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Abstract 

Clustered regularly interspaced short palindromic repeats (CRISPR) was first observed in 

1987 in bacteria and archaea that was later confirmed as a part of bacterial adaptive immunity 

against the attacking phage. CRISPR/Cas restriction system involves the restriction 

endonuclease enzyme guided by a hybrid strand of RNA consisting of CRISPR RNA 

(crRNA) and transactivating RNA (tracrRNA) that results in a gene knock-out or knock-in 

followed by non-homologous end joining (NHEJ) and homology-directed repair (HDR). 

Owing to its efficiency, specificity and reproducibility, CRISPR/Cas restriction system was 

said to be the “breakthrough” in the field of biotechnology. Apart from its application in the 

biotechnology, CRISPR/Cas has been explored for its therapeutic potential in several diseases 

including cancer, alzheimer disease, sickle cell disease (SCD), duchenne muscular dystrophy 

(DMD), neurological disorders, etc wherein CRISPR/Cas components like Cas 9/sgRNA 

ribonucleoprotein (RNP), sgRNA/mRNA and plasmid were delivered. However, limitations 

including immunogenicity, low transfection, limited payload, instability and off-target 

binding pose hurdles in its therapeutic use. Non-viral vectors (including cationic polymers, 

lipids, etc) which are being classically used as carriers for therapeutic genes were utilized to 

deliver CRISPR/Cas components that showed interesting results. Herein, we have discussed 

the CRISPR/Cas system, its brief history and classification followed by its therapeutic 

applications using current non-viral delivery strategies. 
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Introduction 

Genetic engineering is a modern tool used for direct editing of heritable or non-heritable 

genetic material to modulate the genotype or phenotype of the particular cell, tissue or 

organism.  This science play with the deletion or insertion of a gene or any DNA sequence to 

produce revolutionary genetic changes (Collins, 2018). Gene editing have shown benefits in 

the management of both genetic and non-genetic conditions. Among various tools available 

for genome editing, clustered regularly interspaced short palindromic repeats (CRISPR) and 

CRISPR associated system (Cas) (together called a CRISPR/Cas system) has shown 

significant advantages in terms of simplicity and specificity thereby generating interest in 

many research groups. CRISPR/Cas gene editing mechanism has now been well established 

(Doudna and Charpentier, 2014). Briefly, CRISPR locus/array contain cleaved protospacer 

from incoming bacteriophage. Due to protospacer addition within the CRISPR locus, it 

become easy for the bacteria to recognize a phage on its subsequent entry since the 

protospacer act as a memory for the corresponding invading phage. Now bacteria synthesize 

its own sgRNA and Cas9 that cleaves the phage DNA at the specific site complementary to 

the sgRNA and protect bacteria against phage attack (Nunez et al., 2014). The sgRNA 

consists of CRISPR RNA (crRNA) having a complementary sequence of phage DNA and 

transactivating CRISPR RNA that join to crRNA. Following its establishment as a 

biotechnology tool, CRISPR/Cas system has been explored for its therapeutic potential in 

several conditions including alzheimer’s disease (Rohn et al., 2018), eye disease (Hung et al., 

2016), sickle cell disease (SCD) (Park et al., 2016), duchenne muscular dystrophy (DMD) 

(Nelson et al., 2016), cancer (Chen et al., 2017) and neurological disorders (Rohn et al., 

2018). Promising results of CRISPR/Cas9 editing were also seen in a metastatic lung cancer 

patient treated with Cas9 engineered T cells (Cyranoski, 2016).  
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For genome editing using CRISPR/Cas system, three strategies/approaches have been 

explored i.e. delivering CRISPR plasmid, mRNA encoding for Cas protein and sgRNA, and 

ribonucleoprotein complexes of sgRNA and Cas protein (Figure 1). All these approaches 

have their advantages as well as disadvantages in terms of efficiency, off-target effects, 

specificity, and cost. CRISPR plasmid delivery in one of the simple and commonly used 

approach wherein Cas protein and sgRNA are encoded by the same vector thus omitting the 

need of multiple transfections for different CRISPR/Cas components (Ran et al., 2013). 

However, it is more time consuming, and plasmid need to be delivered directly into the 

nucleus. The second approach is to deliver sgRNA and Cas9 mRNA (mRNA encoding for 

cas9 protein) separately. Cas9 mRNA translates to the cas9 protein that joins with the sgRNA 

in the cytoplasm to form ribonucleoprotein (RNP) (Niu et al., 2014). This approach decreases 

off-target binding and needs delivery only up to the cytoplasm. In the third approach, 

complex of sgRNA and Cas9 protein is delivered into the cell (Zuris et al., 2015a). This 

approach has gained a lot of interest owing to its reduced off-target binding, less toxicity, 

higher efficiency and simpler design.  

CRISPR/Cas technology holds enormous potential and is very efficient, but, beyond its 

editing efficiency, hurdles in its in vivo delivery limits its use as a clinically translatable 

therapeutic tool. Physical methods, viral and non-viral vectors that have been earlier used for 

gene delivery applications are also adopted for delivering CRISPR/Cas components. These 

methods are have their own pros and cons in terms of off-target effects, toxicity, mutagenesis, 

immunogenicity and loading capacity. Non-viral carriers including cationic lipids, cationic 

polymer, micelleplexes, inorganic nanoparticles, have gained enormous interest because of 

the flexibility they offer in their design to overcome the limitations of other methods. 

However, these are also not devoid of delivery challenges and thus there is always a search 

for newer carrier materials with improved properties. Several reviews have discussed the use 
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of this technology in genome editing for several diseases including cancer (Martinez-Lage et 

al., 2018; Yin et al., 2019; Zhan et al., 2019), sickle cell disease (Demirci et al., 2019), 

Duchenne Muscular Dystrophy (DMD)  (Lim et al., 2018) etc. Few recent reviews have also 

discussed the delivery aspects of CRISPR/cas components (Li et al., 2018; Lino et al., 2018). 

