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Abstract 

Spinal cord injury (SCI) is characterized by an initial trauma followed by a progressive cascade of 

damage referred to as secondary injury. A hallmark of secondary injury is vascular disruption 

leading to vasoconstriction and decreased oxygen delivery, directly reducing the ability of 

mitochondria to maintain homeostasis, leading to loss of ATP-dependent cellular functions, 

calcium overload, excitotoxicity and oxidative stress, further exacerbating injury.  Restoration of 

mitochondria dysfunction during the acute phases of secondary injury post-SCI represents a 

potentially effective therapeutic strategy. This review discusses the past and present 

pharmacological options for the treatment of SCI, as well as current research on mitochondria-

targeted approaches. Increased antioxidant activity, inhibition of the mitochondrial permeability 

transition, alternate energy sources and manipulating mitochondrial morphology are among the 

strategies under investigation. Unfortunately, many of these tactics address single aspects of 

mitochondrial dysfunction, ultimately proving largely ineffective. Therefore, this review will also 

examine the unexplored therapeutic efficacy of pharmacological enhancement of mitochondrial 

biogenesis, which has the potential to more comprehensively improve mitochondrial function 

following SCI. 
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Introduction 

There are over 12,000 new cases of spinal cord injury (SCI) in the United States every year, and 

while active individuals at any age can fall victim, the majority of injuries take place in males 

younger than 30 (Devivo, 2012). The consequences of spinal cord trauma can range from loss of 

function to complete paralysis below the injury site.  The lack of therapeutics capable of restoring 

function results in this patient population being dependent upon healthcare support for the 

remainder of their lifetime. Nevertheless, advancements in medical and surgical care, survivors of 

SCI generally live long lives after injury, with life expectancy correlating with SCI-induced 

neurological impairment (Wyndaele and Wyndaele, 2006; Middleton et al., 2012).  

Unfortunately, patients with SCI often develop progressive complications in addition to their 

injury, including cardiovascular disease, gastrointestinal problems, chronic pain and depression 

(Myers et al., 2007). The resulting cost of care is estimated at greater than $3 million per patient 

(Devivo, 2012), placing a tremendous burden on patients, caregivers and the healthcare system in 

general, demonstrating the necessity of continued research into the development of therapeutics 

for individuals suffering from SCI. Furthermore, the development of more effective ways of 

maintaining and recovering function post-SCI could allow patients greater levels of both 

independence and productivity, drastically improving patient outlook. 

SCI Pathology 

SCI occurs in two phases: primary injury and secondary injury (Figure 1). Primary injury refers 

to the immediate mechanical trauma to the spinal cord, which can be caused by compression, 

contusion or distension, the most common of which being contusion (Sekhon and Fehlings, 2001; 

Baptiste and Fehlings, 2006). Complete spinal cord transection can occur, though in these 
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instances little to no functional recovery has been observed with pharmacological intervention 

alone; however, combinatorial therapies involving cellular transplantation have shown some 

promise (Coumans et al., 2001; Fouad et al., 2005). There exists the possibility for 

pharmacological intervention to aid in recovery following incomplete spinal cord transection, such 

as that generally observed following contusion, because the remaining intact tissue has the 

potential for repair (Hall and Springer, 2004). For the purpose of this review, we will focus on 

incomplete transection.  

Within the first minutes to hours following injury, a secondary cascade is initiated, which can last 

for weeks or months and whose damaging effects are comparative to, if not greater than, that of 

the initial insult (Tanhoffer et al., 2007; Oyinbo, 2011). Consequences of secondary injury include 

progressive axon demyelination (Totoiu and Keirstead, 2005), neuronal cell death (Beattie et al., 

2002; Anwar et al., 2016), microglia activation and inflammation (Qiao et al., 2010; Qiao et al., 

2015), glial scar formation (Shibuya et al., 2009) and mitochondrial dysfunction, all of which 

contribute to the progressive pathology. Because of the far-reaching effects of secondary injury, 

pharmacological therapeutics that seek to interrupt or control this stage of injury have the potential 

to improve neuron survival, allowing functional recovery (Hall and Sullivan, 2004; Oyinbo, 2011).  

Over twenty-five mechanisms of secondary injury following SCI have been identified, as well as 

temporal association of their occurrences, ranging from seconds (acute) to years (chronic) post-

injury (Oyinbo, 2011). There are multiple reviews, to which the reader is directed for a more 

thorough discussion of secondary injury (Tator and Fehlings, 1991; Anderson and Hall, 1993; Hall 

and Springer, 2004; Rowland et al., 2008). In brief, the initial primary trauma results in mechanical 

disruption of spinal cord vasculature, leading to vasoconstriction and contributing to hemorrhage, 

edema, hypoperfusion and ischemia (Baptiste and Fehlings, 2006; Graumann et al., 2011). 
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Ischemia is considered a key mechanism of secondary injury, with the degree of functional loss 

being proportional to the degree of ischemia post-injury (Tator and Fehlings, 1991). While 

angiogenesis does take place following SCI, the emerging vessels are often leaky, and therefore 

do not allow for the necessary delivery of nutrients or removal of waste within the injured spinal 

cord (Kundi et al., 2013). Furthermore, the subsequent local decrease in oxygen delivery directly 

reduces the ability of mitochondria to maintain homeostatic function (Graumann et al., 2011; 

Kundi et al., 2013).  

