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constant; λ1: linear growth rate constant; θi: individual model parameter; θpop: population 

parameter; ω2: variance of the inter-individual variability; σ2: variance of the residual 

variability; ψ: shape factor.  
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Abstract 

Xenograft mice are largely used to evaluate the efficacy of oncological drugs during 

preclinical phases of drug discovery and development. Mathematical models provide a 

useful tool to quantitatively characterise tumour growth dynamics and also optimise 

upcoming experiments. To the best of our knowledge, this is the first report where 

unperturbed growth of a large set of tumour cell lines (n=28) has been systematically 

analysed using the model proposed by Simeoni in the context of non-linear mixed effect 

(NLME). Exponential growth was identified as the governing mechanism in the majority 

of the cell lines, with constant rate values ranging from 0.0204 to 0.203 day-1. No common 

patterns could be observed across tumour types, highlighting the importance of 

combining information from different cell lines when evaluating drug activity. Overall, 

typical model parameters were precisely estimated using designs where tumour size 

measurements were taken every two days. Moreover, reducing the number of 

measurement to twice per week, or even once per week for cell lines with low growth 

rates, showed little impact on parameter precision. However, in order to accurately 

characterise parameter variability (i.e. relative standard errors below 50%), a sample size 

of at least 50 mice is needed. This work illustrates the feasibility to systematically apply 

NLME models to characterise tumour growth in drug discovery and development, and 

constitutes a valuable source of data to optimise experimental designs by providing an a 

priori sampling window and minimising the number of samples required. 
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Introduction 

Drug discovery and development costs have been rising over the past years without 

translating into larger number of drugs approved by the regulatory agencies 

(Pharmaceutical Research and Manufacturers of America., 2016). This is especially 

relevant in the oncology area, where the attrition rates are among the highest (Hay et al., 

2014). One approach to reduce these alarming numbers is to look for strategies to better 

predict clinical trial outcome using early preclinical information (Zhang et al., 2006).  

Xenograft and syngeneic models are widely used in drug development to evaluate the 

antitumour effects of oncological compounds and guide the selection and development of 

drug candidates (Sausville and Burger, 2006; Ocana et al., 2010). In these experiments, 

compounds exhibiting promising in vitro properties are tested on xenograft mouse 

experiments, typically across a small handful of different tumour cell lines. Success, is 

then measured in terms of achieved tumour regression/cure in the treatment group 

compared to the control group.  

Many experimental variables such as cell line aggressiveness, tumour size at dosing time 

or dose intensity and frequency can significantly affect the evolution of tumour size over 

time, and consequently the outcome of these experiments in terms of observed shrinkage. 

Making an adequate choice of design can lead to more informative studies, with the 

additional benefit of reducing the number of animals, samples or repetition needed, and 

consequently reducing experimental costs, as recently illustrated by Lestini and 

colleagues (Lestini et al., 2016). However, pharmacokinetic, pharmacodynamic and 

disease progression properties of the systems are rarely taken into account when 

designing xenograft experiments (Simeoni et al., 2013).  
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On this regard, semi-mechanistic pharmacokinetic/pharmacodynamics (PKPD) analysis 

could constitute a powerful tool to integrate information from multiple experiments, and 

obtain design-independent model parameters that would enable then the in silico 

exploration and optimisation of potentially relevant scenarios. Non-linear mixed effect 

modelling (NLME) represents a suitable methodology in this context to quantitatively 

describe, not only the typical PKPD profile, but also to identify and quantify the different 

sources of variability (i.e across animals and experiments), thus allowing for better data 

description and understanding. 

To characterise tumour size data from xenograft mice experiments, a model that considers 

two different processes in the natural course of tumour progression (exponential and 

linear)  (Simeoni et al., 2004) is commonly used. This model describes tumour growth 

dynamics in absence or presence of anticancer treatment and enables the computation of 

a threshold concentration (CT), such that if drug steady-state concentrations above that 

threshold are reached, the model will predict tumour shrinkage and eventually 

eradication. Indeed, Rochetti et al. (Rocchetti et al., 2007) demonstrated a good 

correlation between CT and the active dose used in clinic for several marketed drugs, thus 

suggesting its potential for scaling efficacy from animal to man, further supporting the 

use of this preclinical model. To the best of our knowledge, NMLE methodology has been 

seldom used in the PKPD analysis of mice xenograft data, and if such, most of the studies 

focused on a limited number of cell lines or tumour types only (Bueno et al., 2008; Parra-

Guillen et al., 2013; Tate et al., 2014, 2016). 