This review particularly focusses on progress and prospects of CRISPR/Cas technology 

followed by strategies being utilized for their delivery using non-viral carriers. 

History and Origin of CRISPR 

Gene editing was done since few decades through conventional homologous 

recombination, to produce knockout/knock-in mice (Smithies et al., 1985). Later on, two 

methods viz., zinc-finger nuclease (ZFNs) and transcription activator-like effector nucleases 

(TALENs) were used for the purpose of gene editing that works through mechanism of 

double-stranded break (DSB), and can fundamentally target any sequence in the human 

genome These techniques are one of the most widely used biotechnological tool for gene 

editing (Zhang et al., 2019). The ability to customize DNA is totally dependent on the DNA 

binding affinity as well as the specificity of the designed protein (Zinc finger and TALENs). 

Despite several advantages both TALENs as well as ZFNs face challenges including 

difficulty in engineering  (Ramirez et al., 2008), limited target site selection, off-target 

binding (Hockemeyer et al., 2009; Hockemeyer et al., 2011) and high cost. Following the 

discovery of CRISPR/Cas system, interest has been diverted toward its use as a potential tool 

for gene editing. All these methods of genome editing have their own adaptability and 

application-based uses. For example, in human pluripotent stem cells, CRISPR/Cas9 brings 

more advantages over the other two techniques. Furthermore, CRISPR/Cas has been found to 

have more feasible properties like easy designing and versatility than ZFNs and TALENs 

(Gagat et al., 2017). CRISPR/Cas system is also cost effective and found to have more 

efficiency then others. Nowadays, where time is the major concern, CRISPR/Cas system 
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offers precise result and editing of the genome could be achieved within weeks (Ran et al., 

2013).  

Looking back into CRISPR/Cas history, it was first observed as a repeatedly ordered 

motif of less than 50 bp in the genome of bacteria and archaea (Ishino et al., 1987). Earlier it 

was thought to be unevenly distributed in bacteria and archaea that later on was found 

approximately 90% and 50% in the archaeal and bacterial genome, respectively. These motifs 

were found to have common features such as non-coding, different from each other (Lintner 

et al., 2011) and also interspaced (i.e containing foreign sequence in between) thus these were 

named as “Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)” (Al-Attar 

et al., 2011). In 2007, it was suggested that when Escherichia coli was subjected to a viral 

attack continuously, then a DNA was introduced in CRISPR interspacing regions, derived 

from phage genomic sequence thus demonstrating CRISPR/Cas as a defense system in E. coli 

against phage attack (Barrangou et al., 2007). It was further put forward that bacteria have an 

adaptive type of immunity in the form of CRISPR (Garneau et al., 2010). Mojica et al. 

sequenced 4500 CRISPR sequences from 67 strains of bacteria and archaea. On comparing 

these sequences in GenBank, they surprisingly found that these sequences matches with the 

bacteriophage sequences, invasive plasmid sequences and other genomic sequences (Mojica 

et al., 2005). Thereafter, Mojica et al. in 2009 stated that CRISPR along with spacer provide 

the resistance against the phage attacking the bacteria. Experiments were performed to 

consolidate this hypothesis wherein it was observed that resistance of bacteria against specific 

phage reversed when the spacer sequence was removed from the bacterial genome. The 

integrated spacer was then termed as CRISPR associated (Cas) gene and this whole system 

was named as the CRISPR/Cas system (Godde and Bickerton, 2006).  

In 2010, Garneau et al. demonstrated that CRISPR/Cas system is one of the defence 

system of bacteria against virus and Cas gene (acquired from exochromosomal element i.e. 
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Virus) play a vital role in cleavage of plasmid and bacteriophage DNA. Many of the ongoing 

studies described various silent features of CRISPR/Cas system as it has all the crucial 

characteristics required for a biotechnology editing tool and became the subject of intensive 

study (Doudna and Charpentier, 2014). It has been observed that the length and sequence of 

the spacer may vary in same or different CRISPR with an ideal range of 26-72 bp spacer 

sequence and 21-48 bp repeats sequence (Haft et al., 2005; Labrie et al., 2010) . Further, the 

number of spacers within the CRISPR locus present in cells genome or plasmid also vary 

from few to hundreds (Rath et al., 2015).  For e.g., Methanocaldococcus sp. FS406-22 and 

Sulfolobus tokodaii str. 7 has eighteen CRISPR with 191 spacer and five CRISPR with 458 

spacers respectively (Rousseau et al., 2009). It has also been reported that Cas gene is not 

always present along with CRISPR loci and in this condition CRISPR depends on trans 

encoded factors (Rath et al., 2015). One more important postulate about CRISPR loci is that 

it has a Leader sequence, which is a conserved sequence located upstream to the CRISPR 

with respect to the direction of transcription (Pougach et al., 2010). 

Gene editing mechanism of CRISPR/Cas System 

Now it has been fully accepted that CRISPR/Cas system is the part of the bacterial genome 

and play a significant role in adaptive immunity in bacteria and archaea against attacking 

phage or invading plasmid wherein one genetic element destroyed the another. However, the 

real mechanistic role of CRISPR/Cas is still under investigation (Jiang and Doudna, 2017). It 

has been clearly shown that there are three distinct steps involved in CRISPR/Cas based 

cleavage of plasmid or dsDNA i.e. 1. Adaptation, 2. Expression and maturation, and 3. 

