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Abstract:  

Studies in animal models have suggested that nicotine, an agonist of nicotinic acetylcholine receptors (nAChRs), 

may have the potential to prevent and/or reverse the peripheral neuropathy induced by cancer chemotherapeutic 

drugs, such as paclitaxel and oxaliplatin. However, a large body of evidence suggests that nicotine may also 

stimulate lung tumor growth and/or interfere with the effectiveness of cancer chemotherapy. While the reported 

proliferative effects of nicotine are highly variable, the antagonism of antitumor drug efficacy is more consistent, 

although this latter effect has been demonstrated primarily in cell culture studies. In contrast, in vitro and in vivo 

studies from our own laboratory indicate that nicotine fails to enhance the growth of non-small cell lung cancer 

cells or attenuate the effects of chemotherapy (paclitaxel). Given the inconsistencies in the literature, coupled 

with our own findings, the weight of evidence suggests that caution may be warranted in proposing to utilize 

nicotine to mitigate chemotherapy-induced peripheral neuropathy in cancer patients receiving chemotherapy. 

Conversely, clinical trials could be performed in patients who have completed therapy and are considered to be 

disease-free to determine whether nicotine, in the form of commercially available patches or gum, is effective in 

alleviating peripheral neuropathy symptoms. 
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Introduction: 

Nicotine action in the nervous system and in tumor cells. Nicotine is an agonist of the nicotinic acetylcholine 

receptors (nAChRs), which are pentameric ligand-gated ion channels located on the membranes of various cells 

in the nervous and immune systems, as well as in lung tumor cells. These receptors can be homomeric, with 

five subunits of the same type (α7, α9), or heteromeric, with a combination of both α and β subunits (including 

α1-7, α9-10, and β1-4). Binding of an agonist such as nicotine to a nAChR induces a conformational change that 

allows for the influx of sodium and calcium ions. In neurons, this ion flux results in depolarization of the cell and 

initiation of an action potential. In tumor cells, both calcium-dependent and calcium-independent downstream 

signaling pathways of nAChRs appear to be activated; stimulation of these signaling pathways has been reported 

to contribute to proliferative and anti-apoptotic actions of nicotine [see reviews by (Egleton et al., 2008; Improgo 

et al., 2011; Schaal and Chellappan, 2014; Czyzykowski et al., 2016)].  

 

Antinociceptive and analgesic actions of nicotine. Both human and animal studies have demonstrated that 

nicotine possesses analgesic and antinociceptive properties, respectively. For example, randomized placebo-

controlled clinical trials have revealed that nicotine can reduce post-operative pain scores in non-smokers, as 

well as decrease morphine consumption (Flood and Daniel, 2004; Habib et al., 2008). In rats, Di Cesare Mannelli 

et al., (2013) demonstrated that acute administration of nicotine can reverse trauma-induced neuropathic pain 

as well as oxaliplatin-induced cold and mechanical allodynia, both of which are characteristic of chemotherapy-

induced peripheral neuropathy (CIPN). Our laboratory, in collaboration with the Damaj group, has also shown 

that nicotine can both prevent and reverse paclitaxel-induced mechanical allodynia in mice following chronic and 

acute administration, respectively (Kyte et al., 2018). These two reports are, to our knowledge, currently the only 

publications investigating the use of nicotine in CIPN animal models, indicating that there is a need to explore 

the anti-allodynic property of nicotine with other classes of cancer chemotherapy drugs that cause CIPN, such 

as the vinca alkaloids and bortezomib.  
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The potential utility of nicotine for mitigation of chemotherapy-induced peripheral neuropathy. Further 

investigation of the promising actions of nicotine in suppressing the development of and/or reversing the 

symptoms of CIPN could be compromised by the extensive body of literature, largely focused on lung cancer, 

that suggests nicotine can either promote tumor growth and/or reduce the antitumor effects of cancer 

chemotherapy. If these properties of nicotine translate to the clinic, then its use may be limited to patients who 

have previously undergone cancer therapy and are currently considered to be disease-free, since CIPN 

symptoms can persist for over 6 months after cancer chemotherapy administration has been completed (Seretny 

et al., 2014). Therefore, even patients with cancer in complete remission may still be experiencing neuropathic 

pain and could benefit from nicotine treatment. If, however, nicotine could also be administered in combination 

with chemotherapy to prevent the development of CIPN in cancer patients, this would potentially provide an even 

greater patient benefit.  

 

In our recent publication establishing the antinociceptive actions of nicotine in a mouse model of paclitaxel-

induced peripheral neuropathy (Kyte et al., 2018), we also reported that nicotine does not stimulate proliferation 

of non-small cell lung cancer (NSCLC) or ovarian cancer cells in vitro, or enhance NSCLC tumor growth in vivo. 

This work also demonstrated that nicotine fails to interfere with the antiproliferative and cytotoxic actions of 

paclitaxel in NSCLC cells in culture, while our recent unpublished studies have reproduced these findings in 

tumor-bearing mice (manuscript in preparation). These observations are in conflict with a large body of evidence 

that argues against the use of nicotine within the framework of tumor growth or the utilization of cancer 

chemotherapy [see reviews by (Catassi et al., 2008; Grando, 2014)]. More specifically, nicotine has been shown 

to be capable of promoting tumor cell proliferation, invasion and metastasis, angiogenesis, and resistance to 

apoptotic cell death via various signaling pathways. In order to evaluate the potential utilization of nicotine for 

the alleviation of CIPN symptoms in cancer patients and/or cancer survivors, this review will summarize the 

previous literature that investigates the effects of nicotine on lung cancer progression both alone and in 

combination with antitumor drugs. It should be emphasized that this review is not addressing the potential roles 

of nicotine and nAChRs in carcinogenesis [see reviews by (Dang et al., 2016; Haussmann and Fariss, 2016)], 
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but rather focuses on the interaction of nicotine with established tumors and its impact on the antitumor properties 

of cancer chemotherapy.   