In this setting, the overall goal of our work was to illustrate how NLME modelling and 

optimal design theory can be systematically applied during the preclinical evaluation of 

new drug candidates to maximise the information that can be extracted from xenograft 

experiments, and enable its subsequent use in the design of future protocols. An accurate 
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description of the tumour dynamics in the absence of drug is a key step before 

characterising TGI drug effects. Therefore, unperturbed tumour growth data from a large 

set of tumour cell lines representing several cancer types was initially selected in this 

work to (i) characterise tumour growth dynamics in absence of active treatment (ii) 

evaluate the impact of study design and number of animals on the precision of parameter 

estimates, as well as (iii) the potential benefit of optimising the sampling time points.  

 

Methods 

Experimental data 

Data from several experiments where tumour volume (TV) measurements from control 

mice were used. A total of 28 cell lines from 10 different tumour types were available for 

the analysis (see table 1 for an overview of the experimental data). Briefly, tumour cells 

were subcutaneously inoculated into athymic nude mice, weighing a mean of 23 g (16-

32 g). Tumour size was measured with a calliper at regular times, and tumour volume 

was computed assuming tumour has an ovoid form: (l x w2)/2 (Pierrillas et al., 2016) 

where l is the length and w the width of the tumour in mm (l>w). Mice were sacrificed 

when measured tumour volume exceeded a pre-specified upper limit. All animal 

experiments were approved by the Eli Lilly and Company Institutional Animal Care and 

Use Committee.  

Unperturbed tumour growth modelling 

The model first proposed by Simeoni et al. (Simeoni et al., 2004) was used to characterise 

the unperturbed tumour growth dynamics in all cell lines evaluated. Briefly, the model 
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describes an initial exponential increase in tumour volume followed by a linear growth, 

assuming no spontaneous tumour cell death and homogenous tumour cell behaviour: 

𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝜆𝜆0 × 𝑇𝑇𝑇𝑇

�1 + �𝜆𝜆0𝜆𝜆1
× 𝑇𝑇𝑇𝑇�

𝜓𝜓
�

1
𝜓𝜓

                      (𝑒𝑒𝑒𝑒. 1) 

TV is the tumour volume at any time after cell inoculation, and λ0 and λ1 are the first and 

zero order rate constants characterising the exponential and linear growth kinetics, 

respectively. The transition from exponential to linear growth occurs when TV reaches 

the value of the tumour threshold (TVth), which can be expressed as λ1/ λ0. ψ is fixed to 

the value of 20, ensuring a rapid transition between the two different growth rates once 

TV reaches TVth. The initial condition of the system is given by TV0, defined as the 

tumour volume immediately after tumour cell inoculation. 

Nonlinear mixed effect modelling was used to analyse the data. The first order conditional 

estimation method with interaction (FOCEI) algorithm implemented in NONMEM 7.3 

(Icon Development Solutions, Ellicott City, MD, USA) was selected. 

During the analysis, the typical population parameters TV0, λ0, and λ1 were estimated. 

Inter-animal (IAV) and inter-study variability (ISV) were explored on the three estimated 

typical parameters assuming a lognormal distribution of the individual parameters:  

𝜃𝜃𝑖𝑖 = 𝜃𝜃𝑝𝑝𝑝𝑝𝑝𝑝 × exp(𝜂𝜂𝑖𝑖)            (𝑒𝑒𝑒𝑒. 2) 

where θi is the individual model parameter of mouse i, θpop the population parameter (i.e. 