Interference (figure 2) (Amitai and Sorek, 2016). In the first stage of adaptation, a new spacer 

(i.e., protospacer) is incorporated in the CRISPR array by invading mobile genetic element 

(MGE). For this, Cas1-Cas2 complex (having two Cas 1 dimer and one Cas 2 dimer) identify 

the new DNA as a target that after identification and detection is incorporated into CRISPR 
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array as a new spacer along with same adjacent sequence (Mir et al., 2018). In the second 

step, a mature crRNA, composed of ribonucleoprotein (RNP) with Cas protein, is transcribed 

from CRISPR. While in the third stage the crRNA guide Cas protein, both present in complex 

form i.e. RNP, to locate Protospacer Adjacent Motif (PAM) and help Cas protein to reach 

target site where Cas 9 act as double scissor to cut DNA strand. Cas protein has two domains 

i.e. RuvC and NHN that showed distinct function by cleaving non-complementary and 

complementary strand respectively. Further, Cas protein makes a cut after 2-3 nucleotides 

from the PAM sequence (Deveau et al., 2010). This three-step mechanism was considered as 

the modulator in development of viral resistance in bacteria. Further, viral resistant bacteria 

produce different types of RNA (i.e. crRNA and tracrRNA) from two distinct regions, first is 

CRISPR spacer itself, and second is outside the CRISPR repeats where Cas genes are found 

(Jiang and Doudna, 2017). Both crRNA and tracrRNA fragments are complementary to each 

other and form a double-stranded DNA that acts as guide RNA (gRNA) and facilitate Cas9 

along with endonuclease to blunt-ended cleavage of invading DNA (Siksnys and Gasiunas, 

2016)  Following this step, the repair mechanism fills the empty/cut region of the DNA with 

the normal sequence. This technique has been adopted in eukaryotes as a gene knock out 

technology with minimal cost and easy method as compared to existing techniques for many 

fatal diseases (Platt et al., 2014). 

Classification of the CRISPR-Cas system 

Literature suggested that every Cas protein is associated with unique features and diverse 

nature (Makarova et al., 2011). Till now more than 13 different types of CRISPR systems 

have been identified (Rath et al., 2015).  It is very difficult to classify CRISPR system due to 

multiple CRISPR loci, fast evolution and horizontal transfer of the CRISPR/Cas system 

(Fagerlund et al., 2015). The currently adopted classification regarding CRISPR/Cas system 

is on the basis of CRISPR components like Cas gene similarities, Cas protein, the 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on May 23, 2019 as DOI: 10.1124/jpet.119.257287

 at A
SPE

T
 Journals on A

pril 19, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


JPET # 257287	 	 	

	

10	
	

organization of gene on CRISPR/Cas loci and variability within the CRISPR itself. It has 

been broadly classified into three distinct categories/types (i.e. Type I, II and III) on the basis 

of Cas gene and a rare type IV which has rudimentary CRISPR/Cas loci. These types have 

been further classified into various subtypes (viz. Type I A-F, Type II A-C and Type III A 

and B) on the basis of structural differences and the gene they encode (Koonin et al., 2017). 

Two major classes have been defined for CRISPR/Cas system i.e. Class I and Class II having 

different types as discussed below (Makarova et al., 2015).  

CRISPR/Cas class I 

Class I includes type I, type III (found in archaea) and type IV. The effector complexes of 

type I and type III CRISPR/Cas have a definite structure with a backbone containing 

paralogous RAMPs (Repeats-Associated Mysterious Protein), such as Cas7 and Cas5, having 

the RRM (RNA Recognition Motif) fold and additional ‘large’ and ‘small’ subunits. These 

effector complexes contain one Cas5 subunit and several Cas7 subunits. Cas 3 and Cas 10 are 

considered as the signature genes for Type I and Type III, respectively (Shmakov et al., 

2017). Type III (B) cmr is probably rare as it has been found to cleave target RNAs 

(Majumdar and Terns, 2019).  

CRISPR/Cas class II 

In class 2, the effector system is more uniformly organized and contain simple, large and 

multidomain protein. Class 2 contains three types viz., Type II, Type V and Type VI. Type II 

has endonuclease as effector and is dominantly used as genome editing enzyme. On the other 

hand, Type V contain Cpf1, a RNA guide endonuclease, as an effector that cleaves the target 

without needing any tracrRNA. Additionally, RuvC like endonuclease is also the main 

feature of type II and Type V. Type VI is found to target both RNA as well as DNA and 
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contain two HEPN domain. Type VI is further subdivided into two subtypes viz., VI-A and 

VI-B containing effector protein Cas 13a and 13b respectively (Pyzocha, 2017).  

Thus, distinct types of CRISPR/Cas system, with numerous effectors and Cas gene, has been 

identified as well as classified. Type I-III are most studied while IV-VI are newly identified 

CRISPR/Cas system types (Makarova et al., 2015). 

CRISPR/Cas as a therapeutic Tool 

Owing to the advantages of CRISPR/Cas system, research is being directed towards its use as 

a therapeutics tool to achieve efficient genome editing through gene knockout or gene knock 

in several fatal diseases of both genetic and non-genetic etiology. Table 1 summarizes the use 

of CRISPR/Cas9 technology for correcting mutation in genetic diseases. The use of 

CRISPR/Cas editing system in some of the major diseases described below. 

HIV 

It has been more than 3 decades but still HIV is a major health concern. Although there is 

anti-retroviral therapy that effectively control the viral load, however, it fails to remove the 

virus completely. Recently Bella et al showed the cleavage of HIV-1 DNA from patient 

immune cells by the use of lentivirus expressing CRISPR in humanized mice engrafted with 

patient blood (Bella et al., 2018). Result of the study showed the removal of virus DNA from 

the blood as well as other major organs including spleen, lung, and liver of the mice. Zhu et 

al showed that there are 10 sites in HIV-1 that could be the potential target by CRISPR/Cas 

system and also showed the effect of CRISPR/Cas mediated removal of mutation in HIV-1 

infected JLat10.6 cells (Zhu et al., 2015) 

Sickle cell disease (SCD) 
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SCD is a disorder caused by a point mutation in HBB gene that could be cured by allogenic 

hemopoietic stem cell transplantation however only a small population is compatible with 

this treatment. In 2016, Park et al. demonstrated that approximately 30% HDR could be 

achieved in CD4+ cell by the use of suitable CRISPR/Cas along with a donor templet strand. 

Cas9 RNP, when delivered along with donor templet to CD34+ hematopoietic 

stem/progenitor cells (HSPCs) effectively edit the genome and increase the level of wild type 

hemoglobin in a mouse model (Park et al., 2016). Reports have also stated that the FDA lifted 

the hold on CRISPR therapeutics for sickle cell disease (Baylis and McLeod, 2017).     