 

Studies in Cell Culture: 

Nicotine alone. Approximately half of the publications relating to nicotine and lung cancer in vitro have reported 

significant increases in various assays assessing lung cancer cell progression (Tables 2 and 3); the lung cancer 

type for each cell line used in these studies is indicated in Table 1. However, the experimental systems used 

are not uniform. Almost half of the in vitro experiments were conducted under conditions of serum deprivation or 

serum starvation with the purpose of eliminating exogenous growth factors and/or inducing quiescence to 

synchronize the cell cycle. This approach creates an environment where enhanced proliferation induced by 

nicotine is likely to be more pronounced (Rosner et al., 2013); however, the physiological relevance may be 

limited. The majority of serum starvation/deprivation studies show an increase in lung tumor cell viability (viable 

cell number), proliferation, growth, invasion, and/or migration following nicotine exposure over a wide range of 

nicotine concentrations (10 nM – 500 μM; Table 3). In contrast, a number of studies reported no effects of 

nicotine (1 pM – 100 µM for 48-72 hours) on lung cancer cell viability, growth, or proliferation even under the 

relatively non-physiological condition of serum deprivation (Heeschen et al., 2001; Jarzynka et al., 2006; 

Mucchietto et al., 2017). In our own studies, nicotine exposure (1 μM for 24 hours) under either serum deprivation 

or serum starvation conditions had essentially no influence on NSCLC cell viability (Kyte et al., 2018).  

 

If the administration of nicotine via nicotine patches or gum could prove to have utility for the prevention or 

treatment of CIPN, then it is necessary to evaluate the previous literature within the framework of plasma nicotine 

concentrations in patients using nicotine replacement therapy (NRT). Nicotine patches (21 mg) deliver peak 

plasma concentrations of 18-23 ng/ml or 111-142 nM nicotine within 8 hours of use, after which the levels 

gradually decline until the patch is removed at 24 hours post-application (Fant et al., 2000); 2-4 mg nicotine gum 

provides maximum nicotine concentrations of 6-17 ng/ml or 37-105 nM after 30 minutes of chewing (Benowitz 

et al., 1987). Although e-cigarettes are unlikely to be considered for therapeutic use, these devices can generate 
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circulating nicotine concentrations of 7-25 ng/ml or 43-154 nM (Wagener et al., 2017). These values suggest 

that concentrations of nicotine in cell culture studies between 35 nM and 200 nM would encompass the range of 

plasma nicotine levels that would be achieved in patients using NRT. However, the majority of studies have 

tested nicotine concentrations from 100 nM to 1 μM, a range that is comparable to or slightly higher than the 

plasma nicotine levels of 20-60 ng/ml or 100-400 nM observed after tobacco cigarette smoking (Benowitz et al., 

2009). Overall, the studies shown in Table 2 demonstrate the capacity of nicotine to increase lung cancer cell 

viability, growth, proliferation, invasion, migration, and/or angiogenesis following 30-minute to 2-week exposure 

to 0.1-1 μM nicotine. However, only half of these publications demonstrate significant increases in characteristics 

of tumor growth, ranging from a 20% to a 750% increase, while half of the studies do not demonstrate significant 

enhancement. When considering nicotine levels achieved during NRT use (35 – 200 nM), only a third of the 

studies report significant increases in lung cancer cell viability, proliferation, migration, and/or invasion, with 

approximately half of these experiments having been performed under conditions of serum deprivation or serum 

starvation (Tables 2 and 3). When excluding studies performed under serum deprivation/starvation conditions 

and limiting our analysis to the lower, therapeutically relevant concentrations of nicotine, it may be surmised that 

the effects of nicotine on lung tumor progression with nicotine patch or gum use are likely to be negligible.  

 

On the other hand, approximately 40% of publications testing 0.1 to 1 μM nicotine under full serum conditions 

report no effects or modest, non-significant effects of nicotine on tumor cell viability, growth, and/or proliferation 

following 12 hours to 2 weeks of nicotine exposure (Table 2). In addition, studies using nicotine concentrations 

between 100 nM to 1 μM for 24-72 hours under full serum conditions (Zeng et al., 2012; Gao et al., 2016) have 

reported that nicotine decreases lung tumor cell viability and growth; these reports also showed decreases in 

lung cancer cell viability with 2.5 to 15 μM nicotine. However, the impact of nicotine at higher non-physiological 

and non-pharmacological concentrations is likely the result of off-target effects and general toxicity; 

ultrastructural analysis of A549 NSCLC cells treated with 10 μM nicotine revealed shrunken nuclei, an increase 

in both nucleoli and lysosomes, swollen mitochondria, and changes in endoplasmic reticulum morphology after 

24 hours (Gao et al., 2016).  
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Nicotine in combination with cancer chemotherapy. Nearly three quarters of cell culture studies assessing the 

influence of nicotine on sensitivity to chemotherapy in lung cancer cells show significant interference with 

chemotherapy (Tables 4 and 5). A nicotine-induced resistance to chemotherapy (average of 50% decrease in 

apoptosis with 1 μM nicotine) has been observed with Annexin V-Propidium Iodide staining, caspase activity, 

and DNA fragmentation assays (ELISA and cell cycle analysis for Sub-G1 population), as well as standard 

viability assays (Table 4). Lung cancer cells exposed to both cancer chemotherapy and nicotine over the range 

of 0.1 – 1 μM have been shown to exhibit increased viability and decreased apoptosis, though statistical 

significance was only reported for about two-thirds of these studies. In contrast, our findings that nicotine (1 μM 

for 24-48 hours with 10% serum) does not attenuate paclitaxel-induced growth arrest or apoptosis (Kyte et al., 

2018) are consistent with studies by other laboratories that have shown a lack of significant effects of nicotine 

(0.1-1 µM for 1 hour to 1 week with 10% serum) on cisplatin-induced DNA fragmentation (apoptosis) and 

decreased viability, or on gefitinib-induced decreases in lung cancer cell viability (Carlisle et al., 2007; Nishioka 

et al., 2010; Zeng et al., 2012; Togashi et al., 2015). Nevertheless, it is apparent that anti-apoptotic and pro-

survival effects can occur as the concentration of nicotine increases (Table 5). Surprisingly, only one study has 

been conducted with nicotine in the NRT range, in this case 100 nM nicotine, in combination with chemotherapy 

(Zeng et al., 2012). This report demonstrated that 100 nM nicotine induces only a modest increase in viability in 

the presence of 10 μM cisplatin and has no effect on cisplatin-induced apoptosis. 