TV0, λ0, or λ1) and ηi the associated random effect of mouse i obtained from a normal 

distribution with mean 0 and estimated variance (ω2).  
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TV data were logarithmically transformed for the analysis, and residual variability 

(accounting for the discrepancy between individual predictions and observations) was 

described using an additive error model on the logarithmic scale:  

log (𝑇𝑇𝑇𝑇𝑖𝑖,𝑗𝑗) = log (𝑓𝑓(ϴ𝑖𝑖,𝑡𝑡𝑗𝑗)) + 𝜀𝜀𝑖𝑖,𝑗𝑗            (𝑒𝑒𝑒𝑒. 3) 

where TVi,j represents the tumour volume observations for the  ith animal at the jth 

measurement time, f(ϴi, tj), corresponds to the predicted TV for mouse ith at time jth 

resulting from the vector of the ith individual parameters ϴi related as shown in eq. 1, and 

ε is the difference between the logarithm of the individual observed and predicted TV. 

The set of εs are independent between them and corresponds to a random variable mean 

0 and estimated variance (σ2). 

Upper welfare limits for tumour size were not available for all the different studies, 

neither the reasons for drop-outs. Therefore, no censoring or drop-out model was 

considered in the analysis 

Model selection and evaluation 

Different statistical models (i.e. IAV parameters, ISV parameters and correlation between 

individual parameters) were explored and compared in terms of minimum value of the 

objective function (OFV) provided by NONMEM (approximately -2 log likelihood), 

precision of parameter estimates when obtained and goodness of fit. A decrease in OFV 

of 3.84 between two nested models was considered significant at 5% level. 

Model performance was evaluated using the simulation-based diagnostics visual 

predictive checks (VPC) generated with PsN version 4 (Lindbom et al., 2005) and Xpose4 

R package (Jonsson and Karlsson, 1999). For each cell line, one thousand studies with 

the same design characteristics as the original experiments were simulated. For each 

simulated scenario (tumour cell line) and measurement interval (or bin) the 2.5th, 50th, 
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and 97.5th percentiles of the simulated TV values were calculated, then the 95% 

confidence intervals of the above mentioned predicted percentiles were obtained and 

presented graphically together with the 2.5th, 50th, and 97.5th  percentiles of the raw data. 

Design evaluation and optimisation 

According to the Cramer-Rao inequality, the inverse of the Fisher information matrix 

(FIM) is the lower bound of the variance-covariance matrix of any unbiased parameter 

estimate (Radhakrishna Rao, 1945; Cramér, 1946). Therefore, the SE can be obtained 

from the square root of the diagonal elements of the inverse of the FIM. The optimal 

design R package POPED (Foracchia et al., 2004) was used to compute parameter 

precision - i.e relative residual errors (RSE) calculated as the ratio between standard errors 

(SE) and parameter estimates-  obtained for the different studied cell lines, given the 

selected model, the final set of parameter estimates and an experimental design. 

Parameter precision was evaluated under 3 distinct sampling schemas: (i) the standard 

schema of TV measurements taken every two days (Q2D), (ii) samples taken twice per 

week (BIW, i.e. two samples per week on day 1 and 4) or (iii) once per week (QW, i.e. 

one sample per week on day 1). For all the evaluations, the original number of mice per 

study (ranging from 7 to 287) and the sampling window (see Table 1) were kept 

unchanged. Note that although the selected acronyms commonly refer to the frequency 

of dose administration, in this context we used them to indicate the frequency at which 

TV measurements were taken. RSE obtained for the different model parameters across 

cell lines and evaluated sampling designs were analysed.  

In a second step, the sampling times were optimised assuming 8 samples in all cases and 

allowing only for one tumour size sample per day. The study duration and the number of 
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animals were not optimised, i.e. original designs were used. The Adaptive Random 

Search methods implemented in POPED was used for the optimisation step. 

Results 

Unperturbed tumour growth 

The unperturbed tumour growth model proposed by Simeoni et al. (Simeoni et al., 2004) 

provided a good description of the data for all tumour cell lines, as illustrated in figure 1 

for the case of lung cancer cell lines and in supplementary figure 1 for the rest of tumour 

cell lines.   

Parameter estimates can be found in table 2. The estimates of the zero order rate constant 

[reflecting the linear tumour growth (λ1)] ranged from 2.58 to 464 mm3/day. With respect 

to λ0, accounting for the exponential growth, and TV0, the corresponding ranges were 

much smaller varying from 0.0204 to 0.203 day-1 and from 16 to 148 mm3, respectively. 