Duchenne muscular dystrophy (DMD) 

DMD is another condition wherein dystrophin gene deletion causes this x-linked genetic 

muscle disease. The resulting product of this dystrophin gene is responsible for the 

development of muscles and deletion leads to muscle weakness and muscle degeneration 

(Bushby et al., 2010). Mutation in exon 23 of the dystrophin gene resulted in immature 

protein production and responsible for the above-stated consequences. CRISPR system was 

delivered using AAV for DMD that enabled the DMD gene functions in mice model (Nelson 

et al., 2016). Results indicated that CRISPR/Cas system delete exon 23 from the dystrophin 

gene and leads to following events viz., modified dystrophin gene expression, recovery of 

functional dystrophin protein and enhancement of muscle force.  Young et al. also reported 

the success in deletion of DMD exon of humans (Young et al., 2016). Further, new RNA 

guided endonuclease (cpf1) was found to correct the mutation in DMD in human cells as well 

as in animal models of DMD (Zhang et al., 2017b) 

Cancer  

Cancer, yet another fatal disease having multiple causes and poor treatment, have been the 

research agenda for genetic engineering and genome editing techniques as they provide an 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on May 23, 2019 as DOI: 10.1124/jpet.119.257287

 at A
SPE

T
 Journals on A

pril 19, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


JPET # 257287	 	 	

	

13	
	

alternative therapeutic tool for its cure (table 2). CRISPR/Cas system has gained a lot of 

interest in cancer treatment due to its efficient editing of the target gene directly along with 

adaptation for different delivery strategies. CRISPR/Cas9 technique has been demonstrated to 

knock out Ptch1 gene accountable for medulloblastoma and Trp53, Pten and Nf1 genes 

responsible for glioblastoma in mouse brain (Zuckermann et al., 2015). Editing efficiency of 

the CRISPR/Cas system was also evaluated in the genetically engineered mouse models 

(GEMMs) of colorectal cancer (Roper et al., 2017). Also, Pten and p53, cancer suppressor 

genes were also edited by CRISPR/Cas system in hepatocellular carcinoma.  CRISPR/Cas9 

technique was used to deplete miR-210-3p in renal carcinoma cell lines (786-O, A498 and 

Caki2) that significantly increased tumorigenesis along with a morphological change in A498 

and Caki2 cells (Yoshino et al., 2017). Literature also provides evidence for the use of the 

CRISPR/Cas system in the treatment of ovarian, cervical and acute myeloid leukemia. Long 

non-coding RNA (lncRNA) are potential target in the bladder cancer. Although CRISPR/Cas 

system was not widely explored for its activity to modulate their expression, Zhen et al. 

recently showed that CRISPR/Cas gene editing tool potentially altered the expression of 

lncRNA expression in bladder cancer (Zhen et al., 2017a). One of the major limitation in 

cancer treatment is the development of resistance to the chemotherapy that could be 

potentially avoided by knocking out the responsible gene.  For example, doxorubicin (DOX) 

efflux in MCF-7 cells was inhibited by knockout of the MDR1 gene (via DSB) using 

CRSIPR/Cas system thus providing evidence of overcoming chemo-resistance via Cas9-

mediated disruption of the drug resistance-related gene (Ha et al., 2016). 

Challenges in the delivery of CRISPR/Cas components 

Nowadays, CRISPR/Cas9 has been under intensive research as a genetic engineering tool and 

is also providing satisfactory results in preclinical practices. Three major approaches differing 

in their properties and nature have been used for attaining CRISPR/Cas9 expression in the 
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target cells. These are delivering a) Plasmid DNA (pDNA) expressing Cas9 protein and 

sgRNA which is very simple and cost-effective method, b) mRNA (encoding Cas protein) 

that shows instant gene expression and reduces the risk of mutagenesis and c) RNP i.e. 

complexes of Cas9 protein and sgRNA that has the advantage of reduced off-target cleavage. 

The efficacy of gene cleavage not only depends on the selectivity of the CRISPR/Cas nature 

(pDNA, mRNA, Cas protein) but also affected by the methodology of transportation of the 

CRISPR gene to the target cells or tissue. Selection of a carrier for delivering the payload into 

the target cells have been seen as a bottleneck in achieving efficient editing. Both viral and 

non-viral vectors have been reported to deliver CRISPR/Cas components however following 

hurdles have limited their therapeutic use. 

Packing 

 CRISPR/Cas editing could be achieved either by pDNA, mRNA or RNP, complexes, 

however, all of them faces packing issues in the carrier owing to their macromolecular size. 

For example, the size of spCas9 gene is ~4.3 kbp while negatively charged spCas9 protein 

has a size 160 kDa with a hydrodynamic diameter of ~7.5 nm, while sgRNA size ~31 kDa 

and hydrodynamic diameter 5.5 nm (Mout et al., 2017).  As there is a limited capacity of 

various delivery vectors, the packing of CRISPR/Cas components is a major concern (Wu et 

al., 2010). 

Targeted delivery 

Although viral vectors provide targeted delivery through tissue tropism however have several 

disadvantages including immunogenicity, payload limitation and delivery challenges 

(Zincarelli et al., 2008). On the other hand delivery of CRISPR/Cas components via non-viral 

vectors require antibody or peptide-mediated targeting strategy to avoid off-site distribution 
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(Peer et al., 2007). Designing actively targeted carrier with required packaging capabilities is 

much more difficult.  

Efficiency, off-target binding and mutagenesis 

Although this technology has been demonstrated to be much more specific and efficient, 

however diseases like cancer require much more editing efficiency to achieve the therapeutic 

outcome. Off-target effects for CRISPR/Cas system is also of major concern (Choi and 

Meyerson, 2014).  Particularly Cas9/sgRNA shows expression for a long time and could 

interact with other genes leading to off-target effects. Editing of a gene other than the 

potential site could also lead to the mutation and hence complicates the condition.  