Mitochondria Following SCI 

Mitochondria are double-membraned organelles that, through oxidative phosphorylation, produce 

the majority of adenosine triphosphate (ATP) for the cell. The outer mitochondrial membrane is a 

phospholipid bilayer containing voltage-dependent anion channels that, when open, allow the 

passage of small molecules including ions, ATP and adenosine diphosphate (ADP) (Lemasters and 

Holmuhamedov, 2006; McEwen et al., 2011). The more complex inner membrane, while freely 

permeable to oxygen, water and carbon dioxide, contains numerous tightly controlled channels, 

which regulate the electron transport chain (ETC) to maintain the necessary electrochemical 

gradient (∆ψ) for ATP synthesis (Saraste, 1999; Kinnally et al., 2011). Various reactive oxygen 

species (ROS; e.g. superoxide anion, hydrogen peroxide and hydroxyl radicals) can be formed 

when electrons leak from the ETC and combine with O2 in the mitochondrial matrix. Under control 

circumstances, endogenous antioxidant systems protect from ROS-induced toxicity (Candas and 

Li, 2014); however, disruption of the ETC under pathological conditions can cause not only an 

energy deficit due to loss of ATP synthesis, but also an increase in ROS production (Turrens, 2003) 

beyond the neutralizing capabilities of antioxidant systems. 
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Recently, the understanding of the role of mitochondria within the central nervous system (CNS) 

has shifted from merely energy suppliers to essential contributors to both neural homeostasis and 

neurodegeneration (Dubinsky, 2005). Mitochondrial dysfunction following SCI has been 

suggested to be crucial for the proliferation of secondary injury and subsequent neuronal cell death 

(Sullivan et al., 2007). Neurons depend upon stringent and efficient ATP-dependent regulation of 

various ions across the plasma membrane to maintain electrical homeostasis, and to readily 

accommodate action potential conduction and the release/uptake of neurotransmitters. 

Additionally, neurons have limited capacity to buffer oxidative stress (Adibhatla and Hatcher, 

2010).  

Given these large energy requirements and limited antioxidant defenses, neurons rely heavily on 

mitochondrial metabolism and ATP production, and are susceptible to compromised mitochondria 

(Uttara et al., 2009; Moskowitz et al., 2010; Wang and Michaelis, 2010); even small mitochondrial 

defects can cause functional consequences and eventual pathology within the CNS (Dubinsky, 

2005). Loss of mitochondrial function, such as that observed with secondary injury following SCI, 

results in the loss of ATP and inactivation of ATP-dependent ion pumps required for regulation of 

ion concentrations, as well as reuptake of the excitatory neurotransmitter glutamate. This 

dysfunction ultimately leads to excitotoxicity, calcium overload and the eventual initiation of cell 

death cascades, all of which are hallmarks of SCI and further exacerbate injury in this self-

propagating cycle (Choi and Rothman, 1990; Rowland et al., 2008; Oyinbo, 2011).  

An early secondary event following SCI is depolarization and opening of voltage-dependent ion 

channels, leading to the release of neurotransmitters, including glutamate. Glutamate binds to 

glutamate receptors, opens corresponding ion channels, and results in accumulation of intracellular 

Ca2+ (Hall and Springer, 2004). Such ionic shifts can persist for days in injured tissue following 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on September 21, 2017 as DOI: 10.1124/jpet.117.244806

 at A
SPE

T
 Journals on M

arch 20, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


JPET #244806 
 

9 
 

SCI (Young and Koreh, 1986; Demediuk et al., 1990; LoPachin et al., 1999). Under control 

conditions, mitochondria can sequester and retain exogenous Ca2+ via an electrogenic carrier that 

facilitates transport across the inner membrane. Once in the mitochondrial matrix, Ca2+ is stored 

in the form of inactive precipitates, which are eventually slowly released back into the cytosol 

(Crompton, 1999; Starkov, 2010). When accumulated above a certain threshold, however, Ca2+ 

will trigger the opening of the mitochondrial permeability transition pore (mPTP, Figure 2).  

The opening of the mPTP results in the loss of ∆ψ leading to the cessation of ATP synthesis and 

has been linked to necrosis and apoptosis following brain injury, neurodegenerative disorders and 

SCI (Hirsch et al., 1998; Lemasters et al., 1998; Crompton, 1999; Friberg and Wieloch, 2002; 

Norenberg and Rao, 2007; Bezprozvanny, 2009; Pivovarova and Andrews, 2010). Additionally, 

opening of the pore allows molecules and water into the mitochondria, causing the matrix to swell 

as it equilibrates with the cytosol and enlarging the inner membrane until the outer membrane 

ruptures, releasing accumulated Ca2+, ROS and pro-apoptotic proteins, such as cytochrome c, into 

the cytosol, and promoting cell death (Sesso et al., 2004; McEwen et al., 2011). Importantly, 

Sullivan et al. (2004a) demonstrated that spinal cord mitochondria have a reduced Ca2+ threshold 

for opening of the mPTP than that of mitochondria isolated from the brain, further indicating the 

necessity of restoring mitochondrial homeostasis following SCI.  