 

Studies in Tumor-Bearing Animals: 

As with the cell culture work, studies regarding the effects of nicotine on lung tumor growth and sensitivity to 

cancer chemotherapy drugs in tumor-bearing animals vary greatly in their design, given the use of both human 

and murine lung tumor xenografts, carcinogen-induced tumor development, and oncogene-induced 

spontaneous tumor formation. Excluding studies of nicotine-exposed lung cancer cell xenografts, where the cells 

were treated with nicotine ex vivo before implantation, approximately two-thirds of the publications show that 

chronic nicotine administration can significantly increase lung tumor incidence/recurrence, size, weight, and/or 
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metastasis, as well as Ki-67 and angiogenic factor expression in vivo (Table 6). One study included the use of 

14 mg NicoDerm® CQ® patches that were cut to represent 0.45 mg or 25 mg/kg nicotine (Davis et al., 2009). 

These transdermal patches were applied to the lower dorsal region of female immunocompetent tumor-bearing 

mice daily for 2 weeks during tumor growth. Cotinine, a predominant metabolite of nicotine, was quantified in the 

urine of these mice (5000 ng/ml) and was shown to be comparable with urine cotinine concentrations in human 

smokers (1500-8000 ng/ml). Although this animal model well represents cancer patients receiving NRT, the dose 

of nicotine appears to be higher than what would be expected clinically since non-pregnant women receiving 

nicotine via a 22 mg patch have been reported to produce 2240 ng cotinine in their urine (Ogburn et al., 1999). 

In addition, the remaining third of the literature has shown that chronic nicotine administration does not enhance 

lung tumor incidence, multiplicity, volume, and/or growth (Ki-67+ population) in mice (Pratesi et al., 1996; Maier 

et al., 2011; Murphy et al., 2011), as also reported in our own studies (Kyte et al., 2018).  

  

Surprisingly, few studies involving systemic co-administration of nicotine and cancer chemotherapy have been 

conducted in vivo. Li et al., (2015) observed significant increases in PC9 human lung adenocarcinoma tumor 

volume in BALB/c nude mice following administration of erlotinib (100 mg/kg, p.o.) for 10 days in combination 

with 100 μg/ml nicotine in the drinking water or given intravenously (0.6 mg/kg, 5x/week) when compared to 

erlotinib alone. In contrast, in NSG mice inoculated with A549 human non-small cell lung cancer, we observed 

no significant interference with paclitaxel (10 mg/kg, i.p., daily for 4 injections)-induced decreases in tumor 

volume and weight when nicotine (24 mg/kg/day, s.c. 7-day minipump) was chronically co-administered 

(manuscript in preparation).  

 

Collectively, a possible explanation for these incongruent outcomes with nicotine alone or in combination with 

chemotherapy relates to differences in the route and duration of nicotine administration. The literature presents 

studies where nicotine was administered via subcutaneous, intraperitoneal, and intravenous injections, as well 

as subcutaneous minipump infusions, intake via drinking water, and transdermal absorption via nicotine patches, 

with all lasting anywhere from 6 days to 46 weeks. While osmotic minipumps allow for steady-state plasma levels 
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of nicotine similar to those achieved in humans either between cigarettes or during NRT (Matta et al., 2007), only 

a few publications utilized this technology; another group used a transdermal patch, which releases nicotine in 

a similar manner as the subcutaneous pump (Davis et al., 2009). Approximately half of the studies were 

performed with nicotine being ingested via the drinking water, which achieves a similar effect as the minipump, 

with relatively stable plasma concentrations of nicotine when compared to intermittent injections (Rowell et al., 

1983). 

 

The route of administration could play a role in how the nAChRs are responding to nicotine over time. For 

example, chronic exposure of nAChRs to nicotine via a subcutaneous minipump or via drinking water could 

cause prolonged desensitization of nAChRs, which has been shown to occur in neuroblastoma cells chronically 

treated with nicotine (Sokolova et al., 2005). On the other hand, Sokolova et al. also showed that acute exposure 

to nicotine could produce nAChR activation, followed by rapid desensitization and/or reduced responsiveness. 

After washout and repeat exposure to nicotine, the nAChRs recover sensitivity to nicotine; this response could 

be occurring during intermittent injections of nicotine. Therefore, it is possible that the duration of tumor exposure 

to nicotine, which can be influenced by the route of administration, could be contributing to the induction or 

inhibition of nAChR-mediated signaling.  

 

However, unless the plasma concentration of nicotine is monitored over time, it is difficult to determine how much 

nicotine the mice are receiving systemically. AlSharari et al., (2013) determined the plasma concentration of 

nicotine following various dosing regimens in C57BL/6J mice: 0.5-2 mg/kg s.c. twice daily for 10 days (51-163 

ng/ml or 314-1,005 nM), 2.5-25 mg/kg/day s.c. via 14-day minipump (13-97 ng/ml or 80-598 nM), and 25-100 

μg/ml p.o. for 10 days (18-27.5 ng/ml or 111-170 nM). Although direct comparisons cannot be made between 

animals and humans, this study demonstrates that the nicotine concentrations being achieved via subcutaneous 

or oral administration in mice, the predominant animal model for cancer and CIPN studies, are similar to that of 

circulating nicotine levels in humans using NRT and are expected to be predictive of patient response.  
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The Complexity of the Problem: 

