Optimization of thermolytic response to A1 adenosine receptor agonists in rats

IB, BL, LM, LK, ZB, KD: Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks AK, USA;
IB, BL, LM, LB, KD: Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks AK, USA;
Current address
LB: SomaLogic Inc; 2945 Wilderness Pl, Boulder, CO 80301
LM: Oregon Health & Science University, Portland OR; Vollum Institute and Oregon Hearing Research Center
Running title: Optimization of thermolytic response to A₁AR agonists

Corresponding Author:

Kelly Drew, PhD
902 N. Koyukuk Dr.
Room 223F, Murie building
Institute of Arctic Biology
Fairbanks, Alaska 99775-7000,
USA
Email: kdrew@alaska.edu
Tel: +1 907 474-7190

Number of Text Pages: 23

Number of Tables: 1

Number of Figures: 6

Number of Words in Abstract: 238

Number of Words in Introduction: 487

Number of Words in Discussion: 1553 words

List of nonstandard abbreviations: A₁AR, A1 Adenosine receptor; AL, Ad Libitum; DR, Dietary restriction; T_b, Body temperature; TTM, Targeted temperature management; CHA, N⁶-cyclohexyladenosine; PEG, Polyethylene glycol; Veh, Drug vehicle; IP, Intraperitoneal; ICV, Intracerebroventricular; OHCA, Out of hospital cardiac arrest;

Section Assignment: Drug Discovery and Translational Medicine
Abstract:
Cardiac arrest is a leading cause of death in the United States and currently, therapeutic hypothermia, now called targeted temperature management (TTM), is the only recent treatment modality proven to increase survival rates and reduce morbidity for this condition. Shivering and subsequent metabolic stress, however, limits application and benefit of TTM. Stimulating CNS A₁ adenosine receptors inhibits shivering and non-shivering thermogenesis in rats and induces a hibernation-like response in hibernating species. Here we investigated the pharmacodynamics of two A₁AR agonists in development as anti-shivering agents. To optimize body temperature (T_b) control we evaluated the influence of every-other-day feeding, dose, drug and ambient temperature (T_a) on the T_b lowering effects of N⁶-cyclohexyladenosine (CHA) and the partial A₁AR agonist capadenoson in rats. The highest dose of CHA (1.0 mg/kg, IP) caused all ad libitum fed animals tested to reach our target T_b of 32°C, but responses varied and some rats over-cooled to a T_b as low as 21°C at 17.0°C T_a. Dietary restriction normalized the response to CHA. The partial agonist capadenoson (1.0 or 2.0 mg/kg, IP) produced a more consistent response but the highest dose decreased T_b by only 1.6°C. To prevent overcooling after CHA we studied continuous IV administration in combination with dynamic surface temperature control. Results show that after CHA administration control of surface temperature maintains desired target T_b better than dose or ambient temperature.
Introduction

Hypothermia is defined as a body temperature colder than 35°C and is a well-known cause of death in cold climates. Despite this, the American Heart Association (Callaway et al., 2015a) guidelines for CPR & Emergency Cardiovascular Care strongly recommend induced hypothermia via targeted temperature management (TTM) for treating out-of-hospital cardiac arrest (OHCA), and neonatal resuscitation. Clinical trials for TTM in stroke, the leading cause of adult disability (Mozaffarian et al., 2015) are ongoing (Lyden et al., 2016). While cooling is neuroprotective, clinical application is complicated by side-effects such as shivering.

Paralytics suppress shivering and are used commonly with TTM in comatose patients after cardiac arrest (Bernard et al., 2002). With regard to cooling conscious stroke patients, meperidine (IV) in combination with buspirone (oral) is currently the treatment of choice to suppress shivering. Synergy between these two drugs decreases shivering threshold to a core body temperature (T_b) of 33.5°C with minimal risk of respiratory depression, (Logan et al., 2011) (Mokhtarani et al., 2001; Sessler, 2009) however, a shivering threshold of 33.5°C is not sufficient for optimal control of shivering at colder T_b. The metabolic stress of shivering limits maximum therapeutic benefit of cooling. A recent study (Nielsen et al., 2013) showed no difference in outcome in patients cooled to 33°C vs 36°C and questioned the utility of cooling to 33°C. Importantly, this study reported shivering at 33°C and 36°C but no differences in adverse effects were seen at these temperatures. Other studies confirm shivering at 36°C (Callaway et al., 2015b).