Only for the case of the MB231, the estimate of λ0 had to be fixed to a high value of 0.5 

day-1, indicating that only linear growth was observed in the measurable range (TVTH of 

5 mm3). 

IAV on λ0 and/or TV0 parameters was identified in all tumour cell lines, with a low to 

moderate magnitude ranging from 8 to 70 %, and 12 to 61 %, respectively. IAV in the λ1 

parameter could be estimated only in 10 out of 28 cell lines, with values ranging from 42 

to 88 % (Fig.2A). This is due to the fact that for most cell lines little information was 

available over TVTH –marking the shift from exponential to linear growth-, limiting thus 

the identification of IAV variability in λ1. Correlation between individual parameters was 

explored during the modelling process and found significant only for A549 cell line 

(Table 2).  
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There were no relevant relationships between the magnitude of the different variability 

parameters and its typical estimate or the experimental size (Fig. 2B). Inclusion of inter-

study variability did not show significance for the case of lung and melanoma cell lines, 

for which large number of studies were available (p>0.05). 

Design evaluation and optimisation 

POPED was used to evaluate the adequacy of the original experimental designs to 

precisely estimate all model parameters. In general, good precision (RSE below 10% in 

average) was obtained for the typical parameters when samples were measured every two 

days (Supplementary Tables 1-3 and Fig. 3A). The largest imprecision was detected on 

the linear growth rate (λ1) for those tumours with a large tumour threshold (TVTH). On 

the other hand, larger RSEs were observed for the variability parameters (Fig. 3A). 

Precision of the IAV parameters was highly dependent on the number of experimental 

mice (Fig. 4), regardless of the sampling schema evaluated. For a standard experimental 

size of 8-10 mice, RSEs between 50-60% would be observed. This clear trend was not 

significant for typical parameters and was independent on the value of IAV precision. 

Similarly, the influence of reducing the number of sampling time measurements on 

parameter precision was evaluated. The BIW sampling schema (i.e. two samples per week) 

showed little impact on parameter precision, with a mean absolute loss <5% and a relative 

loss <25% for all parameters, except for residual error estimate (RUV) (Fig.3B). Further 

reducing to one sample per week (i.e. QW) worsened the precision of the typical 

parameter estimates, showing a mean absolute and relative loss >10%, but also more 

heterogeneous results (Fig.3B) highly dependent on the rate of tumour growth. This loss 

was less pronounced for the variability parameters, especially for λ0. 
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Optimising the sampling times assuming a design of 8 samples per study provided results 

similar to assuming a fixed BIW schema (Fig. 3B). A wide range of sampling times, 

depending on the individual cell growth kinetics were observed (Supplementary Figure 

2). However, in most of the cases clusters of sampling points around the initial, the tumour 

threshold (TVth, when relevant) and the latest possible collection sampling time were 

observed, as illustrated for 3 cell lines in figure 5.  

 

Discussion 

Although there is an on-going discussion on the capability of xenograft mouse models to 

generate meaningful data for human extrapolations, they are frequently used to evaluate 

the efficacy of anticancer drugs early in discovery and development. To overcome some 

of the limitations of these approaches, mathematical models have been proposed as a tool 

to derive meaningful parameters independent of the experimental settings, that can be 

later used to optimise upcoming experiments or guide dose rationale in humans (Simeoni 

et al., 2013).  

In this work, tumour growth dynamics of several tumour cell lines representing different 

tumour types were modelled in absence of drug using the model proposed by Simeoni et 

al. (Simeoni et al., 2004). This model was selected as common structure to systematically 

analyse our data given its flexibility and proven capability to characterise tumour growth 

data from different xenograft mouse experiments, as supported by its extended literature 

use. This work adds to previous efforts characterising tumour growth dynamics with a 

common model (Wong et al., 2012; Delgado-SanMartin et al., 2015), and represents the 

first report where non-linear mixed effect modelling and optimal design techniques have 

been undertaken to quantitatively evaluate a large set of tumour cell lines.  
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The model proposed by Simeoni et al., (1) allowed for an adequate description of the 

unperturbed tumour growth under the different scenarios analysed. Obtained exponential 

growth rates (λ0) were in good agreement with published estimates available for some cell 

lines (Simeoni et al., 2004; Rocchetti et al., 2005, 2007; Haddish-Berhane et al., 2013; 

