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Abstract

The Jing-Fang powder n-butanol extract (JFNE) has anti-inflammatory properties;

however, its active ingredient remains unknown. In addition, the mechanism by which

JFNE exerts its anti-inflammatory effects on lipopolysaccharide (LPS) induced

inflammation in RAW264.7 cells is yet to be explored. In this study, JFNE was isolated

by chromatography to obtain fraction D. We found that pretreatment of LPS-induced

RAW264.7 cells with JFNE and fraction D for 3 h significantly reduced the levels of nitric

oxide (NO), interleukin-1beta (IL-1β), and tumor necrosis factor-alpha (TNF-α) in the

supernatant of cell cultures, and fraction D could also reduce the level of interleukin-6

(IL-6). In addition,JFNE and fraction D significantly reduced the mRNA expression of

inducible nitric oxide synthase (iNOS), IL-6, IL-1β, and TNF-α. JFNE and fraction D

significantly inhibited the phosphorylation of proteins and mRNA expression levels of

phosphoinositide 3-kinase (PI3K) and protein kinase B (PKB/AKT). Moreover, JFNE

and fraction D significantly decreased the mRNA expression of iNOS, v-rel

reticuloendotheliosis viral oncogene homolog A (RELA), and nuclear factor of kappa

light polypeptide gene enhancer in B cells 1 (Nfκb1), while an increase in the mRNA

expression of conserved helix-loop-helix ubiquitous kinase (CHUK) was observed. In

addition, JFNE and fraction D down-regulated the protein expression of iNOS, nuclear

factor-kappa B (NF-κB) (p50), and phosphorylated NF-κB (p65). These results show that

JFNE and its isolated fraction D, exert specific anti-inflammation properties in LPS-

stimulated RAW264.7 cells that are regulated by inhibition of the PI3K/AKT and NF-κB

signaling pathways.

Keywords: Jing-Fang powder, inflammation, RAW264.7, PI3K/AKT, NF-κB
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1. Introduction

Schizonepeta tenuifolia Briq. and Saposhnikovia divaricata (Turcz.) Schischk., are

two traditional Chinese medicines. Jing-Fang powder consists of the two herbs (w/w =

1:1), and is typically used to treat exterior syndrome caused by exopathy, measles, skin

pruritus caused by rubella and eczema, and to prevent and treat allergic inflammatory

diseases such as bronchitis and allergic rhinitis (Yu et al., 2013; Zhe et al., 2013; Que et

al., 2016). Recent studies show that the essential oils and decoctions prepared from

Jing-Fang powder have anti- inflammatory and anti-allergic properties. Jing-Fang

powder n-butanol extract (JFNE) has also been shown to be anti-inflammatory (Liu et al.,

2007; Yu et al., 2013). Macrophages play an important role in maintaining cellular

homeostasis, by enhancing the immune response during infection (Zhu et al., 2015). The

M1 macrophage phenotype is induced by LPS and pro-inflammatory Th1 cytokines such

as IFN-γ. When macrophages are exposed to LPS, they induce significant phenotypic

changes, which are characterized by the production of pro-inflammatory cytokines

including IL-1β, IL-6, IL-12, TNF-α, and iNOS (Van Dyken et al., 2013; Johnston et al.,

2012). Conversely, the released cytokines are capable of recruiting adaptive immune

cells (such as T- lymphocytes) to neutralize phagocytosed pathogens by producing oxygen,

nitrogen free radicals, and secreting a series of inflammatory cytokines, which amplify

the Th1 immune response to maintain and promote the inflammatory response (Routray

et al., 2016; Nathan et al., 2000). The inflammatory mediators secreted by macrophages

induce neutrophil migration to the site of injury, enhancing tissue damage (Takemura et

al., 2005; Matthay et al., 2012).The PI3K family plays an important role in transducing

intracellular cell signals, and in the pathogenesis of inflammation, obesity, tumors, and

immune-mediated diseases (John et al., 2015). Akt is a key protein in the AGC kinase

family, which is involved in multiple cellular signaling pathways. AKT, a downstream

target of PI3K, canbe activated by PI3K phosphorylation (Brown and Banerji 2016). After
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induction of the PI3K/Akt pathway, phosphorylated Akt activates NF-κB by enhancing

the phosphorylation and degradation of the NF-κB inhibitory protein I-kappa B kinase

(IKKα) (Shi et al., 2016). NF-κB regulates the expression of thousands of important

biological genes, which are necessary for multiple cellular functions. Recent studies

demonstrated that the NF-κB subunit plays an important role in controlling inflammation

(Nguyen et al., 2013). The activation of NF-κB may increase the levels of pro-

inflammatory cytokines (such as TNF-α, IL-6, and IL-1β), chemokines, and adhesion

molecules to enhance the inflammatory response. The expression of enzymes regulated

by NF-κB, such as iNOS and COX-2, which influence the chemotaxis of large numbers

of inflammatory cells, such as neutrophils that infiltrate the tissue and aggregate at the

site of inflammation (Zhang et al., 2017).