By examining strategies in species which routinely lower T_b, such as hibernators, we sought a safer, alternative method of inducing TTM without harmful side effects such as shivering. In Arctic Ground Squirrels, stimulation of A1 adenosine receptors centrally (ICV) or peripherally...
(IP) using N°cyclohexyladenosine (CHA) decreases oxygen consumption (\(\dot{V}O_2\)) and leads to a subsequent decrease in \(T_b\) in a manner that resembles spontaneous onset of hibernation (Jinka et al., 2011). However, for unknown reasons, the drug is effective only in the hibernation season. Like the hibernation season in AGS, dietary restriction (DR) in rats sensitizes animals to the temperature lowering effects of CHA when compared to their ad libitum (AL) fed counterparts (Jinka et al., 2010). Although CHA effectively lowers \(T_b\) in DR rats, precise control of target temperature has not been achieved in AL rats; and DR is not a viable option for human emergency medicine. Currently, it is not known how dose and environmental temperature influences final body temperature in AL rats when given CHA, an A₁ selective full agonist (van der Wenden et al., 1995) or capadenoson, an A₁ selective partial agonist (Albrecht-Kupper et al., 2012). The objective of this study was to characterize how dose of CHA, the partial A₁AR agonist capadenoson, and environmental temperature influence \(T_b\) in freely fed rats for the purpose of precise control of \(T_b\) between 32-36°C. We measure the rate of oxygen consumption as an indicator of thermogenesis, define individual variability in response to capadenoson and to CHA at a dose higher than tested previously and show that ambient temperature alone is not sufficient to control the depth of cooling. We report that dynamic control of surface temperature in rats, designed to mimic conductive cooling used clinically is the most effective means to regulate \(T_b\) after CHA.

Methods

Animals

Experiments were done in accordance with the Guide for the Care and Use of Laboratory animals, 8th edition (National Research Council, National Academies Press, 2010) and protocols were approved by University of Alaska Fairbanks Institutional Animal Care and Use Committee. Male Sprague-Dawley rats (approximately 90 days old) were obtained from Simonson
Laboratories (Gilroy, CA) (experiment B) or from a University of Alaska Fairbanks colony derived from Simonson Laboratories (experiment A and C). All animals were housed in pairs at 21.5-23.0°C on a 12L:12D photoperiod. A summary of experiments and number of animals used can be seen (Table 1)

Experiment A: Dietary restriction & ad libitum, 0.5 mg/kg CHA, IP

Prior research had shown that DR increases sensitivity to the T_b lowering effects of 0.5 mg/kg CHA, but \(\dot{V}O_2 \) was not measured as an indication of thermogenesis. Here we asked if CHA suppresses \(\dot{V}O_2 \) prior to the decrease in T_b, consistent with suppression of thermogenesis, and test the influence of 36 days of every-other-day feeding on the thermolytic response to CHA.

Temperature data loggers (iButton; Maxim Integrated, Sunnyvale, CA) were coated with wax and surgically implanted into the abdominal cavity and programmed to record temperature every 10 minutes. After a 10-14 day post-operative recovery period rats were either fed every other day (DR) or AL up to 40 days. Feeding or food removal was done at 10-11AM every day. Body weights were measured every four days. Between 36-40 days after starting the DR protocol animals were moved to a clean cage and housed individually at an ambient temperature of 16.2 ± 0.5°C (mean ± SD) for 24h prior to treatment. Rats were moved to a metabolic chamber for 3 h prior to treatment with CHA (0.5 mg/kg, IP) or Vehicle (1.0ml/kg, IP) and remained in the metabolic chamber for 2h post-injection. \(\dot{V}O_2 \) was measured by open flow respirometry as detailed below.