Terranova et al., 2013; Tate et al., 2014, 2016). It should be highlighted that in some 

cases, data did not fully support the two mechanisms of tumour growth. In those situations, 

model structure could have been simplified to consider just linear or exponential growth 

observing little impact on the rest of parameter estimates, as was done for the case of 

MB211. The maximum tumour burden allowed or drop-out information was not available 

and therefore not included in the analysis. This could have potentially induced some 

parameter estimation bias, especially for λ1 (Martin et al., 2016; Pierrillas et al., 2016). 

However, given the large tumour size values observed in our experiments, the large 

number of mice available for some studies, and the lack of obvious trends or 

misspecifications observed for the larger tumour size predictions (Figure 1 and 

Supplementary Figure 1), we believe that considering the upper welfare limit in the 

analysis would have had little impact. 

Given the availability of several independent experiments for same cell line, inclusion of 

inter-study variability in addition to inter-animal variability was explored. Inter-study 

variability did not provide further explanation of parameter variability, supporting study 

reproducibility. This work provides therefore valuable information to anticipate the 

dynamics of tumour growth in xenograft mice and support experimental design. 

Dynamics of tumour growth in absence of drug treatment varied widely across the 28 

different cell lines. The lower growth rate values were observed for the renal tumour type. 

However, no additional common patterns could be detected across cell lines for the same 

type of tumour. Indeed, a large range of tumour growth rate values was observed for lung 

cancer cells lines. This variability observed across cell lines suggests that information 
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from multiple cell lines obtained during pre-clinical studies should be integrated to 

improve extrapolation of results to clinical setting, rather than relying on single cell line 

experiments. Similar results have been recently illustrated by García-Cremades et al. for 

ovarian and pancreatic cancer (Garcia-Cremades et al., 2016). A natural extension of this 

work would be to collect genetic, mutation and tumour histology information of the 

different cell lines and perform a bioinformatic analysis to identify (if any) common 

patterns that could account for similarities and differences in growth rates across the 

different cell types. This information could be potentially used to anticipate growth 

dynamics of new cell types based on their genetic signature. 

An essential aspect when interpreting modelling results is the reliability of the obtained 

parameter estimates, i.e. large parameter imprecision translates into high uncertainty in 

model predictions and therefore limited extrapolation capability. On this regard, the 

experimental design plays an essential role on parameter estimates (al-Banna et al., 1990). 

Measuring tumour size twice per week (BIW) allowed for a precise estimation of typical 

model parameters in all evaluated cell lines, with a small precision loss compared to 

measuring every two days. However, further reducing the sampling schema to once per 

week (QW) showed a less consistent impact on precision loss, with lower impact on 

parameter precision in slow growing tumours compare to fast growing tumours. Results 

from this evaluation design exercise showed that the underlying properties of the cell line 

can be used to guide experimental design, in terms of sampling intensity and/or size of 

the experiment. 

Among the unperturbed growth model parameters, special attention should be paid to λ0, 

as this parameter is potentially utilised to predict the target human exposure of a candidate 

drug (Rocchetti et al., 2007). Except for Mia Paca-2 cell line, where linear rather than 

exponential growth was the predominant mechanism, RSE of λ0 was always below the 

20%, regardless of the experimental setting (e.g. number of mice, parameter value) and 

sampling schema. These observations illustrate the adequacy of NLME approach to 
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precisely characterise and rank the typical exponential growth rate of the different cell 

lines. Another important aspect to consider, due to its impact on the confidence interval 

around the predicted tumour size profiles, is the precision of the estimated variability. 

Accuracy of IAV parameters was largely driven by the number of mice, rather than the 

sampling schema or the IAV magnitude, with approximately 50 animals required for 

RSE<50%. NLME represents a suitable approach to achieve such large sample size, since 

it enables the integration of data from multiple experiments and even control and 

treatment groups. In addition, parameters reported in this manuscript, could be used as 

prior information, to further reduce the size of control groups.  