In this study, LPS-induced RAW264.7 cells were used to observe the anti-

inflammatory effects of JFNE and its isolated fraction D in vitro, and to determine

whether the anti-inflammatory effects of JFNE and fraction D are regulated by the

activation of PI3K/AKT and NF-κB signaling pathways that control the release of

inflammatory cytokines.

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on May 8, 2019 as DOI: 10.1124/jpet.118.255893

 at A
SPE

T
 Journals on A

pril 9, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


#255893

- 6 -

2. Materials and Methods

2.1 Preparation and separation of JFNE

Schizonepeta tenuifolia and Saposhnikovia divaricate (Taiji Pharmacy, Chengdu

China Lot: 160901, 160902) were weighed (3000 g), and a 1:1 ratio was used. The

decoction with essential oil was collected and concentrated for extraction with petroleum

ether, ethyl acetate, and n-butanol sequentially to obtain JFNE. JFNE (100 g) was

separated by silica gel column chromatography with a mobile phase composed of ethyl

acetate: methanol (3:1) and eluted. The eluate was evaporated under reduced pressure to

obtain 17.74 g of fraction D. JFNE and fraction D were dissolved in dimethyl sulfoxide

(DMSO), and 0.25% DMSO was used as the vehicle control during drug administration.

2.2 Experimental cell culture

RAW264.7 cells were purchased from the Shanghai Cell Bank of the ChineseAcademy

of Sciences and cultured in complete Dulbecco's Modified Eagle Medium (DMEM)

containing 10% fetal bovine serum in an incubator at 37℃ and 5% CO2.

2.3 Determination of the effect of test drugs on cell viability by MTT assay

RAW264.7 cells (4 × 104 cells/mL) were uniformly seeded in a 96-well cell culture

plate and incubated for 12 h, after culturing with each drug for 6 h, 100 μL of MTT (Cell

Proliferation and Cytotoxicity Assay Kit, Beyotime, Chengdu, China) solution (100 μL of

medium containing 10 μL ofMTT) was added to each well, and cultured for 3 h. The

supernatant was carefully removed, and 100 μL of DMSO was added. The optical

density value (OD value) of each well was detected at 570 nm.
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2.4 LPS stimulation and detection of NO, IL-6, IL-1β, and TNF-α in culture

supernatant

RAW264.7 cells were seeded in 6-well plates at 5 × 105 cells/mL and cultured for 24 h.

The cultured cells were divided into 7 groups including: control，LPS (1 μg/mL), LPS +

DMSO, LPS + JFNE (0.5 mg/mL, 0.25 mg/mL), and LPS + fraction D (0.5 mg/mL, 0.25

mg/mL). Each group was pretreated with the corresponding concentration of each drug

for 3 h, the blank control group and the LPS-treated group contained an equal volume of

DMEM, and the DMSO control group contained the same volume of DMEM with 0.25%

DMSO. Four technical replicates per group. After 3 h of treatment, the culture solution

was aspirated, with the exception of the blank control group in which DMEM was added.

DMEM (1.5 mL) containing 1 μg/mL LPS was added to the other wells for 12 h. The cell

culture supernatant was collected, and the content of NO was determined using a Total

Nitric Oxide Assay Kit (Beyotime, Chengdu, China). The levels of IL-6, IL-1β, and TNF-

α in the cell culture supernatant were determined by ELISA (ExCell Biotechnology Co.,

Ltd., Shanghai, China) according to the manufacturer’s instructions.