A consequence of the persistent ion shift during secondary injury is increased ROS. ROS are 

normal byproducts of mitochondrial function, but Ca2+ overload increases production in the CNS 

(Lewen and Hillered, 1998; Sullivan et al., 2004b). SCI induces a detrimental self-proliferating 

cycle of increased ROS production, leading to oxidative damage and additional ROS production, 

until pathological levels are eventually reached. A particularly detrimental consequence of ROS is 

the formation of the powerful oxidant peroxynitrite (Violi et al., 1999). Development of 
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peroxynitrite is increased following injury due to the increased concentration of superoxide and 

Ca2+-induced activation of nitric oxide synthase within the mitochondria (Bringold et al., 2000). 

Peroxynitrite can also trigger cell membrane lipid peroxidation (LP), protein carbonylation and 

tyrosine nitration, damaging and impairing mitochondria and altering neuronal function post-SCI 

(Violi et al., 1999; Sullivan et al., 2007; Hall et al., 2016).  

LP results in additional free radicals, which propagate damage (Hall et al., 2016). LP can occur in 

blood vessels and neurons, not only impairing neuronal and vascular integrity, but also promoting 

ischemia, and further contributing to secondary neuronal injury (Hall and Springer, 2004). 

Targeting reestablishment of mitochondrial homeostasis prior to damaging levels of ROS 

formation could potentially attenuate secondary injury following SCI. Temporal analysis revealed 

altered mitochondrial morphology beginning 2 h post-SCI, with increases in markers of oxidative 

damage beginning approximately 8 h after injury and continuing until at least 24 h post-SCI 

(Sullivan et al., 2007; Jia et al., 2016). These data reveal the potential existence of an 8 h window 

for therapeutic intervention to regain mitochondrial homeostasis following SCI. 

Current Treatment for SCI – NASCIS and Methylprenisolone 

Based on their ability to reduce peritumoral brain edema in tumor patients, glucocorticoid steroids, 

including methylprednisolone (MP), were primarily used to treat SCI in 1960s and 1970s, with the 

assumption that they would also reduce post-SCI edema (Reulen et al., 1973). The National Acute 

Spinal Cord Injury Study (NASCIS I), a clinical trial performed in the early 1980s, found that the 

benefits of steroid treatment were limited to none, with increased risk of infection, a known side 

effect of glucocorticoid dosing, being observed with high-dose treatments (Bracken et al., 1984; 

Bracken et al., 1985). Based on these findings, a general consensus within the neuroscience 
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community was reached concluding that the use of steroids after SCI was simultaneously risky 

and unhelpful (Hall and Springer, 2004).  

NASCIS II, which took place in the 1990s following enhanced knowledge into the mechanism of 

post-SCI LP (Hall and Braughler, 1981; Anderson et al., 1982; Young and Flamm, 1982; Hall et 

al., 1984), revealed that patients functionally benefited from treatment with high-dose MP (30 

mg/kg i.v bolus plus hourly 5.4 mg/kg for 23 h), presumably via LP inhibition, lessening injury 

progression, as long as dosing was initiated within 8 h post-injury (Bracken et al., 1990; Bracken 

et al., 1992; Bracken and Holford, 1993). Based on these data, the standard of care for the treatment 

of SCI became the systemic administration of MP for 24 h (Rabchevsky et al., 2011). In the late 

1990s, the NASCIS III clinical trial evaluated MP using the same dosing regimen used in NASCIS 

II, extended MP doses (48 h) and a third treatment consisting of one 30 mg/kg MP bolus followed 

by 48 h administration of tirilazad, a non-glucocorticoid steroid (Braughler et al., 1988; Hall et al., 

1994; Bracken et al., 1997; Bracken et al., 1998). In general, all three treatment groups produced 

comparable degrees of recovery when initiated within 3 h post-SCI. When initiated between 3 and 

8 h post-injury, 48 h MP was the most effective, yet also had the highest incidence of 

glucocorticoid-related side effects (Bracken et al., 1997; Bracken et al., 1998).  

There are many potential side-effects of high doses of MP, including increased risk of GI bleeding, 

deep vein thrombosis, pneumonia, septic shock and delayed wound healing (Evaniew et al., 2015), 

which can offset the neuroprotective effects of MP, compromising functional outcome and even 

survival. Additionally, treatment initiation past the 8 h window can actually exacerbate injury and 

decrease recovery compared to no treatment (Bracken and Holford, 1993). Glucocorticoid-induced 

neurotoxicity has also been observed in certain neuronal populations, such as the hippocampus 

(Sapolsky, 1985; McIntosh and Sapolsky, 1996).  
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In the decade following the NASCIS trials, multiple highly critical reviews of the studies surfaced 

criticizing the lack of functional assessment, lack of placebo groups, the safety of high-dose MP 

and small effect sizes in only a subpopulation of patients (Coleman et al., 2000; Hurlbert, 2000; 

Short et al., 2000; Evaniew et al., 2015). In 2013, the “Guidelines for the Management of Acute 

Cervical Spine and Spinal Cord Injuries” downgraded data obtained from NASCIS trials from 

Class I (“well-executed”) to Class III (“unhelpful for establishing quality”), and no longer 

recommends the use of MP for the treatment of acute SCI, stating that the evidence supporting 

beneficial effects was inconsistent and likely due to random chance (Walters et al., 2013). As such, 

treatment with MP following SCI is now up to the discretion of the attending physician 

(Rabchevsky et al., 2011). 