Immunogenicity 

The components of the CRISPR/Cas system are derived from bacteria and potentially could 

induce immune responses. It has been reported that MHC class one was elicited by Cas gene 

and Cas protein. Literature evidence showed that in vivo delivery of CRISPR elicited immune 

responses, not against the vector but the Cas protein itself (Chew et al., 2016). 

Delivery strategies for CRISPR/Cas components 

Genome editing using CRISPR/Cas9 could be achieved either by gene based strategy 

(plasmids or viral vectors expressing Cas9 and sgRNA) or RNA based strategy (Cas9 mRNA 

and sgRNA) or protein based strategy (Cas9 protein and sgRNA) (Mout et al., 2017). The 

science of gene delivery is one of the diverse fields in biomedical science that has been under 

investigation for a long time wherein physical methods, viral and non-viral methods have 

been employed (figure 3). Conventional physical methods including microinjection and 

electroporation have limited in vivo application due to their disadvantages including off-

target binding, requirement of manual operations and damage to the cells. Some newer 

techniques including induced transduction by osmocytosis and propanebetaine (iTOP), 
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hydrodynamic injection and mechanical cell deformation. CRISPR components in plasmid 

format along with a single stranded-DNA were delivered by tail-vein hydrodynamic injection 

into a mouse model of tyrosinemia that resulted in correction of Fah mutation in hepatocytes 

(Yin et al., 2014). Furthermore, this technique inhibited hepatitis B virus (HBV) replication 

and expression in mice (Zhen et al., 2015). However certail limitations constrained their use 

for gene therapy. For instance, cardiovascular dysfunction is a common consequence in case 

of hydrodynamic injection and iTOP.  

Viral vectors mainly lentivirus (LV) and adeno-associated virus (AAV) have been reported 

for delivering gene editing components with high efficiency. However mutagenesis, 

immunogenicity and limited loading capacity poses challenges in their use as a carrier for 

therapeutic genes. CRISPR/Cas9 adenovirus (AVs) disrupted Pcsk9 gene with ~50% of 

insertion and deletion mutation (indel) in adult mouse liver after retroorbital injection. This 

further resulted in a decrease of 35−40% blood cholesterol in mice (Ding et al., 2014). 

Although AVs does not get incorporated into the host genome; however, they can produce an 

immune reaction in the host (Wang et al., 2004). Adeno associated viruses (AAVs) have been 

used to deliver CRISPR components for rectifying the mutated dystrophin gene in Duchenne 

muscular dystrophy (DMD) disease (Long et al., 2016). In another study by Kim et al., AAVs 

were used to deliver CjCas9 (derived from Campylobacter jejuni) that induced targeted 

mutations with high frequencies in mouse muscle cells or retinal pigment epithelium (RPE) 

cells (Kim et al., 2017a). 

Most trending gene delivery system in recent time rely on the non-viral methods viz., cationic 

polymers, lipid nanoparticles, cell-penetrating peptides (CPPs), DNA ‘nanoclews’, and gold 

nanoparticles (Wong et al., 2017). These carriers have shown efficient transfection with 

ample opportunity in the design owing to their synthetic or semi-synthetic nature. Further, 

hybrid systems have been proposed to confer biomimetic properties to these carriers. 
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Although non-viral vectors are cost-effective and with better safety profile but they also share 

some limitations including low transfection efficiency, irregular cellular uptake and poor 

delivery to target cell/tissue (Nayerossadat et al., 2012), (Ramamoorth and Narvekar, 2015). 

Selection of a non-viral carrier will depend on the type of payload to be delivered. As there 

are different approaches viz., pDNA, mRNA or RNP are used for CRISPR/Cas based editing; 

delivery carriers are designed accordingly. When either DNA or RNA is to be delivered, most 

of the nano-viral gene delivery approaches could be adopted for transfection. On the other 

hand, direct delivery of Cas protein has an advantage over the delivery of conventional 

plasmid DNA expressing Cas protein because of shorter exposure time at cellular level 

resulting in reduced toxicity and off-target action (Ramakrishna et al., 2014). Recently 

several methods were developed for delivering Cas protein to overcome existing delivery 

limitations such as instability in serum, poor uptake and endosomal escape, and limited in 

vivo efficiency (Zuris et al., 2015b). 

Cationic polymers 

A wide range of polymers, both natural and synthetic, with the desired characteristics are 

available for designing gene delivery vehicles. Cationic polymers, from the past decade, are 

one of the most explored carriers for various peptides and gene silencing oligonucleotide 

(such as siRNAs and miRNAs) and are available with a dispersive range of derivatives 

(Samal et al., 2012). Among various cationic polymers, polyethyleneimine (PEI) has been 

widely used for gene delivery application owing to its advantages such as efficient 

complexation and proton sponge effect. PEI having a branched structure with multiple amine 

functionality is easy to assemble, easily available and has been fully explored for its gene 

delivery efficacy (Ahn et al., 2008). It has been demonstrated that high molecular weight PEI 

with exert better transfection effect as compared to low molecular weight. The major problem 

associated with PEI is its toxicity that to some extent have been circumvented by the use of 
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branched PEI or modification of PEI with PEG (He et al., 2013). Recently, Zhang et al 

reported polyethyleneimine-β-cyclodextrin (PC) for delivering large pDNA encoding Cas9 

and gRNA for in vitro genome editing. The N/P ratio of 20 or above resulted in condensation 

of all free pDNA molecules of different sizes ranging from 3487 to 8506 bp.  Further, as the 