It is challenging to determine which specific experimental factors and/or properties of nicotine are responsible 

for the contradictory observations in the literature. One possibility worthy of consideration involves the initial 

transient response to nicotine, including the phosphorylation of Akt, a key player in proliferative and anti-apoptotic 

pathways. Jin et al., (2004) demonstrated a peak of Akt phosphorylation at 30-60 minutes post-nicotine (1 μM) 

treatment in A549 NSCLC cells that returns to baseline levels at 120 minutes. Depending on the time of 

observation post-nicotine treatment, it is possible that activation of the PI3K/Akt pathway is contributing to a 

temporary enhancement of proliferation, which dissipates even in the presence of nicotine. In addition, chronic 

nicotine treatment may be inducing prolonged alterations in nAChR expression. For example, exposure to 100 

nM to 10 μM nicotine for 96 hours leads to a significant upregulation of α7 nAChR expression in H520 small cell 

lung cancer cells (Brown et al., 2013). Yet it appears that this increased receptor expression does not persist in 

the absence of nicotine. Studies in human bronchial epithelial cells revealed that 100 nM nicotine significantly 

increases the expression of genes that encode nAChR subunits, including CHRNA1, CHRNA5, and CHRNA7 

within 72 hours but, following removal of nicotine, the expression levels return to baseline at 144 hours (Lam et 

al., 2007). This observation raises the question of how quickly we might expect to observe similar changes in 

nAChR expression in the lung tumors of cancer patients, as well as how the initial nAChR expression profile 

differs from patient to patient and possibly determines nicotine’s predominant effect.  

 

There is also evidence that nicotine can induce both p53 and p21 tumor suppressor proteins, which could be 

responsible for the lack of enhanced proliferation reported by some research groups. It has previously been 

shown that nicotine can induce p53 and p21 at concentrations ranging from 1 nM to 1 μM in A549 NSCLC cells 

(Puliyappadamba et al., 2010). Both of these proteins are induced when the cell is undergoing stress, including 

the presence of reactive oxygen species, which has been observed in HT-29 colon cancer cells following 

treatment with 100 nM nicotine (Pelissier-Rota et al., 2015). The cellular response to stress involves upregulation 

of p21, which inhibits the cyclins that normally allow for retinoblastoma protein (Rb) phosphorylation and 

subsequent E2F transcription factor-mediated initiation of DNA synthesis and progression through the cell cycle 
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(Giacinti and Giordano, 2006). Conversely, it has been observed that nicotine can activate E2F via the nAChR-

β-arrestin-Src-Raf-Rb pathway [see review by (Schaal and Chellappan, 2014)]. If the p21-mediated anti-

proliferative pathway is being stimulated by nicotine, then any proliferative signaling induced downstream of the 

nAChRs could be offset, resulting in little or no stimulation of tumor cell growth.  

 

Another possibility is that the nicotine-mediated activation of the pro-survival and anti-apoptotic nAChR 

downstream signaling is counterbalanced by inhibition of this same signaling downstream of the α9 nAChR. It 

has been known for decades that nicotine can act as an antagonist at the α9 nAChR, as shown by Elgoyhen et 

al., (1994), where α9 nAChR-expressing Xenopus oocytes were exposed to increasing concentrations of nicotine 

in the presence of acetylcholine (ACh), which led to a dose-dependent decrease in ACh-evoked currents. It has 

also been shown in MDA-MB-231 metastatic breast cancer cells that CRISPR-Cas9 knockout of α9 nAChR 

expression leads to a significant decrease in both migration and invasion of these cells (Huang et al., 2017). 

Therefore, the nAChR subtype expression profile in different lung cancer cell lines may play a role in the varying 

outcomes following nicotine exposure. 

 

Conclusions: 

Although the findings pertaining to the effects of nicotine alone on lung tumor cells in culture are somewhat 

inconclusive, the evidence supporting nicotine-induced chemoresistance in vitro is relatively strong. However, 

additional studies with nicotine in the low nanomolar range in combination with cancer chemotherapy would 

provide much-needed clarity. Furthermore, there is a deficiency of data relating to the interaction of nicotine with 

cancer chemotherapeutic agents in vivo. Therefore, erring on the side of caution, our analysis of the literature 

suggests that nicotine could be tested safely in patients exhibiting CIPN who have completed chemotherapy and 

are cancer-free by using FDA-approved, commercially available nicotine patches or gum, thereby eliminating 

the concern for tumor growth promotion or interference with the effectiveness of chemotherapy. Finally, it should 

be noted that human studies have reported nicotine replacement therapy as not being a significant predictor of 

cancer (Murray et al., 2009). 
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Species Lung Cancer Type Lung Cancer Cell Lines 

Human 

Non-small cell lung cancer (NSCLC) A549, H23, H157, H358, H460, H1299, H1703, H1975, H5800, PC9, 11-18  

Small cell lung cancer (SCLC) DMS-53, H446, N417, N592 

Adenocarcinoma HCC827, T1 (primary), 201T (primary) 

Bronchoalveolar carcinoma H1650 

Papillary adenocarcinoma H441 

Squamous cell carcinoma SW900 

Mouse 
Lewis lung carcinoma LLC 

Adenocarcinoma LKR, Line1 

 

Table 1. Lung cancer cell lines grouped by species and lung cancer type. The cell lines indicated as “primary” 

were derived from human lung cancer tissue samples, not purchased commercially.  