Mitochondrial-Based Treatment 

Despite promising treatments in animal models of SCI, there remains no meaningful therapy for 

the treatment of SCI in humans. Secondary injury is a complex cascade of events that initiates 

many additional pathologies; therefore, therapeutics targeting specific downstream events 

following SCI may prove merely palliative and ultimately non-efficacious. Based on temporal data 

presented by Sullivan et al. (2007), restoration of mitochondrial function shortly after injury may 

be a more comprehensive approach for the treatment of SCI (McEwen et al., 2011; Rabchevsky et 

al., 2011).  

Many pharmacological agents that have proven beneficial for the treatment of SCI in vivo affect 

mitochondria or mitochondrial function to some extent. For example, the antibiotic minocycline 

was found to have neuroprotective effects and induce behavioral and cellular recovery following 

SCI in rats (Wells et al., 2003; Teng et al., 2004; Sonmez et al., 2013; Aras et al., 2015; Ahmad et 

al., 2016). Included in the spectrum of effects of minocycline is mitochondrial stabilization, 
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inhibition of the release of cytochrome c and antioxidant activity (Wells et al., 2003; Casha et al., 

2012; Aras et al., 2015). Additionally, lithium treatment has been reported to stimulate 

mitochondrial respiration in human brain tissue and enhance neuronal regeneration after SCI in 

vivo (Yick et al., 2004; Maurer et al., 2009). Unfortunately, however, both of these treatments 

proved ineffective during phase II clinical trials (Casha et al., 2012; Yang et al., 2012). Restoration 

of mitochondrial function post-SCI remains a popular therapeutic strategy and can be targeted 

directly via several different mechanisms, including inhibition of the mPTP, the use of alternate 

energy sources, enhanced antioxidant activity and altered mitochondrial morphology.  

Inhibition of the mPTP 

As stated previously, opening of the mPTP contributes to several pathological events that take 

place during secondary injury. Therefore, targeting components of the mPTP to inhibit the 

mitochondrial permeability transition following SCI may have therapeutic benefits (Figure 2). 

The immunosuppressant cyclosporin A (CsA) binds to and inhibits the mPTP and has been 

associated with enhanced mitochondrial function and decreased cell death in the CNS (Waldmeier 

et al., 2003; Basso et al., 2005; Kim et al., 2014). Particularly, studies have demonstrated that CsA 

has neuroprotective properties in models of traumatic brain injury (TBI) and stroke (Matsumoto 

et al., 1999; Scheff and Sullivan, 1999; Sullivan et al., 1999; Sullivan et al., 2000; Uchino et al., 

2002).  

Unfortunately, assessments of the neuroprotective effects of CsA following SCI have proven 

inconclusive and inconsistent (Ibarra et al., 1996a; Ibarra et al., 1996b; Rabchevsky et al., 2001; 

Ibarra et al., 2003; McMahon et al., 2009). The differences in efficacy of CsA between TBI and 

SCI may be attributed to fundamental differences in spinal cord and cortical mitochondria 

(Sullivan et al., 2004a). Regardless of any positive results, however, CsA is highly toxic, making 
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it less than ideal as a therapeutic (Caramelo et al., 2004; Schenk et al., 2010; Rabchevsky et al., 

2011; Szalowska et al., 2015). NIM811 is an analog of CsA that also inhibits the mPTP and is 

much less toxic and lacks immunosuppressive properties (Waldmeier et al., 2002). Very few 

studies have been performed regarding the therapeutic potential of NIM811 in the CNS, with even 

fewer investigating SCI (Waldmeier et al., 2002; McEwen et al., 2007; Ravikumar et al., 2007; 

Mbye et al., 2008; Mbye et al., 2009). The data obtained from these limited studies, however, 

suggest NIM811-induced neuroprotection post-SCI (McEwen et al., 2007; Ravikumar et al., 2007) 

and strongly indicate that the therapeutic efficacy of NIM811 deserves further investigation.  

Alternate Energy Sources – “Biofuels” 

Following SCI, several mitochondrial enzymes are inactivated due to oxidative damage. Of these 

is pyruvate dehydrogenase (PDH), a critical enzyme in the generation of acetyl coenzyme A (CoA) 

(McEwen et al., 2011). Acetyl-CoA is necessary for the citric acid cycle and the production of 

NADH and FADH2, electron donors for the ETC. Because of this PDH deficit, introduction of 

alternate energy sources (“biofuels”) could potentially alleviate mitochondrial dysfunction post-

SCI (Figure 2).  

Acetyl-L-carnitine (ALC) is an endogenous component of the inner mitochondrial membrane that 

readily crosses the blood-brain barrier and provides acetyl groups to facilitate the synthesis of 

acetyl-CoA, thereby bypassing the need for PDH (Pettegrew et al., 2000; McEwen et al., 2011). 

ALC also increases the production of glutathione (GSH), giving it a bipartite effect, further 

increasing its therapeutic appeal (Pettegrew et al., 2000; Karalija et al., 2012). ALC has been 

shown to have beneficial effects for a number of neurodegenerative diseases including Parkinson’s 

disease, Alzheimer’s disease and multiple sclerosis (Puca et al., 1990; Pettegrew et al., 2000; 

Tomassini et al., 2004). Interestingly, Karalija et al. (2012) demonstrated that chronic ALC 
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administration reduces neuronal degeneration following SCI in rats. Furthermore, Patel et al. 