N/P ratio is increases, the size of PC/pDNA complexes decreases and all the pDNAs showed 

an average particle size below 200 nm at N/P ratio of 60. These complexes were also 

efficiently internalized by HeLa cells with negligible cytotoxicity. The genome editing 

efficiency was confirmed by using plasmids expressing Cas9 and sgRNA targeting the 

hemoglobin subunit beta (19.1%) and rhomboid 5 homolog 1 (RHBDF1) (7.0%) locus 

(Zhang et al., 2019). Chitosan is another natural polymer that is non-toxic and biodegradable 

and have been explored for delivering CRISPR components. One of the recent studies 

showed the polyethylene glycol monomethyl ether (mPEG) conjugated chitosan for non-viral 

aerosol and mucosal delivery of CRISPR/Cas system. Low and medium molecular weight 

chitosan was PEGylated with a high mPEG degree of substitution (DS) and complexed with 

pSpCas9-2A-GFP at different N/P ratios (5, 10, 20 and 30). The positively charged amines of 

chitosan interact with the negatively charged nucleic acid and promote the delivery 

significantly. It was observed that low molecular weight PEGylated chitosan showed optimal 

transfection at N/P ratio of 20 while PEGylated medium molecular weight chitosan showed 

optimal transfection at N/P ratio of 5 (Zhang et al., 2018). In another study, CRISPR/Cas9 

plasmid (pCas9) was delivered intravenously using poly(ethylene glycol)-b-poly-(lactic acid-

co-glycolic acid) (PEG-PLGA)-based cationic lipid-assisted polymeric nanoparticles 

(CLANs) that efficiently disrupted CML-related BCR-ABL fusion gene and increased the 

survival of a CML mouse model. (Liu et al., 2018). Kretzmann et al. showed the capability of 

poly amidoamine (PAMAM) dendrimer to efficiently load and deliver CRISPR/Cas system. 

A library of the dendritic copolymer was prepared by click chemistry and studied to improve 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on May 23, 2019 as DOI: 10.1124/jpet.119.257287

 at A
SPE

T
 Journals on A

pril 19, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


JPET # 257287	 	 	

	

19	
	

the delivery of target plasmid DNA. Literature evidence suggested that Lipofectamine 2000 

could be used for delivering small pDNA (∼5 kb) efficiently however for delivering large 

pDNA (∼10.3 kb), the modified PAMAM polymer coud be better in terms of transfection 

effciency  (Kretzmann et al., 2017). 

Cationic Lipids 

Lipoplexes (containing cationic lipids) is one of the most efficient non-viral vector system for 

the delivery of the genetic material. Cationic lipid forms a stable nanocomplex via 

electrostatic interaction with negatively charged Cas9/sgRNA. Zhen et al. delivered 

CRISPR/Cas 9 for the treatment of prostate cancer by using cationic liposome containing 

poly(ethylene glycol)-grafted 1,2-distearoyl-sn-glycero-3-phosphatidylethanolamine (Zhen et 

al., 2017b). In cancer therapy, lipid nanoparticles showed significant delivery of the 

CRISPR/Cas system. Cas9/sgRNA plasmid targeting Polo-like kinase 1 (PLK-1) was 

encapsulated in a PEG phospholipid-modified cationic lipid nanoparticle (PLNP) to form a 

core-shell structure that showed an in vitro transfection of 47.4% in A375 cells. In vivo study 

of these PLNPs in  melanoma tumor-bearing mice showed a significant downregulation of 

PLK-1 protein and suppression of the tumor growth (Zhang et al., 2017a). 

Cas9 endonuclease proteins have a net positive charge and hence could not be complexed 

directly with cationic lipids. Zuris et al. have demonstrated that these proteins could be fused 

with anionic supercharged proteins or anionic nucleic acids. They efficiently delivered Cre 

recombinase, TALE- and Cas9-based transcriptional activators, and Cas9:sgRNA nuclease 

complexes into cultured human cells. Further, up to 80% genome modification was observed 

with Cas9:sgRNA complexes as compared to DNA transfection (Zuris et al., 2015b). In a 

recent study, Cho et al., have used nano-liposomes prepared using lecithin to deliver cas9-

sgRNA RNPs directed against dipeptidyl peptidase-4 gene (DPP-4) to modulate the function 
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of glucagon-like peptide 1. In vivo delivery of these complexes in type 2 diabetes mellitus 

(T2DM) db/db mice disrupted DPP-4 gene expression and decline in DPP-4 enzyme activity 

that resulted in normalized blood glucose levels and declined in insulin resistance, and 

negligible impact on liver and kidney function (Cho et al., 2019). In another study, Kim et al., 

have complexed cas9 RNPs with lipofectamine 2000 and delivered subretinally for treatment 

of wet age related macular degeneration (wAMD). The authors have designed the sgRNAs 

targeting VEGF A gene that encodes for VEGF receptors in mouse NIH3T3 cells and human 

ARPE-19 cells. VEGF A sgRNA/Cas9 RNPs were delivered using lipofectamine 2000 

resulted in indels at the target site with a frequency of 82% and 57% in NIH3T3 cells and 

ARPE-19 cells, respectively. These RNPs were further delivered sub-retinally into the adult 

mouse eye wherein it was observed that RNPs could induce indels in the injected area. In the 

mouse model of wAMD, these RNPs induced indels at a frequency of 22% and effectively 

reduced the concentration of the VEGF A protein in the CNV area demonstrating that 

subretinal injection of the VEGF A/Cas9 RNP could lead to local treatment in the eye (Kim 

et al., 2017b). 

Bioreducible lipids are newly used as a nanocarrier for the delivery of the CRISPR/Cas 

system. These lipids contain disulfide linkage in the hydrophobic tail of the lipid that leads to 

the degradation of lipid in the reductive intracellular (Glutathione rich) environment and 

promote the release of loaded cargo into the cytoplasm without endosomal degradation 

(Wang et al., 2016) and finally, enhances the efficiency of gene delivery. Wang et al. showed 

the synthesis of cationic lipids containing a disulfide bond created by Michael addition of 

primary and secondary amine along with acrylate and a long chain of carbon. The head group 

modification leads to the synthesis of derivatives with distinct activities and act as an 

effective system for the delivery of Cas protein/sgRNA for editing of the allele. It was further 

demonstrated that RNP complex, with a super negative charge, have been more efficiently 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on May 23, 2019 as DOI: 10.1124/jpet.119.257287

 at A
SPE

T
 Journals on A

pril 19, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


JPET # 257287	 	 	

	

21	
	

delivered by using bio reducible lipids as compared to commercial lipids. Results of the study 

showed more than 70% gene knock out efficiency of Cas9/sgRNA in cultured human cells 

(Wang et al., 2016). In another study, cationic lipids were used delivered sgRNA/Cas (RNP) 

in MCF-7 cells to knockout MDR1 gene, responsible for efflux of DOX. The results showed 

an increase in drug uptake by four-folds relative to the untreated cells by decreasing the 

MDR1 gene mediated resistance (Ha et al., 2016). 

