 

cardiomyogenic potential(Sepac et al., 2012). Secondly, our study did not detect the ARs 

expression density and investigate the ARs response in hESC-CMs of different differentiation 

stages. Notably, the expression and response of ARs might be associated with the differentiation 

stage. Thirdly, we used the optical mapping to perform the experiments in single confluent cell 

monolayer and it has the advantage of hundreds of measurements from very large populations 

of cell, however, it cannot assess individual ionic currents and dV/dt, but it has the advantage of 

hundreds of measurements from very large populations of cell from in a single confluent cell 

monolayer, in which the cells are not affected by patch pipette solution and their structure 

remains unperturbed, and can measure net ionic current activity through measurements of the 

action potential(Herron et al., 2012). Fourthly, we use total protein western blots rather than 

isolated membrane ones in our study, which may affect the quantity of the results. 

In conclusion, our findings confirm electrophysiological response to AR activation in hESCs-

CMs and depict a concise signaling pathway in the ARs regulation of electrical propagation. It is 
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β1-AR, not β2-AR contributing to the up-regulation of Cx43 and modification of conduction 

velocity via PKA-MEK-MAPK pathway.  
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Figure Legend  

FIGURE 1 Comparison of electrophysiological properties of H9 hESC‐CM monolayers before 

and after chronic β-adrenergic stimulation. (A) Representative activation map. (B) Average 

conduction velocity at pacing rate between 0.5,1 and 2 Hz, n=10, two-tailed unpaired t-test, *P 

< .05, significantly different as indicated.  (C) Action potential traces for 1 Hz pacing. (D) APD 

distribution of the monolayers paced at 1 Hz, n=10, two-tailed unpaired t-test, *P < .05, 

significantly different as indicated. Abbreviations: APD30, action potential duration at 30% 

repolarization; APD80, action potential duration at 80% repolarization; AP triang, time from 

APD30 to APD80; CV, conduction velocity.  

 

FIGURE 2   Comparison of channel and junction proteins expression of hESC‐CM monolayers 

with and without chronic β-adrenergic stimulation. (A) GJA1, SCN5A, CACAN1C and KCNQ1 

gene expressions normalized to GAPDH, n=8 for each gene, two-tailed unpaired t-test, *P < .05, 

significantly different as indicated; (B) Nav1.5, Connexin43, Kv11.1, Kv7.1 and GAPDH 

protein expressions; (C) Relative protein(Nav1.5, Connexin43, Kv11.1, Kv7.1) expressions 

normalized to GAPDH, n=6 for each protein, two-tailed unpaired t-test, *P < .05,significantly 

different as indicated.  

 

FIGURE 3 Comparison of electrophysiological properties of H9 hESC‐CM monolayers before 

and after acute β-adrenergic stimulation. (A) Representative activation map. (B) Average 

conduction velocity at 1 Hz pacing rate, n=6, two-tailed unpaired t-test, *P < .05, significantly 

different as indicated.  (C) Action potential traces for 1 Hz pacing. (D) APD distribution of the 

monolayers paced at 1 Hz, n=6, two-tailed unpaired t-test, *P < .05, significantly different as 
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indicated. Abbreviations: APD30, action potential duration at 30% repolarization; APD80, action 

potential duration at 80% repolarization; AP triang, time from APD30 to APD80; CV, conduction 

velocity.  

 

FIGURE 4 Comparison of electrophysiological properties of H9 hESC‐CM monolayers before 

and after acute or chronicα-AR Stimulation. (A) Representative activation map. (B) Average 

conduction velocity at 1 Hz pacing rate, n=6 for each group, one-way ANOVA followed by 

Tukey's post hoc tests, *P < .05, significantly different as indicated.  (C) Action potential traces 

for 1 Hz pacing. (D) APD distribution of the monolayers paced at 1 Hz, n=6 for each group, one-

way ANOVA followed by Tukey's post hoc tests, *P < .05, significantly different as indicated. 

Abbreviations: APD30, action potential duration at 30% repolarization; APD80, action potential 

duration at 80% repolarization; AP triang, time from APD30 to APD80; CV, conduction velocity.  