(2010; 2012) found that treatment with ALC post-SCI maintained mitochondrial function, 

improved functional recovery and protected both white and gray matter within the spinal cord from 

further injury. ALC administration was also shown reduce the number of damaged mitochondria, 

improve mitochondrial membrane potential and decrease SCI-induced apoptosis in rats (Zhang et 

al., 2015). These studies, while few in number, suggest the potential for ALC as a therapeutic 

treatment for SCI. 

Antioxidant Approaches 

The consequences of ROS formation and oxidative damage following SCI are well-characterized 

and were briefly discussed above. For a more comprehensive description, the reader is directed to 

a review by Hall et al. (2011), and for a more thorough review on antioxidant-based therapeutics 

for the treatment of SCI, see Bains et al. (2012). Pharmacological intervention of oxidative damage 

post-SCI (Figure 2) can occur via several different mechanisms, both direct and indirect. Indirect 

mechanisms include preventing the formation of ROS and ROS scavenging; direct mechanisms 

include halting LP propagation or scavenging LP-induced free radicals (Hall, 2011; Bains and 

Hall, 2012). One significant limitation of the aforementioned indirect mechanisms is a short 

therapeutic window. Multiple studies have reported near instantaneous increases in ROS 

production following SCI (Liu et al., 1998; Bao and Liu, 2004; Liu et al., 2004; Xiong et al., 2007), 

meaning pharmacological agents would need to be administered immediately to ensure that they 

are able to act and interfere with the initial “burst” of free radical production that occurs following 

SCI (Hall, 2011; Bains and Hall, 2012; Hall et al., 2016).  

Alpha-tocopherol is a naturally occurring form of vitamin E, which can scavenge lipid peroxyl 

radicals and has been shown to improve recovery and decrease LP following SCI (Anderson et al., 
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1988; Bozbuga et al., 1998; Al Jadid et al., 2009; Morsy et al., 2010; Morsy and Bashir, 2013). 

Unfortunately, this process is 1:1 and after scavenging, the radical form of vitamin E is produced, 

which has no antioxidant properties. Furthermore, it has been suggested that high-dose 

supplementation of vitamin E, such as that which would be necessary to decrease baseline LP 

levels in humans (Roberts et al., 2007), can increase mortality (Miller et al., 2005) and, as such, 

should be avoided.  

N-acetylcysteineamide (NACA), a membrane permeable FDA-approved thiol-containing variant 

of the GSH precursor N-acetylcysteine (NAC), was observed to enhance GSH content, improving 

mitochondrial bioenergetics and correlating to functional recovery in rat models of both TBI and 

SCI when administered 15-30 min post-injury (Pandya et al., 2014; Patel et al., 2014). While these 

results are undoubtedly encouraging, additional studies need to be performed to assess the 

therapeutic window for treatment initiation, particularly considering NAC was previously found 

ineffective in rats if not given within 1 h after TBI (Xiong et al., 1999).  

Spin trap molecules, such as the free radical scavengers tempol (4-hydroxy-2,2,6,6-

tetramethylpiperidine-N-oxyl) and Neu2000 (2-hydroxy-5-[2,3,5,6-tetrafluoro-4-trifluoro-methyl-

benzylamino]-benzoic acid), have produced inconsistent results following SCI, in part due to their 

lack of targeted mitochondrial selectivity (Patel et al., 2009; Xiong et al., 2009; Springer et al., 

2010; McEwen et al., 2011; Visavadiya et al., 2013). Biomolecules consisting of antioxidants 

covalently bonded to mitochondrial targeting compounds, such as triphenylphosphonium cation 

(TPP) have been generated to combat this limitation (Murphy, 1997; Murphy, 2001; Murphy and 

Smith, 2007); however, the efficacy of these compounds has not yet been tested in SCI.  

Fission and Fusion 
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Mitochondria change form and function to meet requirements of the cell, and as such, they are 

both highly controlled and dynamic. Alterations in size and number of mitochondria are regulated 

by the coordination of fission, the division of single mitochondria into multiple daughter 

mitochondria, and fusion, the formation of a single mitochondrion from previously independent 

structures (Scott and Youle, 2010). In physiological conditions, mitochondria are constantly 

undergoing balanced fission and fusion. Because mitochondria cannot be formed de novo, fission 

is necessary for cell division; however, fission and fusion are also consistently observed in many 

non-dividing cells, partially due to the necessity of replacing or removing damaged mitochondrial 

components. Furthermore, mutations in fission and fusion regulatory genes are associated with 

various pathologies, indicating the importance of normal mitochondrial dynamics (Zuchner et al., 

2004; Ranieri et al., 2012).  

Recently, it has been shown that SCI alters fission and fusion, contributing to mitochondrial 

dysfunction. Cao et al. (2013) observed a biphasic response in mitochondrial morphology within 

the first 24 h following SCI in rats. At 3-6 h post-SCI, spinal cord neuronal mitochondrial were 

larger and fewer in number, correlating  with increased expression of fusion proteins mitofusin 

(Mfn) 1 and 2, and decreased expression of the primary mammalian fission-related proteins 

mitochondrial fission 1 (Fis1) and dynamin-related protein 1 (Drp1). By 12-24 h after injury, 

however, the opposite pattern was observed. Temporal analysis of mitochondrial morphology 

following SCI by Jia et al. (2016) similarly revealed larger mitochondria and increased Mfn1 

expression at early time points, peaking by 8 h post-SCI, then decreasing by 24 h, while Drp1 

expression was diminished as early as 2 h after injury, then gradually increased by 24 h.  