 

Lung Cancer 
Cell Line 

[Nicotine] 
Duration of 
Treatment 

Serum 
Concentration 

Cellular 
Response 

(Assay) 

Result  
(Relative to Control) 

Reference 

14 SCLC and 
NSCLC lines 

0.1 – 1 μM 5 d 10% Viability (MTT) No effect  
(Maneckjee and 

Minna, 1990) 

H460, 
H157 

0.1 – 1 μM 7 d 10% Viability (MTT) No effect 
(Chen et al., 

2002) 

201T 1 μM 48 h 10% Viability (MTS) No effect 
(Carlisle et al., 

2007) 

H460 0.1, 1 μM 5 d 10% 
Viability (Cell 

Titer-Glo) 
20, 25% increase* 

(Zheng et al., 
2007) 

A549 1 μM 24 h 10% 
Viability (MTT) 20% increase* 

(Zhang et al., 
2009) Growth ([3H]-

thymidine) 
50% increase* 

A549,  
H1299 

0.1, 1 μM 

72 h 

Not indicated 

Viability (MTT) 
H1299: 20, 5% increase† 

A549: 10, 15% increase† 

(Puliyappadamba 
et al., 2010) 

72 h 
Growth ([3H]-

thymidine) 

H1299:15, 5% increase† 

A549: 20, 10% increase† 

previously 
treated for 
72 h, then 

seeded 

Proliferation 
(Colony 

formation) 
A549: 175% increase (1 μM) † 

H441, 
H1299 

1 μM 
30 min or 

7 d
# 

10% Viability (MTT) 
100, 75% increase (30 min)*,  

375, 250% increase (7 d)* 

(Al-Wadei et al., 
2012) 

H446 0.1 – 1 μM 12-72 h 10% Viability (MTT) 

8, 5% increase at 12 h (0.1, 0.25 μM)†,  

no effect at 24-48 h, 

8% decrease at 72 h (0.5, 1 μM) † 

(Zeng et al., 
2012) 

A549 1 μM 
3-5 d 

10% 
Viability (MTT) 40-80% increase* 

(Wu et al., 2013) 
24 h Invasion (Boyden) 60% increase* 

A549 0.1, 1 μM 24 h 10% Viability (MTS) 40, 55% decrease* (Gao et al., 2016) 

LKR, H5800 1 μM 2 w^ 10% 
Proliferation  

(Colony 
formation) 

13, 24% increase† 
(Nishioka et al., 

2010) 

SW900 1 μM 24 h Not Indicated 
Proliferation  

(Cell counting) 
275% increase* 

(Chernyavsky et 
al., 2015) 

A549 1 μM 24 h 10% 
Invasion 

(Transwell) 
7% increase 

(Sun and Ma, 
2015) 
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8 or 24 h 
Migration 

(Wound-healing) 

10% increase (8 h),  

28% increase (24 h)* 

A549, H460, 
LLC, T1 

0.1-1 μM 24 h 

10% 

Viability  
(MTS, MTT) 

No effect 

(Kyte et al., 
2018) A549, 

H460 

1 μM 48-96 h  
Viability 

(MTS, MTT) 
No effect 

1 μM 48 h 
Proliferation (Cell 

counting) 
No effect 

1 μM 24 h 
Proliferation 

(Colony 
formation) 

No effect 

A549 0.5, 1 μM 16 h  10% 

Angiogenesis 
(HIF-1α) 

350, 750% increase* 
(Zhang et al., 

2007) Angiogenesis 
(VEGF) 

14% increase (0.5 μM),  

43% increase (1 μM)* 

A549, H1299, 
H1975 

0.1, 1 μM  24 h 

10% 

Viability (MTT) 

A549: 39, 52% increase*  

H1299: 13% increase (0.1 μM),  

20% increase (1 μM)* 

H1975: 30% increase (0.1 μM),  

52% increase (1 μM)* (Ma et al., 2014) 

A549 0.1-1 μM 16 h 
Angiogenesis  

(HIF-1α) 

20-40% increase (0.1, 0.5 μM),  

100% increase (1 μM)* 

A549 0.1-1 μM 16 h 
Angiogenesis 

(VEGF) 

75, 125% increase (0.1, 0.5 μM),  

175% increase (1 μM)* 

 

Table 2. In vitro effects of nicotine on lung cancer. Abbreviations: d, days; HIF-1α, hypoxia-inducible factor 1-

alpha; h, hours; LLC, Lewis lung carcinoma; min, minutes; MTS, (3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium); MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide; NSCLC, non-small cell lung cancer; SCLC, small cell lung cancer; T1, primary 

human lung carcinoma; VEGF, vascular endothelial growth factor; w, weeks. #nicotine was replaced every 24 

hours, ^nicotine was replenished every 4 days, *statistically significant, †statistical significance not indicated. 
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Lung Cancer 
Cell Line 

[Nicotine] 
Duration of 
Treatment 

Serum 
Concentration 

Cellular 
Response 

(Assay) 

Result  
(Relative to Control) 

Reference 

H460, 
H157 

0.01 –  
1 mM 

7 d 10% Viability (MTT) 

H460: 5% increase (10, 100 μM), 5% 
decrease (1 mM) 

H157: 5% decrease (10 μM), 5% 
increase (0.1-1 mM) 

(Chen et al., 
2002) 

201T 10 μM 48 h 10% Viability (MTS) No effect 
(Carlisle et al., 

2007) 

H460 
10 nM, 

0.01-1 mM 
5 d 10% 

Viability (Cell 
Titer-Glo) 

12.5-50% increase  

(10 nM, 10-100 μM)*, 

 no effect (1 mM) 

(Zheng et al., 
2007) 

A549,  
H1299 

1 nM – 10 
mM 

72 h Not indicated Viability (MTT) 

A549:  
5-18% increase (1 nM – 10 μM), no 

effect (100 μM),  

5-40% decrease (1-10 mM)† 

H1299:  
10-30% increase (1-100 nM),  

no effect (1-100 μM),  

40-80% decrease (1-10 mM)† 

(Puliyappadamba 
et al., 2010) 

H446 2.5-15 μM 12-72 h 10% Viability (MTT) 0-85% decrease†  
(Zeng et al., 

2012) 

A549 
0.01, 10 

μM 
24 h 10% Viability (MTS) 

No effect (0.01 μM),  

75% decrease (10 μM)* 
(Gao et al., 2016) 