Cell-penetrating peptide (CPP) 

CPP has been used as a means for attaining effective Cas9 protein delivery because of their 

inherent ability to translocate through plasma membranes (Gagat et al., 2017). The 

conjugation of CPP with various cargos could be achieved through electrostatic interaction or 

by covalent bonding. Suresh B et al showed endogenous gene disruption in human cell lines 

mediated via CPP-conjugated recombinant Cas9 protein. Another report also showed the 

enhancement in the Cas9 delivery to nucleus by utilizing CPP. A novel CPP named as TAT-

CaM was explored to deliver the cargo into nucleus effectively (Axford et al., 2017).  

Ramakrishna et al., 2014 showed that CPP mediated delivery of Cas protein as well as guide 

RNA with lesser off-target effects (Ramakrishna et al., 2014). 

Endo-porter peptides (EPP) 

Another strategy utilizing endo-porter peptides has been reported for delivering Cas protein 

and sgRNA. These are alpha helical and amphipathic peptides with weak basic amino acids, 

leucine and histidine, as their major component and could deliver non-ionic substances into 

the cell (Summerton, 2005). It has been reported that EPP enters the cell through endocytosis 

and escapes endosome, through proton sponge effect (Bartz et al., 2011). A recent study by 

Shen et al. showed efficient delivery of Cas protein and sgRNA with reduced off-target 

effects by complexing it with endo-porter peptide via electrostatic interaction (Shen et al., 
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2018). Another study reported PEGylated nanoparticles along with a membrane disruptive 

and endosomolytic helical polypeptide. More than 71% suppression in the growth of cancer 

cells was observed in this study (Wang et al., 2018). 

Gold Nanoparticle 

Multiple surface functionality makes gold nanoparticle as a unique and versatile delivery 

system for various cargos (Yeh et al., 2012). The literature described the role of gold 

nanoparticle in distinct applications viz., sensing, imaging, delivery, etc. One study showed 

direct cytosolic delivery of ribonucleoprotein complexed with gold nanoparticle providing 

effective (~30%) gene-editing efficiency (Mout et al., 2017).  Lee et al. also demonstrated the 

delivery of Cas9/sgRNA RNP using 15 nm gold nanoparticles, conjugated with thiolated 

short DNA oligos and conjugated further with donor single-stranded DNA, coated with a 

polymer (PAsp-DET) that disrupt endosome in mice suffering from DMD. The outcomes of 

the study were found to be more effective and help in correction of 5.4% of the mutated gene 

in DMD. Furthermore, it has been recently observed that intracranial (ICV) injection of 

CRISPR/gold nanoparticles, containing Cas9 CNP, edit the gene within the mice brain 

through metabotropic glutamate receptor 5 (mGluR5) gene (Lee et al., 2017).  

Exosomes 

Exosomes as an advanced delivery system have emerged as a potential area of research 

owing to their small size and ability to transit molecules like lipids, protein and mRNA as 

well as ability to cross BBB as well as a placental barrier (Shi et al., 2017). These are stable 

nanosized, having a diameter of 30-100 nm, vesicles that are secreted by almost every type of 

cell (Ibrahim and Marban, 2016). It has also been reported that exosome express surface 

proteins like tetraspanin thereby exhibiting cell targeting (Hoshino et al., 2015). Kim et al. 

derived natural exosome from cancer cell itself and use them as a carrier to deliver 
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CRISPR/Cas plasmid to treat cancer. This strategy provides a natural carrier, with less risk of 

immunogenicity, and effectively deliver cargo to treat ovarian cancer in SKOV3 xenograft 

mice (Kim et al., 2017c). The main limitation with exosome for delivering macromolecules 

such as proteins is its limited payload capacity. To overcome this, hybrid exosome 

(incorporating exosome and liposome) were prepared for delivering CRISPR/Cas component 

in mesenchymal stem cell (Lin et al., 2018). Another biologically inspired carrier, DNA 

nanoclew, have been reported to deliver CRISPR/Cas 9 in both in vitro and in vivo (Sun et 

al., 2015). DNA nanoclew is made up of a single strand of DNA having a yarn like structure 

prepared by a method named as rolling circle amplification (RCA) with palindromic 

sequences encoded to drive the self-assembly of nanoparticles. Cas9/sgRNA was loaded in 

them which were further coated with polyethyleneimine (PEI) to enable cellular 

internalization and endosomal escape. 

Conclusion and future prospective 

 The CRISPR/Cas system is an adaptive (acquired) immune system in bacteria and 

archaea with immune memory that is stored in the form of spacer sequences derived from 

foreign genomes and inserted into CRISPR arrays. It has been explored as a potential 

biotechnology tool for genome editing required for deciphering complex components of gene 

expression and has been preferred over ZFNs and TALENs in terms of easiness, simplicity, 

and specificity. CRISPR-associated DNA endonuclease (Cas) provides a novel opportunity 

for therapeutic genome editing in diseased cells and tissue. CRISPR/Cas tool could be used 

by either delivering a Cas expression plasmid or Cas mRNA or Cas ribonucleoprotein (RNP) 

complex. Gene delivery using viral vectors although is the most popular choice for gene 

therapies however their in vivo application is disadvantageous for a number of reasons, 

including possible integration into genomic DNA, immune responses due to persistent 

expression of the bacterial Cas9 and off-target effects. There is still a large gap for translating 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on May 23, 2019 as DOI: 10.1124/jpet.119.257287

 at A
SPE

T
 Journals on A

pril 19, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


JPET # 257287	 	 	

	