Mitochondrial fission and fusion are closely related to not only morphology, but also cellular 

function and apoptosis, in that mitochondrial fusion is thought to inhibit apoptosis, while fission 
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is thought to promote it (Jia et al., 2016). Additionally, studies have indicated that spinal cord cell 

death is abundantly due to apoptosis after injury, as opposed to a direct effect of the trauma (Liu 

et al., 1997). It was observed that as spinal cord Drp1 increased within the first 24 h after injury, 

mitochondrial membrane potential decreased, and cytochrome c release and caspase-3 expression 

increased, culminating in apoptosis (Jia et al., 2016). These data indicate that fusion and fission 

are integral to early and late stages of acute SCI, respectively (Cao et al., 2013; Jia et al., 2016) 

and suggest that therapeutic intervention targeting fusion/fission prior to this switch could prove 

beneficial post-SCI.  

Mitochondrial division inhibitor-1 (Mdivi-1, Figure 2), a selective Drp1 inhibitor, has proven 

beneficial in in vivo models of various CNS and non-CNS pathologies, including TBI (Wu et al., 

2016), amyotrophic lateral sclerosis (Luo et al., 2013), stroke (Zhang et al., 2013; Cui et al., 2016), 

acute kidney injury (Tang et al., 2013) and myocardial infarction (Ding et al., 2017). Despite these 

data, only two studies have thus far investigated the effect of Mdivi-1 on SCI (Li et al., 2015; Liu 

et al., 2015). Li et al. (2015) observed that treatment with Mdivi-1 prior to SCI in rats increased 

ATP and mitochondrial membrane potential, and decreased caspase-3 release and the number of 

apoptotic cells by 72 h post-injury . These effects correlated with improved locomotor function in 

the treated group. Similarly, Liu et al. (2015) observed neuroprotective effects of Mdivi-1, both in 

cultured spinal cord neurons exposed to glutamate and following ischemic/reperfusion SCI in rats. 

Mdivi-1 treatment resulted in increased endogenous antioxidant activity, decreased ROS and 

decreased cytochrome c release in vitro, as well as improved locomotor function in vivo (Liu et 

al., 2015). While these data are promising, one study used a pretreatment method, while the other 

began treatment at the initiation of injury; therefore, additional work is necessary to assess the 

therapeutic efficacy of Mdivi-1 after SCI. 
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Mitochondrial Biogenesis 

The current available therapeutics are not sufficient to effectively treat SCI. In fact, as of 2013, 

there was no recommended pharmacological intervention after injury (Walters et al., 2013). While 

there have been promising preliminary studies investigating the efficacy of NACA, NIM811, 

Mdivi-1 and mitochondrial-targeted antioxidants, there remains a great deal of work to be done 

with these compounds and, as is often the case, there is no guarantee that the results observed in 

animals will translate to humans. Hall et al. (2016) suggested that combinatorial therapies could 

address the obvious deficit in treatment, as pursuing a single facet of the mitochondrial 

dysfunction-induced damage that occurs post-SCI may not be enough to produce effective 

neuroprotection. An alternate method of targeting multiple aspects of mitochondrial function that 

has not yet been effectively explored for the treatment of SCI is pharmacological enhancement of 

mitochondrial biogenesis (MB).  

Regulation of MB 

MB is a transcriptional program that can be defined as the repair, growth and/or division of pre-

existing mitochondria (Ventura-Clapier et al., 2008). This process involves an intricate network of 

several transcriptional pathways for both nuclear- and mitochondrial DNA-encoded genes, many 

of which are outlined in Figure 3. MB is governed by the “master regulator” peroxisomal 

proliferator γ coactivator-1α (PGC-1α), which controls the expression of this network (Kelly and 

Scarpulla, 2004; Ventura-Clapier et al., 2008). PGC-1α interacts with and co-activates several 

transcription factors, including nuclear respiratory factors 1 and 2 (NRF1 and 2) and peroxisome 

proliferator-activated receptors (PPARs), resulting in the transcription of nuclear-encoded subunits 

of the ETC, including ATP synthase β (ATPSyn β) and NADH:ubiquinone oxidoreductase subunit 

1 (NDUFS1), antioxidant proteins such as superoxide dismutase 2 (SOD2), as well as other 
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mitochondrial genes, including uncoupling protein 2 (UCP2) and mitochondrial transcription 

factor A (TFAM). Following its transcription and translation, TFAM translocates into the 

mitochondrial matrix where it stimulates mitochondrial DNA (mtDNA) replication and the 

transcription of mitochondrial-encoded genes, including, for example, cytochrome c oxidase 

subunit 1 (COX1) and NADH dehydrogenase subunit 1 (ND1) (Ventura-Clapier et al., 2008). 

Nuclear-encoded proteins are then transferred into the mitochondria, where nuclear- and 

mitochondrial-encoded subunits of the ETC are assembled.  