A549, H1975 
10 nM – 
100 μM 

48 h 
0% for 72 h, 
then treated 

Viability (MTS) 
A549:12.5% increase (50 nM – 100 

μM)*, H1975: no effect (Mucchietto et 
al., 2017) Proliferation (Cell 

counting) 
A549: 33-66% increase*, H1975: no 

effect 

A549 
0.5 - 10 

μM 
72 h 0% Growth (BrdU) 0-9% increase 

(Jarzynka et al., 
2006) 

Line1 1 μM 18 h 
0% for 72 h, 
then treated 

Growth (BrdU) 180% increase† 
(Davis et al., 

2009) 

LKR 1 μM 24 h 
0.2% for 24 h, 
then treated 

Growth ([3H]-
thymidine) 

200% increase† 
(Nishioka et al., 

2010) 

A549, H1299 
1 nM – 
100 μM 

24 h Not indicated 
Growth ([3H]-

thymidine) 

5-20% increase (1 nM – 1 μM)†,  

5-20% decrease (10-100 μM) † 

(Puliyappadamba 
et al., 2010) 

A549 1 μM 18 h 
0% for 36 h, 
then treated 

Growth (BrdU) 150% increase* 
(Dasgupta et al., 

2011) 

A549,  
H1650 

1 μM 
18 h 0% for 24 h, 

then treated 

Growth (BrdU) 175-180% increase† (Pillai et al., 
2011) 24 h Invasion (Boyden) 90-100% increase† 

A549, 
H1650 

1 μM 
18 h 0% for 24 h, 

then treated 

Growth (BrdU) 75, 100% increase† 
(Nair et al., 2014) 

24 h Invasion (Boyden) 75, 150% increase† 

LLC 
1 pM – 
100 μM 

Not indicated 0.1% 
Proliferation (Cell 

counting) 
No effect 

(Heeschen et al., 
2001) 

H157, 
H1703 

100 nM 3 d# 0.1% 
Proliferation (Cell 

counting) 
50-95% increase* 

(Tsurutani et al., 
2005) 

H1299 10 nM 

previously 
treated for 72 

h, then 
seeded 

Not indicated 
Proliferation 

(Colony 
formation) 

150% increase† 
(Puliyappadamba 

et al., 2010) 

A549 
0.01-10 

μM 

18 h 
0% (before and 

during 
treatment) 

Invasion (Boyden) 

10% decrease (10 nM), 50-160% 
increase (0.1-1 μM), 90% increase (10 

μM) † 
(Dasgupta et al., 

2009) 

24 h 
0% (during 
treatment) 

Migration 
(Wound-healing) 

10-100% increase (0.01-1 μM), 25% 

increase (10 μM) † 

N417 500 μM 

previously 
treated for 
 7 d, then 
seeded 

10% 
Proliferation  

(Colony 
formation) 

130% increase* 
(Martínez-García 

et al., 2010) 

0.5% 
Migration 

(Transwell) 
55% increase* 

A549,  
H1299 

0.1-1 μM 36 h 
Proliferation  

(Cell counting) 
50-200% increase* (Liu et al., 2015) 
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0% for 24 h, 
treated, then 

seeded 

Migration (Wound 
healing) 

30% increase* 

Invasion 
(Transwell) 

20% increase* 

A549, H1650, 
H1975, H23, 

H358 
1 μM 24 h 

0% for 36 h, 
then treated 

Invasion (Boyden) 120-430% increase* 
(Pillai et al., 

2015) 

A549, H1299 
1 μM,  
10 nM 

48 h 

0% for 12 h, 
then treated 

Viability  
(CCK-8) 

25, 40% increase* 

(Gong et al., 
2014) 

48 h 
Invasion 

(Transwell) 
75% increase* 

48 h, 
72 h 

Migration 
(Wound-healing) 

25, 30% increase* 

A549, H460, 
LLC, T1 

5, 10 μM 24 h 10% 
Viability  

(MTS, MTT) 
No effect 

(Kyte et al., 
2018) 

A549, H460 1 μM 48-96 h  0-5% 
Viability 

(MTS, MTT) 

A549: No effect,  
H460: 25% increase w/ 0% serum at 

96 h* 

A549 

5 μM 48 h  

10% 

Invasion (QCMTM) 950% increase* 

(Zhang et al., 
2007) 

5, 10 μM 16 h 
Angiogenesis 

(HIF-1α) 
1000, 1100% increase* 

5, 10 μM 16 h 
Angiogenesis 

(VEGF) 
130, 170% increase* 

A549, H1299, 
H1975 

10, 50 μM  24 h 

10% 

Viability (MTT) 

A549: 40% increase (10 μM)*, no 
effect (50 μM)  

H1299: 13, 14% increase  
H1975: 65% increase (10 μM)*, 40% 

increase (50 μM) (Ma et al., 2014) 

A549 5 μM 16 h 
Angiogenesis  

(HIF-1α) 
25% increase 

A549 5 μM 16 h 
Angiogenesis 

(VEGF) 
150% increase 

A549 5 μM 

36 h  

10% 

Invasion 
(Transwell) 

230% increase* 

(Shi et al., 2015) 16 h 
Angiogenesis 

(VEGF protein, 
mRNA) 

25% increase*, 700% increase* 

16 h 
Angiogenesis 

(HIF-1α mRNA) 
100% increase* 

 

Table 3. In vitro effects of nicotine on lung cancer under non-physiological conditions and/or with non-

pharmacological concentrations of nicotine. Abbreviations: BrdU, bromodeoxyuridine; CCK-8, cell counting kit-

8; d, days; HIF-1α, hypoxia-inducible factor 1-alpha; h, hours; LLC, Lewis lung carcinoma; min, minutes; MTS, 

(3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium); MTT, 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; T1, primary human lung carcinoma; VEGF, vascular 

endothelial growth factor; w, weeks. #nicotine was replaced every 24 hours, *statistically significant, †statistical 

significance not indicated. 
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Lung 
Cancer 