24	
	

these tools to the clinic. To exploit the full therapeutic potential of this technology, it has to 

be merged with the advancements taking place in nanotechnology, particularly in the area of 

delivery strategies. Non-viral vectors, including cationic polymers and cationic lipids, used 

for gene delivery have been adopted for delivering CRISPR/Cas components owing to the 

advantages over viral constructs. However, several issues that needed to be addressed by a 

pharmaceutical/medical scientist are ensuring efficient packing of CRISPR components into 

the carrier, targeted delivery to diseased site, avoid off-target binding, improve in vivo 

efficiency, avoid mutagenesis and eliminate immunogenicity. Translating this tool for 

therapeutic purpose require a thorough investigation of carriers with spatiotemporal control 

over in vivo delivery to achieve the therapeutic concentrations with minimal side-effects. 
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Figure legends 

Figure 1. Approaches for CRISPR/Cas based editing in cells with their advantages and 

limitations. 

Figure 2. Modulation in CRISPR locus (Bacterial) in response to phage attack involving 

events of adaptive immunity in bacteria including requisition of protospacer into CRISPR 

array, maturation and expression of mRNA and interference with invading phage. 

Figure 3.  Strategies used for delivering CRISPR/cas components 

 

 

 

 

 

 

 

 

 

 

 

 

 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on May 23, 2019 as DOI: 10.1124/jpet.119.257287

 at A
SPE

T
 Journals on A

pril 19, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


JPET # 257287	 	 	

	

36	
	

Tables  

Table 1 

Genetic diseases corrected in cells using CRISPR/Cas technology 

Diseases  Mutation 

target 

Method of 

delivery  

Target cells  Efficiency  

(%)  

References  

β-

Thalassaemia  

Deletion in 

HBB 

Electroporation Human iPSCs 17.6% (Xie et al., 2014) 

Cystic fibrosis  Deletion 

in CFTR  

Lipofection  Human intestinal 

organoids  

- (Schwank et al., 

2013) 

HIV-1  CCR5Δ32  Electroporation Human iPSCs  100%  (Zhu et al., 

2015)  

Hereditary 

tyrosinemia  

Point 

mutation 

in FAH  

Hydrodynamic 

injection  

in vivo mice 

hepatocytes  

0.40 ± 0.12

%  

(Yin et al., 

2014) 

Duchenne 

muscular 

dystrophy  

Exon deletion 

in dystrophin 

gene 

Electroporation Human iPSCs  50%  (Min et al., 

2019) 

α1-Antitrypsin 

deficiency  

Point 

mutation 

in SERPINA1  

Electroporation Human iPSCs  18.8%   (Smith et al., 

2015) 

Cataracts  Deletion 

in Crygc  

Electroporation Mouse 

spermatogonial 

stem cells  

29.7%  (Wu et al., 

2015b) 

Epstein-Barr 

virus  

Inactivation 

of viral 

promoter  

Electroporation Human epithelial 

cell lines  

94.2%  (Yuen et al., 

2015) 

LDL-C  Disruption 

of Pcsk9  

Adenovirus  in vivo mice 

hepatocytes  

50%  (Ran et al., 

2015) 

Sickle cell 

anemia 

β-globin 

(HBB) 

Transfection 

Electroporation 

HEK293T, BC1, 

TNC1 

- (Song et al., 

2015) 
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Table 2 

CRISPR/Cas9 technology in treatment of different cancers 

Cancer type Gene 

edited  

Method of Delivery Target  References  

 

Glioblastoma 

and 

medulloblastoma 

Trp53, 

Pten, Nf1 

and Ptch1 

Electroporation/polyethylenimine 

(PEI)-mediated transfection 

Patient-derived 

xenograft 

(PDX), cell-

derived 

xenograft 

(CDX) and 

genetically 

engineered 

mouse model 

(GEMMs). 

(Zuckermann 

et al., 2015) 

Bladder cancer TP53, 

urothelial 

carcinoma-

associated 

1 (UCA1), 

long non-

coding 

RNA-

related 

nuclear 

protein 

(ncRAN) 

Hydrodynamic injection 5637 and T24 

bladder cancer 

cell lines 

 (Xue et al., 

2014a) 

Breast cancer Brahma 

(BRM) 

and 

Brahma-

related 

Gene 1 

N/A Genetically 

engineered 

mouse model.   

(Wu et al., 

2015a) 
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(BRG1) 

CDH1 

Ovarian cancer Snail1 lipofectamine 2000  Human ovarian 

adenocarcinoma 

(Haraguchi 

et al., 2015) 

Acute myeloid 

leukemia 

miRNAs N/A Mammalian cell 

phenotypes 

(Wallace et 

al., 2016) 

Renal cell 

carcinoma 

miR-210-

3p 

Lipofectamine RNAiMAX 

transfection reagent 

In vivo 

xenograft study 

in which Twist-

related protein 1 

(TWIST1) was 

the key target of 

miR210-3p. 

(Yoshino et 

al., 2017) 

Colorectal 

cancer 

APC, 

TP53, 

KRAS, 

SMAD4 

Lentivirus/LIPID 

NANOPARTICLE 

Genetically 

engineered 

mouse model.   

(Roper et al., 

2017) 

Hepatocellular 

carcinoma 

Pten and 

p53 genes 

Hydrodynamic injection Embryonic 

stem cell 

targeting 

 (Xue et al., 

2014b) 
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Figure 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on May 23, 2019 as DOI: 10.1124/jpet.119.257287

 at A
SPE

T
 Journals on A

pril 19, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


	

40	
	

 

Figure 2 

 

 

 

  

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on May 23, 2019 as DOI: 10.1124/jpet.119.257287

 at A
SPE

T
 Journals on A

pril 19, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


	

41	
	

Figure 3 
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