 

FIGURE 5 Comparison of electrophysiological properties of H9 hESC‐CM monolayers between 

control, Isoproterenol, Isoproterenol+CGP-20712A and Isoproterenol+ICI 118,551 groups. (A) 

Representative activation map. (B) Average conduction velocity at 1 Hz pacing rate, n=6 for 

each group, one-way ANOVA followed by Tukey's post hoc tests, *P < .05, significantly 

different as indicated.  (C) Action potential traces for 1 Hz pacing. (D) APD distribution of the 

monolayers paced at 1 Hz, n=6 for each group, one-way ANOVA followed by Tukey's post hoc 

tests, *P < .05, significantly different as indicated. Abbreviations: APD30, action potential 

duration at 30% repolarization; APD80, action potential duration at 80% repolarization; AP 

triang, time from APD30 to APD80; CV, conduction velocity.  
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FIGURE 6 Comparison of channel and junction proteins expression of hESC‐CM monolayers 

between control, Isoproterenol, Isoproterenol+CGP-20712A and Isoproterenol+ICI 118,551 

groups. (A) GJA1, SCN5A, CACAN1C and KCNQ1 gene expressions normalized to GAPDH, 

n=8 for each gene, one-way ANOVA followed by Tukey's post hoc tests, *P < .05, significantly 

different as indicated; (B) Nav1.5 and Connexin43 protein expressions normalized to GAPDH, 

n=5 for Nav1.5 and n=6 for Connexin43, one-way ANOVA followed by Tukey's post hoc tests,  

*P < .05, significantly different as indicated.  

 

FIGURE 7 Comparison of electrophysiological properties of H9 hESC‐CM monolayers between 

control, Isoproterenol, Isoproterenol+H89, Isoproterenol+SB203580 and 

Isoproterenol+PD98059 groups. (A) Representative activation map. (B) Average conduction 

velocity at 1 Hz pacing rate, n=6 for each group, one-way ANOVA followed by Tukey's post 

hoc tests, *P < .05, significantly different as indicated.  (C) Action potential traces under 1 Hz 

pacing. (D) APD distribution of the monolayers paced at 1 Hz, n=6 for each group, one-way 

ANOVA followed by Tukey's post hoc tests, *P < .05, significantly different as indicated. 

Abbreviations: APD30, action potential duration at 30% repolarization; APD80, action potential 

duration at 80% repolarization.  

 

FIGURE8   Comparison of channel and junction proteins expression of hESC‐CM monolayers 

between control, Isoproterenol, Isoproterenol+H89, Isoproterenol+SB203580 and 

Isoproterenol+PD98059groups. (A) Connexin43 expressions normalized to GAPDH, n=6, one-

way ANOVA followed by Tukey's post hoc tests, *P < .05, significantly different as indicated; 
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(B) Nav1.5 expressions normalized to GAPDH, n=5, one-way ANOVA followed by Tukey's 

post hoc tests, *P < .05, significantly different as indicated. 
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Table 1 Summary of antibodies used in the study 

Antibody 
name 

Commercial 
source Cat# species epitope isotype RRID Diluting 

buffer Dilution 

Connexin 43 Sigma-
Aldrich C6219 rabbit 

polyclonal 

amino acid 
residues 363-
382 of connexin 
43  

IgG AB_476857 5% milk  1:1000 

Nav1.5 Alomone 
Labs asc-005 rabbit 

polyclonal 

amino acid 
residues 17/19 
of SCN5A 

IgG AB_2040001 5% milk  1:200 

Kv11.1 Santa Cruz sc-377388 mouse 
monoclonal 

amino acid 96-
120 of HERG IgG1 none  5% milk  1:200 

Kv7.1 Santa Cruz sc-20816 rabbit 
polyclonal 

amino acid 547-
676 of KCNQ1 IgG AB_2131551  5% milk  1:1000 

GAPDH EMD 
Millipore MAB374 mouse 

monoclonal 

Glyceraldehyde-
3-phosphate 
dehydrogenase 
from rabbit 
muscle 

IgG1 AB_2107445 5% milk  1:500 

IRDye® 
800CW Goat 
anti-Mouse 
IgG 

LI-COR 925-32210 goat IgG IgG none 5% milk  1:10000 

IRDye® 
800CW Goat 
anti-Rabbit 
IgG 

LI-COR 925-32211 goat IgG IgG none 5% milk  1:10000 

IRDye® 
680RD Goat 
anti-Mouse 
IgG 

LI-COR 925-68070 goat IgG IgG none 5% milk  1:10000 

IRDye® 
680RD Goat 
anti-Rabbit 
IgG 

LI-COR 925-68071 goat IgG IgG none 5% milk  1:10000 
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FIGURE 6    
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FIGURE 7   
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