2.5 Determination of mRNA expression viaRT-PCR

Total cellular RNA was extracted from RAW 264.7 cells using the AxyPrepTM Multi-

Source Total RNA Miniprep Kit according to the manufacturer's instructions (Axygen, USA)

and cDNA was synthesized from total RNA using the FastQuant RT kit (Tiangen, Beijing,

China). The amplification reaction was carried out in a 96-well reaction plate (Bio-Rad,

Chengdu, China) in a reaction volume of 20 μL. The primer sequences used in this study are

as follows: β-actin-F: 5’-ACAGCTGAGAGGGAAATCGTG-3’, β-actin-R: 5’-

AGAGGTCTTTACGGATGTCAACG-3’; CHUK-F: 5’-TCTACTCCCCAAGGTGGAAG-

3’, CHUK-R: 5’-GTCAGAGGATGTTCACGGTC-3’ ; IL-1β-F: 5’-

CAACTGCACTACAGGCTCCG-3’, IL-1β-R: 5’- GTGGGTGTGCCGTCTTTCAT-3’; IL-

6-F: 5’-AGACAAAGCCAGAGTCCTTCAG-3’, IL-6-R: 5’-
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AGGAGAGCATTGGAAATTGGG-3’; iNOS-F: 5’-ACCATGAGGCTGAAATCCCA-3’,

iNOS-R: 5’-TCCACAACTCGCTCCAAGAT-3’; NF-κB1-F: 5’-

ATGTAGTTGCCACGCACAGA-3’, NF-κB1-R: 5’- GGGGACAGCGACACCTTTTA-3’;

PI3K-F: 5’-GATGAGGATTTGCCCCACCA-3’, PI3K-R: 5’-

TTGACTTCGCCGTCTACCAC-3’; AKT-F: 5’-CCGAGGATGCCAAGGAGATCA-3’,

AKT-R: 5’-GTAGGAGAACTGGGGGAAGTGC-3’; TNF-α-F:5’-

ACGGCATGGATCTCAAAGACA-3’, TNF-α-R: 5’-GTGAGGAGCACGTAGTCGG- 3’;

RELA-F: 5’-TATCTCGCTTTCGGAGGTGC-3’, RELA-R: 5’-

GCGTGGAGGAAGACACTTGA-3’. The fold change in target genes between the control

and treatment groups were normalized with β-actin expression levels. The changes in gene

expression were calculated using 2-ΔΔCt.

2.6 Analysis of the effects of JFNE and fraction D on NF-κB signaling pathway by

SN50

In order to explore the effects of JFNE and fraction D on NF-κB signaling, 40 μM of

SN50, an inhibitor of NF-κB signaling, was added 1 hour before treatment with JFNE

and fraction D, the NO content in the cell culture supernatant was determined by Griess

method and the protein levels of IL-1β and TNF-α were determined by ELISA.
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2.7 Western blotting

After treatment with JFNE or fraction D for 3 h, and LPS stimulation for 12 h, 180

μL of RIPA lysate buffer (Beyotime, Chengdu, China) containing 1 mM

phenylmethylsulfonyl fluoride (PMSF) (Med chem Express, China) was added to each

well to extract the total protein in the cells. The total protein concentration of each sample

was determined using the BCA kit (Beyotime, Chengdu, China) and all samples were

adjusted to the same concentration. The protein samples were mixed with a 5× loading

buffer and denatured in at 95℃. The proteins were separated by SDS-PAGE (8% or 12%)

and electrophoretically transferred onto polyvinylidene fluoride membranes. The

membranes were labeled with PI3 kinase p85 (19H8) rabbit mAb, phospho-Akt (Ser473)

(D9E) XP rabbit mAb, Akt (pan) (C67E7) rabbit mAb, β-Actin (13E5) rabbit mAb, NF-

κB1 p105/p50(D4P4D) rabbit mAb (1:1000; Cell Signaling Technology; Cat.# 4257,

4060, 4691, 4970, 13586), anti -NF-κB p65 (phospho S536) rabbit pAb, anti-

iNOS/NOS2 rabbit pAb, anti -NFκB p65 rabbit pAb, and anti-GAPDH rabbit pAb

(1:1000; Servicebio; Cat. GB11142, GB11119, GB11142, GB11002), overnight at 4℃,

then incubated with anti-rabbit IgG HRP-linked secondary antibody (1:2000; Cell

Signaling Technology; Cat. No. 7074) at 37℃ for 1 h. Antibody detection was

performed using a ChemiDoc XRS+ (BioRad, Hercules, CA, USA) image analysis

system.