Experiment B: Ad lib feeding, 1.0 mg/kg CHA, 1.0 and 2.0 mg/kg capadenoson

We next investigated the effects of 1.0 mg/kg CHA and 1.0 and 2.0 mg/kg of the partial A1AR agonist capadenoson in AL fed rats. Rats were instrumented with iButton data loggers as described for Experiment A. All animals, housed in pairs, were placed at an ambient
temperature of 17.0±0.5°C (mean ± SD) 24h before injections and remained at this ambient temperature until 24h after injection. Each of the 5 pairs of animals received a different treatment per week based on a balanced cross-over design (Supplemental Table 1). All treatments were given via IP injections and consisted of CHA (1.0 mg/kg), CHA Vehicle (1.0 mL/kg), capadenoson (1.0 and 2.0 mg/kg), and capadenoson vehicle (1.0 mL/kg). Heart rate was monitored with a digital stethoscope (Littmann© Model 4000 electronic stethoscope (3M, St. Paul, MN).

Experiment C: Ad lib feeding, IV CHA @ 0.25 mg/kg/h with surface temperature modulation

Finally, we applied dynamic control of surface temperature to optimize control over T_b with CHA administered by continuous IV infusion. A temperature controlled cage was built to modulate T_b in animals treated with CHA. Two male rats were implanted with telemetry transmitters (CTA-F40; Data Sciences International, New Brighton, MN) inside the abdominal cavity and ECG leads were secured to the chest wall. The femoral artery was cannulated using 12cm 3Fr C30PU-RECA1302 polyurethane catheters (Instech, Plymouth Meeting, PA). The femoral vein was also cannulated using C30PU-RJV1420 catheters; both cannula were passed through an inter-scapular incision where they were attached to a 2 channel vascular harness (VAD115AB; Instech). For post-operative recovery animals were housed individually with cotton pads substituted for wood shavings. Sutures were removed 7-10 days post op and catheter maintenance was done by flushing every 5 days using saline followed by filling with a locking solution of heparin/glycerol (500 IU/mL, 50:50) to prevent clotting. On the day of the experiment, animals were placed on the cage surface with the initial surface temperature set to 17°C. CHA was administered by continuous IV infusion (0.25 mg/kg/h). When animals approached a target T_b of 32°C, surface temperature was increased to 32°C to maintain target temperature.

Drugs
CHA (CAS 36396-99-3) is eliminated with a half-life of approximately 2 hours when given subcutaneously (Tuovinen and Tarhanen, 2004) and is a full A1AR agonist (van der Wenden et al., 1995). CHA (Sigma-Aldrich; St. Louis, MO) was dissolved in 25% (w/v) hydroxypropyl-β-cyclodextrin (CD) (TCI America, Portland, OR) then diluted to 2.5% in physiological saline. CHA vehicle consisted of 25% (w/v) hydroxypropyl-β-cyclodextrin diluted to 2.5% in physiological saline. Capadenoson (CAS 544417-40-5) is a partial A1AR agonist relative to CCPA (6-chloro-N6-cyclopentyladenosine) and shows a half-life of approximately 20 hours (Albrecht-Kupper et al., 2012). Capadenoson (>98% purity; Chemexpress, Monmouth Junction, NJ) was dissolved in 100% polyethylene glycol (PEG400; Med Lab Supply, Pompano Beach, FL) then diluted to 60% PEG concentration with sterile water. All substances were USP grade where available. Solutions for injection were sterilized by 0.2µm filtration (Acrodisc syringe filter; Pall corp., Port Washington, NY).