Pharmacological agents can augment MB through interaction with the various pathways that 

regulate this process. For example, agonism of G protein-coupled serotonin (5-hydroxytryptamine, 

5-HT) and β-adrenergic receptors can activate the AKT/eNOS/cGMP pathway (Wills et al., 2012; 

Garrett et al., 2014), enhancing MB. Additionally, nitric oxide donors can stimulate cGMP 

activation and phosphodiesterase inhibitors can prevent the hydrolyzation of cGMP and cAMP 

(Cameron et al., 2016; Whitaker et al., 2016). Furthermore, resveratrol, a polyphenol that 

stimulates MB through activation of sirtuin 1 (SIRT1), which catalyzes deacetylation of PGC-1α, 

is currently being investigated for the treatment of various neurodegenerative disorders, including 

Alzheimer’s and Huntington’s disease (Kim et al., 2007; Ho et al., 2010). While distinct, these 

pathways all converge on activation of PGC-1α, leading to increased MB (Fujisawa et al., 2009; 

Dumont et al., 2012). Fortunately, multiple pharmacological agents that induce MB are already 

approved by the FDA for the treatment of various pathologies (Table 1). Therefore, attaining 

approval for the use of these drugs for the treatment of SCI could be an expeditious process. 

MB and SCI 

Multiple diseases and injuries, including those of the CNS, are accompanied by mitochondrial 

dysfunction, often including diminished MB. For example, Alzheimer’s, Parkinson’s and 
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Huntington’s diseases are all characterized by decreased PGC-1α, decreased expression of 

oxidative phosphorylation proteins and, in many cases, decreased MB (Hirai et al., 2001; 

Chaturvedi et al., 2009; Kim et al., 2010; Coskun et al., 2012). Furthermore, ischemic injury, such 

as that which occurs with SCI, is also followed by reduced oxidative phosphorylation proteins, as 

well as decreased PGC-1α and TFAM (Whitaker et al., 2016). Given this dysfunction and loss of 

mitochondrial proteins, pharmacological enhancement of MB, and subsequently mitochondrial 

gene expression, for the treatment of numerous disorders has gained interest. For reviews on MB 

for the treatment of various diseases, including pathologies of the CNS, the reader is directed to 

Whitaker et al. (2016) and Cameron et al. (2016).  

Currently no studies have investigated the effect of pharmacological activation of MB on 

functional recovery following SCI, though published data suggest potential therapeutic efficacy. 

Hu et al. (2015; 2016) recently reported that not only is PGC-1α expression decreased in the spinal 

cord after contusive SCI in rats, but also spinal lentiviral overexpression of PGC-1α immediately 

after injury attenuates neuronal cell death and promotes functional recovery, suggestive of the 

potential benefit of pharmacologically increasing PGC-1α and MB following injury. In support of 

this idea, treatment of mice subjected to renal ischemia/reperfusion with mitochondrial biogenic 

compounds 24 h after post-insult, when injury was maximal, increased PGC-1α expression and 

restored mitochondrial and renal function (Garrett et al., 2014; Jesinkey et al., 2014a). These data 

indicate the need for further exploration into the therapeutic efficacy of pharmacologically 

augmenting MB following SCI.  

Studies have also demonstrated a positive correlation between PGC-1α and angiogenesis (Arany 

et al., 2008; Chinsomboon et al., 2009; Saint-Geniez et al., 2013), a necessary occurrence for 

effective treatment of SCI pathology. Therefore, therapeutics targeting reestablishment of 
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mitochondrial homeostasis through increased MB represent a hitherto unexploited mechanism for 

alleviating several facets of secondary injury progression and improving functional and vascular 

recovery, as well as neuronal survival following SCI.  

Conclusions 

Targeting mitochondria for the treatment of SCI is not a novel idea. Mitochondrial dysfunction is 

a well-characterized consequence of secondary injury following SCI and many promising 

experimental therapeutics enhance mitochondrial function, though generally through prevention 

via pretreatment or decreased injury through early administration following insult. Unfortunately, 

many of these agents remain to be assessed in humans, and of those that have been, none have 

proven successful for the treatment of SCI. A plausible explanation for this is that in general, these 

compounds target singular facets of mitochondrial dysfunction, which may not be enough to 

successfully improve patient outcome. Alternative approaches enhancing several, if not all, aspects 

of mitochondrial function could prove more efficacious in accelerating recovery of SCI function. 

Combinatorial therapies, such as pharmacologically increasing antioxidant activity and decreasing 

mitochondrial fission simultaneously, could address multiple aspects of mitochondrial dysfunction 

following SCI. Such strategies, however, would undoubtedly require a great deal of refinement 

and consideration of multiple factors, including drug-drug interactions. Conversely, 

pharmacological augmentation of MB has the potential to more efficiently address this deficit. 

Therefore, the efficacy of mitochondrial biogenic compounds should be investigated for the 

therapeutic treatment of SCI.  
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Legends for Figures 

Figure 1. Spinal cord injury (SCI) pathology. The extent of damage following SCI is a 

combination of the initial trauma and secondary injury. The primary injury induces damage to the 

vasculature of the spinal cord, reducing local oxygen delivery, which decreases mitochondrial 

function and ATP synthesis, and increases ROS production. In addition to mitochondrial 

dysfunction, hallmarks of secondary injury following SCI include neuronal cell death, axon 

demyelination and severing, microglia activation and glial scar formation. ATP: adenosine 

triphosphate, ROS: reactive oxygen species.  