2.8 Analysis of main components of fraction D by liquid chromatography-mass

spectrometry (LC-MS)

Liquid chromatography-mass spectrometry (LC-MS) (Thermo Scientific, UltiMate

3000 LC, Orbitrap Elite) was performed usingWatersACQUITYUPLC HSS T3 (2.1 mm

× 100 mm 1.8 μm columns), and the chromatographic separation conditions were as

follows: column temperature: 40°C; Flow rate: 0.3 mL/min; mobile phase A: water +

0.1% formic acid; mobile phase B: acetonitrile + 0.1% formic acid; injection volume: 4
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μL; automatic injector temperature: 4°C, and gradient elution procedures are described in

Table 1. The mass spectrometry parameters were as follows: ESI+: capillary voltage: 4

kV; sampling cone: 35 kV; source temperature: 100°C; desolvation temperature: 350°C;

cone gas flow: 50 L/h; desolvation gas flow: 600 L/h; extraction cone: 4 V ESI-: capillary

voltage: 3.5 kV; sampling cone: 50 kV; source temperature: 100°C; desolvation

temperature: 350°C; cone gas flow: 50 L/h; desolvation gas flow: 700 L/h; extraction

cone: 4 V. Scan time: 0.03 s; inter scan time: 0.02 s; and scan range: 50-1000 m/z. Data

analysis was performed using feature extraction and preprocessing with SIEVE software

(Thermo, Sichuan, China), normalized, and edited into a two-dimensional data matrix

using excel 2010 software, including retention time (RT), compound molecular weight

(comp MW), observations (samples) and peak intensity.

2.9 Statistical methods

The data are presented as mean ± SD. SPSS 20.0 software (SPSS Inc., Chicago, IL,

USA) was used to determine one-way analysis of variance (ANOVA) with Fisher’s

protected least significant difference (LSD) post hoc test in order to determine the

significance of multiple comparisons. p < 0.05 was considered statistically significant.
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3. Results

3.1 Effect of JFNE and fraction D on RAW264.7 cell viability by MTT assay

Cells were cultivated with 5×10-1mg/mL to 5×10-5mg/mL of JFNE and fraction D for

6 h, none of which had a significant impact on RAW264.7 cell viability (Figure 1).

Therefore, LPS-induced RAW264.7 cells were treated with ≤0.5 mg/mL of JFNE and

fraction D for 3 h in the subsequent experiments to determine the mechanism in which

JFNE and fraction D exert their anti-inflammatory effects on LPS-induced RAW264.7

cells.

3.2 Effect of JFNE and fraction D on secreted and mRNA expression of NO, IL-6,

IL-1β, and TNF-α in RAW264.7 inflammatory cells

As shown in figure 2, RAW264.7 cells incubated with 1 μg/mL of LPS for 12 h

significantly increased the levels of NO, IL-6, IL-1β, and TNF-α in the cell culture

supernatant, and the mRNA expression of iNOS, IL-6, IL-1β, TNF-α (p < 0.01) relative

to control, confirming the use of LPS-induced RAW264.7 cells as an efficient

inflammatory model. Compared to untreated controls, RAW264.7 cells pretreated with

0.5 mg/mL and 0.25 mg/mL of JFNE and fraction D for 3 h had significantly reduced

levels of the NO,, IL-1β, and TNF-α in the cell culture supernatants and fraction D could

also reduce the level of interleukin-6 (IL-6).(p < 0.05 or p < 0.01). In addition,

pretreated with 0.5 mg/mL and 0.25 mg/mL of JFNE and fraction D for 3 h had

significantly reduced the mRNA expression levels of iNOS, IL-6, IL-1β, and TNF-α in

RAW264.7 cells (Figure 3). These results suggest that both JFNE and fraction D have

anti-inflammatory effects in LPS-stimulated RAW264.7 cells.
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3.3 The effect of JFNE and fraction D on PI3K/AKT signaling in LPS-induced

RAW264.7 inflammatory cells

Compared with the control group, RAW264.7 cells treated with 1 μg/mL LPS for 12

h significantly increased the levels of phosphorylated PI3K and AKT proteins, suggesting

that LPS stimulation can activate the PI3K/AKT signaling pathway. A 0.5 mg/mL

concentration of JFNE and fraction D significantly down-regulated the expression levels

of phosphorylated PI3K and AKT proteins in inflammatory cells (p < 0.05 or p < 0.01),

suggesting that the anti- inflammatory effects of JFNE and fraction D are regulated by the

inhibition of PI3K/AKT signaling pathway activation.