One step further in the application of optimal design theory is the optimisation of the 

selected sampling times, i.e. identifying those times that, given a model structure and 

some design constrains, provide the maximum possible information for the estimation of 

the different model parameters. Optimal design strategies applied to xenograft data have 

been recently proposed by Lestini et al. (Lestini et al., 2016). Their results showed how 

optimal sampling schemas can improve the information obtained from experimental data 

and highlight the importance of early and late sampling for an adequate parameter 

characterisation. Comparable results were obtained in our analysis of control groups, 

identifying clusters of points at early sampling times (informed about TV0), late sampling 

times (informed about the linear growth) or TVTH (exponential and linear growths) (Fig.5 

and Fig.S2). Similarities or differences between optimal times across cell types are 

therefore explained by the similarities or differences in their growth behaviour.  

Nonetheless, evaluation of experimental designs that can be systematically applied under 

different conditions might be of more relevance than optimising the sampling times for 

each of the cell lines, especially given the low cost and time consumption for obtaining 
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tumour size measurements, and the convenience of standard designs in terms of 

experimental organisation.  

In conclusion, a common structure based on the model proposed by Simeoni et al. 

characterised well the typical and dispersion tendencies of the longitudinal tumour 

volume data obtained from a wide range of tumour cell lines providing a robust and 

general platform to (i) quantify and compare tumour growth and possibly (ii) design 

future treatment experiments based on information from treated groups, in vitro data 

regarding drug potency and drug pharmacokinetics. Experimental designs measuring 

tumour size twice weekly, or even once a week for slow growing tumours, are sufficient 

for an accurate characterisation of the tumour growth dynamics. However, analysis of 

pooled experiments to increase the number of mice are required for an adequate 

quantification of variability. The approach presented can be easily extrapolated also to 

drug studies, where modelling and simulation together with design optimisation is 

anticipated to have a more relevant role given the greater experimental studies alternatives, 

e.g. dose level, dose intensity or group size.  
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Legend for Figures 
Figure 1: Visual predictive checks of the unperturbed tumour growth model 
corresponding to lung tumour cell lines. Lines represent the 2.5th (dashed), 50th (solid) 
and 97.5th (dashed) percentiles of raw data. Grey areas correspond to the 95% confidence 
interval of the 2.5th, 50th and 97.5th percentiles computed from 1000 simulated studies. 
Black lower marks indicate the used binning intervals for plotting. 

Figure 2: (A) Graphical representation of the parameter estimates for the different tumour 
cells lines categorised by number of studies available and the associated variability 
magnitude. (B) Relation between the estimate of the different inter-animal variability 
(IAV) and the number of mice included in the analysis of each cell line.  

Figure 3: (A) Boxplot of the relative standard errors (RSE) for the structural and 
variability model parameters (parameter definition provided in the Methods and Material 
section) of the different cell lines assuming samples taken every two days (Q2D). (B) 
Boxplot representing the predicted precision when evaluating the sampling designs twice 
per week (BIW), once per week (QW) or the optimised sampling schema (OPT8) with 
respect to the Q2D reference design. The box represents the interquartile range (IQR) and 
the whiskers expand up to 1.5 times the IQR range. Dots represent outliers. 

Figure 4: Relative standard error of the typical (upper panels) or inter-animal variability 
(IAV) (lower panels) model parameters versus the number of mice included in the 
analysis of the different cell lines. Q2D: tumour size samples taken every two days. BIW: 
tumour size samples taken twice per week. QW:  tumour size samples taken every week. 

Figure 5: Tumour volume profiles for 3 selected cell lines. Lines represent model 
predictions and dots represent the optimised sampling times. 
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Tables 
Table 1: Summary of the experimental data available for each of the tumour cell lines 

Tumour Cell Nº of 
studies 

Nº of 
mice 

Nº of 
samples 

TMIN 

(days) 
TMAX 

(days) 
Breast MB-231 1 45 423 11 45 

Colon 
COLO205 5 85 668 6 120 
HCT116 1 10 25 7 17 

Glioblastoma U-87 MG 3 100 382 7 63 
Leukemia MV411 2 33 388 7 73 

Lung 

A549 2 33 389 7 69 
Calu-6 2 25 288 7 59 
DMS53 1 6 120 7 98 
H1650 2 21 277 7 62 
H1975 3 61 361 7 41 
H2122 8 92 763 7 50 
H358 1 8 160 10 88 
H441 17 287 3391 3 98 
H460 1 13 109 8 47 