Oxygen consumption (V̇O₂)

V̇O₂ was measured using open-flow respirometry in conjunction with LabGraph respirometry acquisition and analysis software according to (Toien, 2013) and (Jinka et al., 2011). The accuracy and integrity of the system was calibrated by burning ethanol (100%) following established methodology (Toien, 2013); analyzers were manually calibrated with atmospheric reference air (~0.03% CO₂), zero air (~0% CO₂), and span gas (~0.51% CO₂) before each group of experiments and auto-calibrated subsequently every two hours. V̇O₂ data was synchronized with T_b by subtracting a lag time of 4 min calculated as the volume of the chamber and length of the outlet tube.

Statistical Analysis

Variation in T_b, body mass, and V̇O₂ was analyzed using repeated measures linear mixed-effect models (Domidenko, 2004) to account for within-rat correlations and to model time trajectories.
after treatment or feeding regimen. These statistical analyses were conducted using the IBM SPSS Statistics 19. Post-hoc comparisons were performed using t-tests with Bonferonni corrections (Excel 2007). The significance criterion was $\alpha < 0.05$ for all analyses. Data are shown as mean ± SEM unless otherwise indicated.

Results

Dietary restriction; 0.5 mg/kg IP CHA

We investigated the influence of every other day feeding on whole animal oxygen consumption and on the circadian rhythm in T_b to assess the influence of dietary restriction on thermoregulation. DR decreased T_b compared to animals fed AL (diet x time ($F(1,13.10) = 7.95$, $p = 0.014$) and main effect of diet ($F(1,12.37) = 8.97$, $p = 0.011$)). Post hoc tests show that the T_b in DR animals in comparison to AL were statistically different on days 4-36, except for days 5, 7 and 17 ($p<0.05$) as shown in Figure 1A. Next, we asked whether DR affected T_b across the circadian rhythm or only during the light or dark phase of the cycle. Analysis of T_b on the day prior to CHA administration (a feeding day; Figure 1B) shows that DR decreases the amplitude during the dark, active period [main effect of time ($F(1,343) = 5.15$, $p = 0.024$) and diet ($F(1,43.51) = 7.74$, $p = 0.008$) with a near-significant interaction between diet and time ($F(1,343) = 3.48$, $p = 0.063$)]. Assessment of the rhythm in T_b during the lights on (inactive) period was confounded by disturbance associated with feeding and cage cleaning. DR also decreased weight gain relative to AL animals (Figure 1C; diet x time ($F(1,13.50)=6.28$, $p=0.026$)).

We next assessed the effects of CHA on T_b or $\dot{V}O_2$ in DR and AL fed rats. Rats in both DR and AL groups maintained T_b at approximately 37.5°C when given vehicle (Figure 2A). Both groups responded to 0.5 mg/kg IP CHA but the DR group showed a larger, more consistent response than the AL group (n=4 AL, n=4 DR). Within 120 minutes of injection, T_b in the AL group reached 35.1±1.2°C and T_b in the DR group reached 32.5±0.1°C (diet x time x treatment...
(F(3,140.04) = 18.19, p < 0.001) with a significant main effect of time (F(1,140.04) = 59.86, p < 0.001). Post-hoc t-tests showed that the CHA group was significantly different than vehicle in DR animals (p<0.05) at 40-120 min after injection. The T_b in the AL group after CHA was not different from vehicle (p>0.05). We observed a bimodal distribution in the 4 AL fed rats after giving 0.5mg/kg CHA ; two rats maintained T_b similar to vehicle while the other two showed a decrease in T_b similar to DR rats given CHA [Supplemental Figure 1].

In order to see if CHA decreased T_b as a result of an inhibition of thermogenesis, we measured \(\dot{V}O_2 \) as an indirect measure of both shivering and non-shivering thermogenesis in both DR an AL rats. Compared to rats given vehicle, \(\dot{V}O_2 \) tended to decrease in both AL and DR rats within 10 min after CHA injection (Figure 3A). \(\dot{V}O_2 \) stabilized at minimal levels within 30 to 50 min after CHA administration and tended to be lowest in the DR group. Pair-wise comparisons revealed significant differences between CHA treated and Vehicle treated DR rats at 40-120 minutes (p<0.05) and also between AL CHA and vehicle treated rats between 70-120 minutes (p<0.05). IP injections with CHA or vehicle tended to produce an immediate increase in \(\dot{V}O_2 \) except where rats decreased T_b after CHA (Figure 3B and Supplemental Figure 2). In these animals \(\dot{V}O_2 \) decreased before T_b and is consistent with a decrease in thermogenesis.