3.4 Exploring the effect of JFNE and fraction D on NF-κB signaling pathway by

SN50

SN50 is a specific inhibitor of NF-κB signaling pathway, and our results show that 40

μM of SN50 significantly reduces the levels of NO, IL-1β, and TNF-α in the cell culture

supernatant of RAW264.7 cells (p < 0.01 or p < 0.05). This suggests that NF-κB signaling is

activated by LPS stimulation after 12 h, and the upregulation of inflammatory factors (such

as NO, IL-1β, and TNF-α) are associated with the activation of NF-κB signaling pathway, as

the levels of NO, IL-1β, and TNF-α significantly decreased (p < 0.01) in the supernatant of

the cells treated with JFNE and fraction D in combination with SN50. Amore significant

anti-inflammatory effect was observed in the cells co-incubated with SN50 and JFNE or

fraction D, compared to treatment with SN50 and JFNE or fraction D alone (p < 0.05 or p <

0.01) (Figure 5).

3.5 Regulatory effect of JFNE and fraction D on NF-κB signaling and iNOS
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The expression of iNOS, NF-κB (p50), and phosphorylated NF-κB (p65) proteins in

LPS-stimulated RAW264.7 cells significantly increased (p < 0.05) after LPS stimulation.

0.5 mg/mL of JFNE and fraction D significantly decreased the protein expression levels

of iNOS, NF-κB (p50), and phosphorylated NF-κB (p65) in LPS-stimulated RAW264.7

cells (p < 0.05). In addition, the mRNA expression of iNOS, RELA, and NF-κB in

response to LPS treatment significantly increased (p < 0.05), while the mRNA expression

of CHUK decreased (p < 0.05). 0.5 mg/mL of JFNE and fraction D significantly

decreased the expression of iNOS, RELA, CHUK, and NF-κB mRNA expression in

RAW264.7 inflammatory cells (p < 0.05), while the expression of CHUK increased,

relative to control (Figure 6).

3.6 Main chemical components of fraction D

LC-MS analysis of fraction D identified 201 compounds, with high concentrations of

betaine and triphenylphosphine oxide. The relative percentages of the top 20 compounds

are shown in Table 2.
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4. Discussion

Previous studies have shown that Jing-Fang power has specific anti-inflammatory

properties (Que et al., 2016; Liu et al., 2007; Liu et al., 2013), and that extracts of JFNE

retain these anti-inflammatory effects. In this study, JFNE was separated by silica gel

column chromatography in order to explore the properties of the active anti-

inflammatory compounds in JFNE. Previous in vivo experiments in mice demonstrated

that the isolated fraction D significantly inhibited inflammation and swelling of the

auricle induced by p-xylene, and inhibited the rate of swelling by nearly 71.96%,

suggesting that fraction D isolated from JFNE is anti-inflammatory. In this study, the

LPS-induced RAW264.7 macrophage inflammatory model was used to explore the

mechanism by which JFNE and fraction D exert their anti-inflammatory effects. We

found that the specific anti-inflammatory properties of JFNE and fraction D were

associated with the inhibition of PI3K/AKT and NF-κB signaling. In addition, fraction D

isolated from JFNE was equally as effective as JFNE.

RAW264.7 is a mouse-derived mononuclear macrophage cell-line, and LPS

stimulation of RAW264.7 cells can induce classical M1 activation(Zhu et al., 2015; Van

Dyken et al., 2013). M1 macrophages are characterized by the production of high

concentrations of pro-inflammatory factors including IL-1β, IL-6, IL-12, TNF-α, and

inducible nitric oxide synthase (iNOS); and M1 type macrophage mediated iNOS

synthesizes NO through the L-arginine pathway, which plays a key role in promoting the

inflammatory response (Kröncke et al., 2010). In addition, macrophages are known to

recruit adaptive immune cells such as T-lymphocytes to neutralize intracellular

pathogens by generating reactive oxygen species and nitrogen free radicals, and secreting

a plethora of inflammatory cytokines to promote an inflammatory response (Nathan et al.,

2000), as part of the bacterial infection-type inflammatory responses (Holden et al.,

2014). Therefore, the LPS-induced RAW264.7 cell inflammatory model is widely used
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in anti-inflammatory studies in vitro. We show that JFNE and fraction D significantly

reduces the mRNA expression, and levels of secreted NO, IL-6, IL-1β, and TNF-α in

LPS-induced RAW264.7 inflammatory cells. These results suggest that both JFNE and

fraction D have anti-inflammatory effects and that the anti-inflammatory effect of

fraction D was comparable to that of JFNE.