Cell 
Line 

[Nicotine] Chemotherapy 
Duration of 
Treatment 

Serum 
Concentration 

Cellular 
Response 

(Assay) 

Result  
(Relative to 

Chemotherapy Alone) 
Reference 

A549 1 μM Cisplatin 40 μM 24 h 10% 
Apoptosis 

(Annexin V) 
30% decrease† (Jin et al., 2004) 

A549,  
H157 

1 μM Cisplatin 40 μM 
6-48 h 

10% 
Apoptosis 

(Annexin V) 

0-40% decrease† (Xin and Deng, 
2005) 24 h 40% decrease† 

LKR 1 μM Cisplatin 5 μM 

Nicotine for 1 
h, then 

cisplatin for 
24 h 

10% 
Apoptosis  
(Sub-G1) 

20% decrease† 

(Nishioka et al., 
2010) Nicotine for 1 

w, then 
cisplatin for 

24 h 

5% decrease† 

H446 0.1-1 μM Cisplatin 10 μM  

12-72 h  

10% 

Viability (MTT) 13-20% increase† 
(Zeng et al., 

2012) 
36 h 

Apoptosis 
(AV/PI) 

No effect (0.1-0.5 μM),  

15% decrease (1 μM)* 

H5800, 
LKR 

0.5 μM Cisplatin 0.6 μM 

Nicotine for 
24 h, then 

co-treatment 
for 48 h 

10% 
Apoptosis 

(Annexin V) 
60% decrease* 

(Nishioka et al., 
2014) 

A549 1 μM Cisplatin 20 μM 

Nicotine for 
24 h, then 

cisplatin for 
24 h 

10% 
Apoptosis 

(AV/PI) 
40% decrease* (Liu et al., 2015) 

A549 1 μM 

Cisplatin 35 μM 
Nicotine for 
24 h, then 

co-treatment 
for 24 h 

10% 

Viability (MTT) 
25% increase* 

(Zhang et al., 
2009) 

Etoposide 20 μM 35% increase* 

Cisplatin 35 μM Apoptosis (DNA 
fragmentation 

ELISA) 

35% decrease* 

Etoposide 20 μM 20% decrease* 

H1299 1 μM 
Cisplatin 40 μM 

96 h 10% 
Apoptosis 

(Annexin V) 

40% decrease* (Zhao et al., 
2009) Etoposide 40 μM 30% decrease* 

A549 1 μM Doxorubicin 10 μM 

Nicotine for 1 
h, then co-

treatment for 
48 h 

10% 

Viability (XTT) 25% increase* 
(Nakada et al., 

2012) Apoptosis 
(Caspase-Glo 

3/7) 
300% decrease* 

PC9, 
HCC827 

1 μM Erlotinib 1 nM-5 μM 72 h  10% Viability (MTS) 
IC50 31 nM → 43 nM 
(PC9)*, IC50 46 nM → 

140 nM 
(Li et al., 2015) 

201T 1 μM Gefitinib 35 μM 48 h 10% Viability (MTS) 30% increase 
(Carlisle et al., 

2007) 

PC9, 
11-18 

1 μM Gefitinib 5 nM-50 μM 

72 h 

10% Viability (MTT) 

IC50 24 nM → 22 nM, 

0.35 μM  → 0.33 μM 
(Togashi et al., 

2015) 
Nicotine for 3 
m, then co-

treatment for 
72 h 

IC50 24 nM → 76 nM*, 

0.35 μM → 1.09 μM* 

A549,  
H460 

1 μM 

Paclitaxel 50 nM 

Paclitaxel for 
24 h, 24 h 
drug-free, 

nicotine for 
24 h 

10% 

Proliferation 
(Colony 

formation) 
No effect  

(Kyte et al., 
2018) 

Paclitaxel 50 nM 

Nicotine for 
24 h, then 24 

h 
cotreatment 

Proliferation 
(Cell counting) 

No effect 

Paclitaxel 100 nM 48 h 
Apoptosis 

(AV/PI) 
No effect 
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Paclitaxel 100 nM 48 h 
Apoptosis (Sub-

G1) 
No effect 

 

Table 4. In vitro effects of nicotine in combination with chemotherapy on lung cancer. Abbreviations: AV/PI, 

annexin V/propidium iodide; ELISA, enzyme-linked immunosorbent assay; h, hours; MTS, (3-(4,5-

dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium); MTT, 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; XTT, 2,3-Bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-

tetrazolium-5-carboxanilide inner salt. *statistically significant, †statistical significance not indicated. 
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Lung 
Cancer 

Cell 
Line 

[Nicotine] Chemotherapy 
Duration of 
Treatment 

Serum 
Concentration 

Cellular 
Response 

(Assay) 

Result  
(Relative to  

Chemotherapy Alone) 
Reference 

A549 1 μM Cisplatin 20 μM 24 h 
0% for 36 h, 
then treated 

Apoptosis 
(TUNEL) 

40% decrease* 
(Dasgupta et al., 

2011) 

H446 2.5-15 μM Cisplatin 10 μM  

12-72 h  

10% 

Viability 
(MTT) 

10-20% increase (2.5 μM),  

0-50% decrease (5-15 μM)† (Zeng et al., 
2012) 

36 h 
Apoptosis 

(AV/PI) 
25-50% decrease* 

A549, 
H1299, 

H23 
1 μM 

Cisplatin 20 μM 

36 h 0% 
Apoptosis 
(TUNEL) 

20-40% decrease† 
(Dasgupta et al., 

2006) 
Gemcitabine 20 μM 20-25% decrease† 

Paclitaxel 20 μM 25-50% decrease† 

N417 

previous 
nicotine 

exposure 
(500 μM 
for 7 d) 

Cisplatin (5-100 μM) 

48 h 10% 
Viability 
(MTT) 

50% increase* 

(Martínez-
García et al., 

2010) 

Etoposide  
(5-100 μM) 