Ad lib feeding - 1.0 mg/kg IP CHA, 1.0 & 2.0 mg/kg Capadenoson & Vehicles

We tested a higher dose of CHA (1.0 mg/kg) and two doses (1.0 and 2.0 mg/kg) of the partial agonist capadenoson to test the hypothesis that a maximally effective dose or alternative A_1AR agonist would decrease variation in cooling with AL animals. In addition, to assess if the circadian rhythm of T_b influenced drug response we graphed T_b for 3 days prior to drug administration. The circadian rhythm of body temperature was noted visually, but not analyzed further (Figure 4). Both doses of capadenoson cooled T_b to a minimum within 2h of injection. Minimum T_b (mean ± SEM) was 37.0 ± 0.2, and 36.6 ± 0.2°C for 1.0 mg/kg, and 2.0 mg/kg
respectively (Figure 4). Analysis of the minimum core T_b yielded a significant main effect of treatment (capadenoson 1.0 or 2.0 mg/kg, or vehicle) ($F(2,18) = 17.52, p < 0.001$). Pair-wise comparisons of minimum T_b revealed a significant difference between 1.0 mg/kg capadenoson and vehicle ($p = 0.008$) and 2.0 mg/kg capadenoson and vehicle ($p < 0.001$) and trended towards significance between 1.0 mg/kg and 2.0 mg/kg injections ($p = 0.081$). Capadenoson lowered heart rate with a minimum of 77.1% of vehicle baseline for the 1mg/kg dose and 71% for the 2mg/kg dose within 2h post injection [Supplemental Figure 3].

While a dose of 0.5 mg/kg of CHA in AL animals resulted in T_b decreases in two out of four animals, the higher dose of CHA (1.0 mg/kg) produced a notable decline in T_b in all animals (10/10). Nonetheless, the magnitude and duration of response still varied between animals (Figure 4). The lowest minimum T_b recorded was 20.6°C while the highest minimum T_b was 32.5°C. We asked whether this variation was intrinsic to each animal by giving CHA (1.0 mg/kg) to all animals a second time with one to five weeks separating the two injections. In seven out of ten animals the decline in T_b after the second injection mirrored closely the response to the first injection (Figure 5a); however in three animals it did not. Statistical analysis on the minimum core T_b within 20.5h after injection showed that CHA produced a significant decrease in T_b on both injections (treatment (first injection, second injection, or vehicle): $F(2,18) = 36.57, p < 0.001$) with significant differences between CHA first injection and vehicle ($p < 0.001$, t-test) and CHA second injection and vehicle ($p < 0.001$, t-test). Moreover, there was no significant difference between the first and second injection of CHA ($p = 1.000$, paired t-test). Regression analysis of minimum T_b on the first and second injections yielded an R^2 value of just 0.43, ($p=0.043$) [Supplemental Figure 4]. Body weight on the day of injection did not predict the magnitude of the cooling response ($p=0.72$, first injection; $p=0.25$, second injection). Moreover, neither time nor change in body weight between injections predicted response on the second injection ($p=0.82$) [Supplemental Table 2]. In addition to lowering T_b, CHA caused a 74.5%
reduction of heart rate in comparison to vehicle on average within 2h of injection [Supplemental Figure 3]. Bradycardia resolved between 24-48h after injection [Supplemental Figure 5].

Ad lib feeding - 0.25 mg/kg/h IV CHA @ 2µl/min

We next asked if surface cooling would normalize T_b and prevent over cooling. We designed and built a temperature controlled cage to model surface cooling used clinically and adjusted surface temperature to prevent over cooling. During continuous IV infusion of CHA (0.25 mg/kg/h) in the absence of a bolus loading dose, animal T_b approached 32°C within 3 hours on a surface temperature of 17°C. Increasing surface temperature to 32°C maintained target temperature and prevented overcooling (Figure 6). Heart rate declined rapidly at the start of CHA infusion and bradycardia persisted throughout the infusion (Figure 6).