HCC827 1 8 99 10 55 

Lymphoma 
JEKO-1 4 31 312 7 46 

OCI-LY-19 2 38 178 7 32 
WILL-2 1 24 80 7 23 

Melanoma 

A2058 2 20 177 7 35 
A375 8 104 840 3 69 
GAK 2 15 181 8 56 

SK-MEL-30 2 24 229 0 45 

Ovarian 
A2780 1 8 68 8 37 

SKVO-3 1 8 104 7 47 
Pancreas MIA PaCa-2 1 8 64 11 41 

Renal 
786-o 4 52 740 6 76 

ACHN 3 50 604 7 60 
Caki-1 1 13 116 13 51 

  Tmin: Time at which tumour could start to be measured. 
  Tmax: Latest sampling time available in the experiment 
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Table 2: Model parameter estimates corresponding to all the tumour cell lines analysed 

Tumour Line Cell Line 
Parameters 

λ0   
[day-1] 

λ1 
[mm3/day] 

TV0  
[mm3] 

TVTH 
[mm3] 

IAV λ0  
[CV%] 

IAV λ1 

[CV%] 
IAV W0 

[CV%] 
RUV 

 [log mm3] 
Lung A549 0.051 58.5 48.2 1150 19.8a  29.5a 0.205 

H460 0.104 237 71.3 2280 25.2  25.9 0.148 
HCC827 0.100 35.1 21.8 351 16.9   0.194 
Calu-6 0.0875 126 49.9 1440 27.2 53.2 12.6 0.147 
DMS53 0.0438  27.6 16.0 630 11.0   0.316 
H1650 0.0575 48.0 50.6 835 20.1  12.8 0.201 
H1975 0.104  188 46.3 1810 14.8    0.202 
H358 0.0204  115 88.6 5640 30.0    0.129 
H441 0.0342 75.0 69.6 2190 68.6  40.1 0.223 

H2122 0.103 42.6 60.2 414 20.4 45.1 23.0 0.151 
Renal  ACHN 0.0249 12.8 123 514 68.7 42.5 19.7 0.162 

CAKI-1 0.0265 64.2 102 2420     14.3 0.239 
786-o 0.0489 29.5 82.4 603 22.4 67.7 26.4 0.176 

Melanoma A2058 0.129 55.9 64.7 433 8.20 39.6   0.154 
A375 0.0948 101 69.3 1070 39.8 67.2 36.3 0.193 
GAK 0.0277 19.0 88.8 686 45.5  17.6 0.191 

SK-MEL-30 0.0640 84.8 148 1330 45.9   23.7 0.200 
Lymphoma JEKO-1 0.0825 217 62.9 2630 10.5   19.3 0.284 

OCI-LY-19 0.138 464 30.0 3360 9.70     0.320 
WILL-2 0.203 352  25.3 1730     28.0 0.263 

Colon COLO205 0.106 31.9 65.6 301 25.1 88.1 61.5 0.211 
HCT116 0.121 176 67.5 1460 19.3     0.409 

Glioblastoma U-87-MG 0.0547 51.9 80.4 949 38.9   29.0 0.400 
Leukemia MV411 0.0695 66.5 44.3 957 25.4b 72.6b 34.7 0.194 
Ovarian A2780 0.103 254 59.0 3660 23.8     0.216 

SKVO-3 0.0798 55.4  61.4 694 10.0     0.203 
Breast MB231 0.500 FIX 2.58 81.9 5.00   41.8 23.6 0.122 

Pancreas MIA PaCa-2 0.120 21.6 43.1 180   58.2 15.4 0.114 
Model parameters are defined within the Methods and Materials section. RUV, residual unexplained variability. 
a Correlation between inter-animal variability (IAV) λ0 and IAV TV0 of -90%. b Correlation between IAV λ0 and  IAV λ1 of  100% 
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