Figure 2. Mechanisms to target mitochondrial homeostasis for the treatment of SCI. Following 

SCI, cellular Ca2+ influx results in the opening of the mPTP and loss of the electrochemical gradient 

(∆ψ) necessary for ATP synthesis. mPTP opening also allows water and other molecules to move 

into the mitochondrial matrix, causing the matrix to swell and the outer membrane to rupture, 

releasing ROS, Ca2+and pro-apoptotic proteins such as cytochrome c, into the cytosol. 

Cyclosporine A (CsA) and its analog NIM811 act by binding to and inhibiting opening of the 

mPTP, preventing mitochondrial dysfunction. Biofuels, such as acetyl-L-carnitine (ALC) serve as 

alternate energy sources, allowing the citric acid cycle to continue despite the oxidative damage-

induced inactivation of PDH. Antioxidants neutralize the activity of ROS through various 

mechanisms, contributing to enhanced mitochondrial function. Evidence indicates that 

mitochondrial fission is initiated shortly after injury, contributing to SCI-induced neuronal 

apoptosis. Compounds such as mitochondrial division inhibitor-1 (Mdivi-1), which inhibit Drp1, 

a major protein in mammalian mitochondrial fission, thereby prevent fission and decreased 

mitochondrial function. ATP: adenosine triphosphate, Ca2+ : calcium ion, CsA: cyclosporin A, 
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Drp-1: dynamin-related protein 1, e-:electron, H+: hydrogen ion, H2O: water, mPTP: mitochondrial 

permeability transition pore, PDH: pyruvate dehydrogenase, ROS: reactive oxygen species.   

Figure 3. Regulation of mitochondrial biogenesis (MB). MB is a highly regulated cellular process 

that involves an array of diverse pathways. Various pharmacological agents can augment MB by 

targeting different aspects of these pathways, including agonism of G protein-coupled receptors, 

increased AMPK and cGMP, enhanced SIRT1-mediated PGC-1α deacetylation, and activation of 

co-activators that interact with PGC-1 α, all culminating in increased expression of mitochondrial 

genes and ultimately MB. 5-HTRs: 5-hydroxytryptamine receptors, Ac: acetyl group, ADP: 

adenosine diphosphate, AKT: protein kinase B, AMP: adenosine monophosphate, AMPK: 

adenosine monophosphate-activated kinase, ATP: adenosine triphosphate, ATPSyn β: ATP 

Synthase β,  β2ARs: β2 adrenergic receptors, cAMP: cyclic adenosine monophosphate, cGMP: 

cyclic guanosine monophosphate, CREB: cAMP response element binding, CoQ: coenzyme Q, 

COX1: cytochrome c oxidase subunit 1, Cyt c: cytochrome c, e-: electron, eNOS: endothelial nitric 

oxide synthase, GCs: glucocorticoids, GMP: guanosine monophosphate, mtDNA: mitochondrial 

DNA, ND1: NADH dehydrogenase subunit 1, NDUFS1: NADH:ubiquinone oxidoreductase 

subunit 1, NO: nitric oxide, NRFs: nuclear respiratory factors, O2
•-: superoxide, Pi: inorganic 

phosphate, PDE: phosphodiesterase, PGC-1α: peroxisome proliferator-activated receptor-γ 

coactivator 1-α, PI3K: phosphoinositide-3 kinase, PPARs: peroxisome proliferator-activated 

receptors, sGC: soluble guanylate cyclase, SIRT1: sirtuin 1, SOD2: superoxide dismutase 2, 

TFAM: mitochondrial transcription factor A, UCP2: uncoupling protein 2.   
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Tables 

Table 1. Partial list of FDA-approved mitochondrially biogenic agents. 

Drug Approved to Treat Mechanism MB References 
Atomoxetine ADHD SNRI (Jesinkey et al., 2014b) 

Cilostazol claudication PDE4 inhibitor (Chen et al., 2016) 
Fluoxetine MDD, OCD SSRI (da Silva et al., 2015) 
Formoterol  COPD, asthma β2AR agonist (Wills et al., 2012) 
Metformin Type II diabetes AMPK activator (Kristensen et al., 2013) 
Metoprolol hypertension β1-AR blocker (Sharma et al., 2008) 
Riociguat pulmonary hypertension sGC stimulator (Cameron et al., 2016) 

Rosiglitazone Type II diabetes PPARγ agonist (Strum et al., 2007) 
Sildenafil erectile dysfunction PDE5 inhibitor (Whitaker et al., 2013) 

ADHD: attention-deficit/hyperactive disorder; AMPK: adenosine monophosphate-activated 
kinase; 2AR: 2-adrenergic receptor;  COPD: chronic obstructive pulmonary disease; MDD: 
major depressive disorder; OCD: obsessive-compulsive disorder; PDE4: phosphodiesterase-4; 
PDE5: phosphodiesterase-5; PPAR: peroxisome proliferator-activated receptor ;  sGC: soluble 
guanylate cyclase; SNRI: serotonin and norepinephrine reuptake inhibitor; SSRI: selective 
serotonin reuptake inhibitor
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