Discussion

Thermolytics include antipyretic drugs such as acetaminophen and certain non-steroidal anti-inflammatory drugs (Sullivan, 2011). Here, we extend the definition of thermolytic to include drugs that suppress thermogenesis and decrease core T_b. Despite the ability of CHA to suppress thermogenesis precise control of T_b around a predetermined target temperature had yet to be demonstrated prior to this work. Our objectives were to define how dose of CHA and environmental temperature influence T_b in rats treated with CHA. IP Bolus injections using CHA at 0.5 and 1.0 mg/kg failed to produce consistent decreases in T_b, however, use of the higher dose decreased T_b in all animals down to or below our target temperature of 32°C at an ambient temperature of 17°C. From this, we hypothesized that overcooling could be prevented with cage surface temperature modulation and thus facilitate management of target T_b. Here, we report precise control of T_b using CHA coupled with dynamic control of cage surface temperature and show that modulation of dose alone is not sufficient to precisely manage target T_b.

Our results demonstrate robust thermolytic efficacy of CHA in rats and is a refinement of prior attempts with high doses of purine derivatives. AMP was the first purine reported to induce a torpor-like state in rats (Zhang et al., 2006) and both AMP and ATP were later tested in rats to lower T_b for therapeutic benefit (Zhang et al., 2009; Zhang et al., 2013). High doses were necessary in order to promote sufficient cooling, ultimately producing unwanted effects which discouraged further development. AMP induced a hypothermic response in mice (Swoap et al., 2007) and was later found to act as an A_1AR agonist; (Muzzi et al., 2013) AMP-induced cooling was blocked using an A_1AR antagonist in the CNS (Iliff and Swoap, 2012). Targeting CNS A_1AR using CHA to inhibit thermogenesis shows promise as an effective approach to relieve shivering during therapeutic hypothermia (Jinka et al., 2015).

Other non-purine based thermolytics currently in development include neurotensin receptor agonists (Choi et al., 2012; Wei et al., 2013), transient receptor potential (TRP) agonists and antagonists (Almeida et al., 2012; Feketa et al., 2014; Feketa and Marrelli, 2015), GABA_A agonists (Cerri et al., 2013), and other unique formulations (Katz et al., 2012a; Katz et al., 2012b; Katz et al., 2015). Using a fixed ambient temperature, several studies demonstrate control of target temperature through modulation of dose and dosing regimens alone to maintain T_b or prevent overcooling, (Muzzi et al., 2013; Wei et al., 2013; Feketa et al., 2014) however thermolytic efficacy of other drugs tested to date in rats has not been as great as CHA.

Few preclinical studies combine dynamic temperature control with thermolytics in search for optimal temperature management protocols (Almeida et al., 2012) (Katz et al., 2012b) (Cerri et al., 2013). In the clinic, induction methods vary, but may include packing ice into axillary and groin areas and infusing ice-cold IV saline. Once target temperature is reached T_b is usually maintained with water-blanket surface cooling (Luscombe and Andrzejowski, 2006) (Blanketrol or Arctic Sun, etc) or endovascular cooling. Surface temperature control devices are routinely used in clinical settings and are standard protocol at most hospitals (Callaway et al., 2015a).
Although we found here that surface temperature modulation prevented overcooling, our data does not explain the large individual variation in T_b response to CHA. This variation was unexpected since prior work suggested more consistent responses between animals (Jinka et al., 2010), (Jinka et al., 2015). We did not observe significant variation using the same animals with the partial agonist capadenoson, but consistency came at the cost of thermolytic efficacy. Current knowledge suggests A_1AR agonist-induced cooling is due to an inhibition of thermogenesis at a central site of action (Anderson et al., 1994; Tupone et al., 2013). However, peripheral mechanisms such as the inhibition of lipolysis could also impair nonshivering thermogenesis in brown adipose tissue (Asakura, 2004; Viswanadha and Londos, 2006). It is unclear whether these mechanisms are responsible for individual differences in T_b lowering effects of CHA, but our results reflect what might be expected in a diverse clinical population.