50% increase* 

Mitomycin (5-50 μM) IC50 10 μM → 20 μM* 

Paclitaxel  
(5-100 μM) 

IC50 35 μM → 70 μM* 

201T 10 μM Gefitinib 35 μM 48 h 10% 
Viability 
(MTS) 

47% increase (10 μM)* 
(Carlisle et al., 

2007) 

A549 1 μM Gemcitabine 10 μM  36 h 
0% for 24 h, 
then treated 

Apoptosis 
(TUNEL) 

20% decrease* 
(Guo et al., 

2013) 

H157, 
H1703 

10 μM 

Paclitaxel 
100 nM 48 h 0.1% 

Apoptosis  
(Sub-G1) 

8% decrease* (Tsurutani et al., 
2005) 

Etoposide 100 μM  15% decrease* 

 

Table 5. In vitro effects of nicotine in combination with chemotherapy on lung cancer under non-physiological 

conditions and/or with non-pharmacological concentrations of nicotine. Abbreviations: AV/PI, annexin 

V/propidium iodide; d, days; h, hours; MTS, (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-

sulfophenyl)-2H-tetrazolium); MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; TUNEL, 

terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling. *statistically significant, †statistical 

significance not indicated. 
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Lung Cancer 
Model 

Mouse Strain 
Nicotine Dose, 

Route of 
Administration 

Duration of 
Treatment 

Tumor Measurement 
Result  

(Relative to Control) 
Reference 

N592 Nude 
20 or 200 μg/day, 

s.c. (osmotic 
minipump) 

14 d Volume No effect (Pratesi et al., 1996) 

N417 (nicotine-
treated, 500 μM 

for 7 d) 
Nude - - 

Volume 100% increase* 
(Martínez-García et 

al., 2010) 
Growth (Ki-67+) 30% increase 

DMS-53 Nude 
24 mg/kg/day, s.c. 

(osmotic 
minipump) 

1 m 
Volume 250% increase* (Improgo et al., 

2013) Weight 380% increase* 

A549 
Nude, 

ovariectomized 
200 μg/ml in 

drinking water 
38 d 

Volume 20% increase 
(Jarzynka et al., 

2006) 
Growth (Ki-67+) 300% increase* 

Microvascular density 80% increase 

H460 Foxn1nu 
60 μg, s.c., every 

other day 
6 or 28 d 

Volume No effect 

(Warren et al., 
2012) Angiogenesis  

(HIF-1α) 

75% increase (acute), 
1300% increase 

(chronic)* 

A549 SCID-Beige 
i.p., every other 
day (dose not 

indicated) 
7 w 

Size (Luminescence) 120% increase* 
(Pillai et al., 2015) 

Lung Metastasis 75% increase† 

A549 Nude BALB/c 
1 μM in  

drinking water 
20 d 

Volume 88% increase† 
(Liu et al., 2015) 

Weight 185% increase* 

A549 (nicotine-
treated, 5  μM) 

Nude BALB/c - - 
Angiogenesis 
(Hemoglobin) 

170% increase* (Shi et al., 2015) 

PC9 
BALB/cAJc1-

nu/nu 

0.6 mg/kg, i.v., 
5x/week or 100 
μg/ml in drinking 

water, then 
combination with 

erlotinib (100 
mg/kg, p.o.) 

Nicotine for 
18 d 

Volume 

24% and 39% 
increase for i.v. and 

p.o., respectively* 

(Li et al., 2015) 

Nicotine +  
Erlotinib for 

10 d  

200% and 300% 
increase for i.v. Nic + 
ER and p.o. Nic + ER, 

respectively, 
compared to ER 

alone* 

Line1 BALB/c 

1 mg/kg, i.p., 
3x/week 

2 w 

Volume 225% increase* 

(Davis et al., 2009) 

Tumor Recurrence 200% increase* 

Lung Metastasis 700% increase* 

25 mg/kg/day via 
transdermal patch 

Volume 65% increase* 

Lung Metastasis 230% increase* 

LLC C57BL/6J 
100 μg/ml in 

drinking water 
16 d Volume 100% increase* 

(Heeschen et al., 
2001) 

LLC C57BL/6 
100 μg/ml in 

drinking water 
14 d Volume 75% increase* 

(Nakada et al., 
2012) 

LLC C57BL/6J 
24 mg/kg/day, s.c. 

(osmotic 
minipump) 

7 d Volume No effect (Kyte et al., 2018) 

NNK, i.p. A/J 
1 mg/kg, i.p., 

3x/week 
4 w 

Area  135% increase† 
(Davis et al., 2009) 

Lung Metastasis 60% increase* 

NNK, i.p. 
Ab6F1 (A/J x 
C57BL/6J) 

100 μg/ml in 
drinking water 

12 w 

Multiplicity No effect 

(Maier et al., 2011) 
Volume No effect 

Incidence 35% increase 

Growth (Ki-67+) No effect 

NNK, i.p. A/J 
200 μg/ml in 

drinking water 
2, 44, or 46 w 

Volume No effect 

(Murphy et al., 
2011) 

Multiplicity No effect 

Incidence No effect 

NNK, i.p. A/J 1 mg/kg, i.p.,  10 w Incidence 125% increase* 
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Table 6. In vivo effects of nicotine on lung cancer. Abbreviations: d, days; HIF-1α, hypoxia-inducible factor 1-

alpha; i.p., intraperitoneal; i.v., intravenous; LLC, Lewis lung carcinoma; m, months; NNK, nicotine-derived 

nitrosamine ketone; p.o., oral; s.c., subcutaneous; w, weeks. *statistically significant, †statistical significance not 

indicated. 

 

3x per week 
Volume 80% increase* 

(Iskandar et al., 
2013) 

Spontaneous 
tumor 

KrasLA2/+ 
C57BL/6J 

100 μg/ml in 
drinking water 

6 w 
Multiplicity No effect 

(Maier et al., 2011) 
Growth (Ki-67+) No effect 
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