The PI3K/AKT pathway is a typical intracellular signaling pathway, and studies have

shown that PI3K/AKT signaling is involved in the inflammatory response and can be

activated by cell membrane receptor binding. This activation produces

phosphatidylinositol-3,4,5-triphosphate and further activates downstream signaling

proteins, including AKT (Pritchard et al., 2016; Haijian et al., 2017). The serine-

threonine kinase (AKT) is a key member of the family of survival after cell injury

proteins (Krasilnikov et al., 2000). Activated AKT subsequently dissociates from the

membrane and binds to target sites in the cytoplasm and nucleus that plays a key role in

numerous biological responses by phosphorylating a range of intracellular proteins.

Recent studies have shown that the PI3K/AKT pathway is necessary for the regulation of

acute inflammatory responses in vivo and in vitro by regulating the activation of the NF-

κB pathway via nuclear translocation of NF-κB key proteins (such as NF-κB p50 and

RELA p65) (Liu et al., 2017; Iyer et al., 2011). In this study, the effects of JFNE and

fraction D on the PI3K and AKT total protein and phosphorylation levels in RAW264.7

cells were observed by western blot. LPS- stimulation significantly increased the

phosphorylation and mRNA expression levels of PI3K and AKT in RAW264.7 cells,

which were reduced in response to both JFNE and fraction D treatment.

In addition, JFNE and fraction D treatment significantly down-regulates the

activation of the PI3K/AKT signaling pathway. SN50, a specific inhibitor of NF-κB

signaling, was added to RAW264.7 cells 1 h before LPS stimulation to determine

whether the NF-κB signaling pathway was involved in the LPS-induced RAW264.7 cell
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inflammatory response and to observe whether the anti-inflammatory effect of JFNE and

fraction D were related to the inhibition of NF-κB signaling pathway. The results showed

that 40 μM of SN50 significantly reduced the levels of NO, IL-1β, and TNF-α in cell

culture supernatants, suggesting that NF-κB signaling was activated and elevated levels

of inflammatory factors (such as NO, IL-1β, and TNF-α) are associated with activation

of the NF-κB signaling pathway. Additionally, the results of combined JFNE or fraction

D treatment with SN50 show that the anti-inflammatory effect of JFNE and fraction D

are related to the inhibition of the NF-κB signaling pathway.

Western blot analysis determined that JFNE and fraction D significantly decreased

the protein levels of NF-κB (p50), phosphorylated NF-κB (p65), and iNOS in LPS-

stimulated RAW264.7 cells. Moreover, JFNE and fraction D significantly decreased the

mRNA expression of iNOS, RELA, and NF-κB, and increased the mRNA expression of

CHUK in RAW264.7 inflammatory cells. These results suggested that the anti-

inflammatory effect of JFNE and fraction D are associated with inhibition of the NF-κB

pathway.

In view of the anti-inflammatory properties of fraction D, LC-MS combined with

compound discovery software by mzcloud, chemspider, and Masslist database were used

to analyze and identify the molecular components of fraction D. LC-MS analysis found

216 components consisting of high levels of betaine, triphenylphosphine oxide, choline,

1-linoleoyl-sn-glycero-3-phosphocholine, and Dl-Stachydrine in fraction D. A search of

related literature for betaine, triphenylphosphine oxide, choline, 1-linoleoyl-sn-glycero-

3-phosphocholine, and Dl-Stachydrine, revealed a great number of anti-inflammation

studies on betaine and choline; however, very little data on triphenylphosphine oxide, 1-

linoleoyl-sn-glycero-3-phosphocholine, and Dl-Stachydrine exist. Betaine has anti-

inflammatory and anti-oxidative properties (Hagar et al., 2014; Guangfu et al., 2018).