Similar variation in response to CHA is seen in ground squirrels where sensitivity to CHA depends on the hibernation season. In Arctic Ground Squirrels (AGS), stimulation of CNS A_1ARs with CHA induces a torpor-like state, but the drug is effective only in the hibernation season (Jinka et al., 2011). Seasonal sensitivity to CHA in AGS precedes a decrease in food intake and is predicted by a gradual decrease in T_b as animals approach the hibernation season (Olson et al., 2013) (Sheriff et al., 2012). In rats, prolonged every-other-day feeding increases sensitivity to the temperature lowering effects of CHA as well as surface expression of A_1AR in hypothalamus (Jinka et al., 2010). While increases in surface expression of A_1AR may contribute to increased sensitivity, prolonged restriction of diet is not a viable approach to normalize response to A_1AR agonists in emergency medicine.

Shivering is one of the most problematic issues in TTM which can impede induction of hypothermia by doubling metabolic rate (Badjatia et al., 2008), which leads to a stress-like response. Despite the importance of metabolism reduction, one of the primary desired effects in administering TTM, limited O_2 consumption data has been reported for other thermolytics in...
development. Recently however, it was revealed that O$_2$ consumption was reduced using TRPv3 agonists to induce hypothermia in mice, but these results could not be replicated in rats (Feketa and Marrelli, 2015). Here, evidence supporting inhibition of thermogenesis comes from a decrease in the rate of oxygen consumption ($\dot{V}O_2$) that precedes a decrease in T_b. A similar hysteresis of $\dot{V}O_2$ and T_b decline is seen during the onset of hibernation and torpor (Jinka et al., 2011).

Generalization of the current results in rats to other non-hibernating species such as swine and humans is likely because rats do not hibernate naturally. By contrast, many strains of laboratory mice spontaneously enter shallow torpor in response to fasting (Geiser, 2004). Results from studies using mice may not translate to species that do not hibernate, as evident in the study of TRPv3 agonists (Feketa and Marrelli, 2015). For this reason mice are less preferred in the investigation of thermolytic efficacy in comparison to rats or swine.

One limitation of this study, and others using small animals to study whole-body cooling is that surface area to weight ratio is far smaller than in larger animals including humans. An important next step in evaluating thermolytic efficacy is to utilize larger animals. In the present study the rate of cooling was faster following IP injection than with continuous IV administration because a loading dose was not given prior to IV infusion. Another limitation not addressed here is the potentially detrimental effects of adenosine receptor-induced bradycardia and hypotension, a side effect of CHA and hypothermia. (Nieri et al., 2001) We have found previously that co-administration of the peripherally acting adenosine receptor antagonist, 8-sulfophenyltheophylline (8-SPT), reverses bradycardia and improves survival and neurologic outcome after cardiac arrest in rats (Jinka et al., 2015) without interfering with the thermolytic effect of the drug. Work is in progress to characterize the effects of 8-SPT on hypotension during CHA assisted cooling.
A recent trial (Nielsen et al., 2013) showed no difference in outcome in patients cooled to 33°C vs. 36°C and questioned the utility of cooling to 33°C. By contrast, an exhaustive number (over 50) of preclinical studies demonstrate that deeper cooling is better (Lyden et al., 2006; Polderman, 2009). Moreover, Nielsen noted shivering at 33°C and 36°C and no differences were found in other adverse effects of 33°C vs. 36°C; other studies confirm shivering at 36°C (Callaway et al., 2015b). Importantly, the benefit to risk of colder Tb may increase as severity of brain injury increases (Yenari and Han, 2012). In response to the Nielsen paper the original International Liaison Committee on Resuscitation (ILCOR) recommendations indicating 32-34°C (Donnino et al., 2015) has been changed to recommend a target Tb between 32°C and 36°C (Donnino et al., 2015). The current study is the first report to our knowledge of the effects of capadenoson on body temperature. Capadenoson is a partial agonist that produces 75% of full agonist, CCPA (2-chloro-N6-cyclopentyladenosine), [35S]GTPγS binding in human cortical membranes. In Langendorff heart preparations capadenoson reduces heart rate to a maximal of 10% of the bradycardia produced by the full agonist CCPA. At higher doses CCPA produces complete AV block (Albrecht-Kupper et al., 2012). The limited bradycardia with capadenoson reported by others is consistent with results reported here. Given the absence of cardiovascular risk the mild hypothermic effect of capadenoson may be useful when a target Tb of 36°C is desired.