Mechanistically, betaine exerts its anti-oxidative effects by maintaining thiol levels,
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particularly GSH levels, to inhibit ROS production (Cholewa et al., 2014), primarily by

ameliorating sulfur amino acid metabolism (Craig, 2004). In addition, Kharbanda and

colleagues found that betaine prevents nitric oxide synthase 2 (NOS2) expression, a

process initiated by inflammation (Kharbanda et al., 2012). Furthermore, betaine also

inhibits the activity of some upstream signaling molecules that induce the activation of

NF-κB (Kim et al., 2014). Betaine reduces endogenous damage-associated molecular

pattern (DAMP) generation to inhibit the NF-κB pathway (Zhang et al., 2013). This

study showed that betaine exerts an anti-inflammatory effect via inhibition of NF-κB

signaling and is an antioxidant, consistent with our findings. Additionally, the anti-

inflammatory effects of betaine are related to the inhibition of NLRP3 inflammasome

activation, regulation of energy metabolism, and the mitigation of ER stress and

apoptosis (Guangfu et al., 2018). Recent studies have determined that choline plays an

important role in macrophage phospholipid metabolism and the inflammatory response

(Snider et al., 2018), and Pan ZY found that combined choline and aspirin therapy

synergistically attenuated an acute inflammatory response (Pan et al., 2014).

Besides,William R Parrish found that choline suppressed TNF release from endotoxin-

activated human whole blood and macrophages,which characterize the anti-inflammatory

efficacy of choline and demonstrate that the modulation of TNF release by choline was

associated with significant inhibition of NF-κB activation and requires α7nAChR-

mediated signaling(Williamet al., 2008).Their follow-up studies further confirmed the

close relationship between α7 nicotinic acetylcholine receptor signaling and

inflammatory response(Yang et al., 2019 ; Silvermanet al., 2014). In summary, betaine

and choline may be the main components of fraction D responsible for the anti-

inflammatory properties observed.

In conclusion, JFNE and fraction D have anti-inflammatory effects in LPS-induced

RAW264.7 cells, which may be due to the inhibition of PI3K/AKT signaling and the
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regulation of NF-κB pathway activation, however, this anti-inflammatory effect requires

further verification in vivo.
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Legends for Figures

Figure 1 The effect of JFNE and fraction D on RAW264.7 cell viability. Cells were

cultivated with 5×10-1 mg/mL to 5×10-5 mg/mL of JFNE and fraction D for 6 h, then 100

μL of MTT was added to observe the effect of each drug on cell viability by measuring the

OD value at 490 nm. Data are presented as the mean ± SEM; n = 6.

Figure 2 Effect of JFNE and fraction D on NO, IL-6, IL-1β, and TNF-α in supernatant of

LPS-induced RAW264.7 cells. RAW264.7 cells were stimulated with 1 μg/mL LPS for 12 h

(LPS), pretreated with fraction D (fraction D + LPS), JFNE (JFNE + LPS), and the same

volume of DMEM with 0.25% DMSO (DMSO) for 3 h before LPS was added, the blank

control group contained an equal volume of DMEM (Control), the cell culture supernatant

was collected and the protein levels of NO, IL-6, IL-1β, and TNF-α were assayed. Data are

presented as the mean ± SEM, compared to LPS-only control cells, *p < 0.05, **p <0.01; n =

6.

Figure 3 Effect of JFNE and fraction D on mRNA expression of iNOS, IL-6, IL-1β, and

TNF-α in LPS-induced RAW264.7 cells. RAW264.7 cells were stimulated with 1 μg/mL

LPS for 12 h (LPS), pretreated with fraction D (fraction D + LPS), JFNE (JFNE + LPS),

and the same volume of DMEM with 0.25% DMSO (DMSO) for 3 h before LPS was

added, the blank control group contained an equal volume of DMEM (Control),the fold

change in gene expression was normalized to β-actin expression. The changes in gene

expression were calculated using 2-ΔΔCt. Data are presented as the mean ± SEM, compared

to LPS-only control cells, *p < 0.05, **p < 0.01 (n = 4).

Figure 4 The effect of JFNE and fraction D on the phosphorylation and mRNA

expression levels of PI3K andAKT. (A)After RAW264.7 cells were pretreated with

fraction D (fraction D + LPS) or JFNE (JFNE + LPS) and stimulated with 1 μg/mL LPS

for 12 h (LPS), the phosphorylation and total protein levels of PI3K andAKT were
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assayed by western blot. (B) Phosphorylation of PI3K was calculated as the ratio of

phosphorylated PI3K (p-PI3K) to total PI3K. (C) The mRNA expression of PI3K was

measured by RT-PCR. (D) Phosphorylation of AKT was calculated as the ratio of

phosphorylated AKT (p-PI3K) to total AKT. (E) The mRNA expression of AKT was

measured by RT-PCR. Data are presented as the mean ± SEM, compared to LPS-only

control cells, *p < 0.05, **p < 0.01 (n = 4).

Figure 5 The effect of JFNE and fraction D treatment combined with NF-κB pathway

specific inhibitor SN50 on the expression of NO, IL-1β, and TNF-α in the supernatant of

RAW264.7 cells cultures induced by LPS. SN50 (40 μM), an inhibitor of NF-κB

signaling, was added 1 h before treatment with JFNE and fraction D, the cell culture

supernatant was collected, and levels of NO, IL-1β, and TNF-α were assayed. Compared

with the LPS group, *p < 0.05, **p < 0.01. Compared to JFNE and fraction D treatment

alone, #p < 0.05, ##p < 0.01. Compared to treatment with SN50 alone, &p < 0.05, and &&p

< 0.01.

Figure 6 Effect of JFNE and fraction D on protein levels of p-p65, p65, p50, p105, iNOS

and mRNA expression of CHUK and, RELA, and NF-κB in LPS-induced RAW264.7

inflammatory cells. (A)After RAW264.7 cells were pretreated with fraction D (fraction D

+ LPS) , JFNE (JFNE + LPS) and stimulated with 1 μg/mL LPS for 12 h (LPS), the

phosphorylation and protein levels of iNOS, NF-κB p65 (p65), phosphorylated NF-κB

p65 (p-p65), NF-κB p50(p50), NF-κB p105 (p105) were assayed by western blotting. (B)

The phosphorylation of p65 was calculated as the ratio of p-p65 to GAPDH. (C) The level

of p50 was calculated as the ratio of p60 to GAPDH. (D) The protein level of iNOS was

calculated as the ratio of iNOS to GAPDH. The mRNA expression levels of (E) CHUK,

(F) RELA, and (G) NF-κB were measured by RT-PCR. Data are presented as the mean ±

SEM, compared to LPS-only control cells, *p < 0.05, **p < 0.01 (n = 4).
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Tables

Table 1 Gradient of mobile phase

Time (min) Flow rate (mL/min) A (%) B (%)
0 0.3 95 5
1 0.3 95 5
2 0.3 60 40
7 0.3 20 80
11 0.3 5 95
15.5 0.3 95 5
19.5 0.3 95 5
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Table 2 Main chemical components of fraction D by LC-MS

NO. Name Molecular Formula RT (min) Percentage (%)

1 Betaine 117.08 C5H11NO2 1.38 12.57

2 Triphenylphosphine oxide 278.08 C18H15OP 5.82 5.63

3 Choline 103.10 C5H13NO 1.34 4.86

4 1-Linoleoyl-sn-glycero-3-phosphocholine 519.33 C26H50NO7P 6.92 4.73

5 DL-Stachydrine 143.09 C7H13NO2 1.42 3.64

6 O-glutaroyl-L-carnitine 275.14 C12H21NO6 1.42 2.95

7 O-ureido-l-serine 163.06 C4H9N3O4 1.14 2.39

8

(2S)-4-Methyl-2-({[(3S,4S,5R)-2,3,4-

trihydroxy-5-(hydroxymethyl)tetrahydro-

2-furanyl]methyl}amino)pentanoic acid

(non-preferred name)

293.15 C12H23NO7 2.08 2.35

9 Dibutyl phthalate 278.15 C16H22O4 8.14 2.35

10 O-3-methylglutarylcarnitine 289.15 C13H23NO6 1.49 1.78

11 Adenosine 267.10 C10H13N5O4 2.04 1.71

12 1-oleoylglycerone 3-phosphate 434.24 C21H39O7P 9.05 1.37

13

1-Hexadecanoyl-sn-glycero-3-

phosphocholine 495.33 C24H50NO7P 7.32 1.36

14 Leonurine 311.15 C14H21N3O5 4.34 1.23

15 Adenine 135.05 C5H5N5 1.48 1.11

16 Stearamide 283.29 C18H37NO 11.32 1.06

17 oleoyl-lysophosphatidylcholine 521.35 C26H52NO7P 7.61 1.01

18 1-Aminocyclohexanecarboxylic acid 143.09 C7H13NO2 2.06 0.98

19 4-Undecylbenzenesulfonic acid 312.18 C17H28O3S 10.66 0.89

20 1-Palmitoyl lysophosphatidic acid 410.24 C19H39O7P 10.52 0.75
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Figures
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