In summary, we show pronounced thermolytic efficacy of CHA with unexplained variation that is resolved under dietary restriction, but is not resolved with dose in ad libitum fed animals. Although high thermolytic efficacy produced over-cooling in some animals, dynamic control of surface temperature allowed for fine tuning and maintenance of a prescribed target Tb. This approach to reduce and maintain target Tb in rodents is a refinement over fixed ambient temperatures or evaporative cooling protocols where animals are sprayed with water or alcohol to facilitate heat loss (Klahr et al., 2016), and mimics surface cooling used in the clinic. This new
thermolytic class of drugs has potential to facilitate targeted temperature management by inhibiting thermogenesis, providing new avenues for treatment.

Acknowledgements

The authors thank Carl Murphy, Saurav Bhowmick and Jeanette Moore for technical assistance.

Authorship Contributions

Participated in research design: Drew, Bailey, Laughlin, Moore

Conducted experiments: Drew, Bailey, Laughlin, Bogren, Moore

Contributed new reagents or analytic tools: Bailey, Laughlin

Performed data analysis: Drew, Bailey, Laughlin, Barati

Wrote or contributed to writing of the manuscript: Drew, Bailey, Laughlin
References

Footnotes

Research reported in this publication was supported in part by a graduate student fellowship from The Alaska Native Science and Engineering Program to IRB, American Heart Association post-doctoral fellowship to ZB, and by the National Institute of Neurological Disorders and Stroke of the National Institutes of Health under Award Number R15NS070779, an Alaska Space Grant Program pilot project and Alaska INBRE P20GM103395. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Reprint requests to:
Kelly Drew, PhD
902 N. Koyukuk Dr.
Room 223F, Murie building
Institute of Arctic Biology
Fairbanks, Alaska 99775-7000,
USA
Email: kdrew@alaska.edu
Tel: +1 907 474-7190
Legends to Figures

Figure 1 (A) Every other day feeding (dietary restriction; DR) decreases body temperature (T_b) relative to ad libitum (AL) feeding. **(B)** The decrease in body temperature is greatest during the active period. Light:dark cycle is indicated by colored bar below. **(C)** The effects of dietary restriction did not maintain the same rate of weight gain in comparison to rats fed ad libitum. T_a is 20$^\circ$C, mean ± SEM, n=7 AL; n=8 DR, * p<0.05, ** p<0.01, *** p<0.001 DR vs. AL.

Figure 2: Treating rats with the A$_1$AR agonist 6N cyclohexyladenosine (CHA) at an ambient temperature of 16$^\circ$C decreases T_b. The decrease in T_b is greater in DR rats than in AL rats. T_a is 16$^\circ$, mean ± SEM n=4 (DR CHA), n=4 DR VEH, n=4 (AL CHA), n=3 (AL VEH). Error bars not shown are smaller than symbols. * p<0.05, ** p<0.01, *** p<0.001; DR CHA vs. DR vehicle

Figure 3 (A) Dietary restriction significantly lowered oxygen consumption ($\dot{V}O_2$) for both vehicle and CHA treated rats **(B)** Simultaneous measurements of T_b and $\dot{V}O_2$ in the DR group shows that $\dot{V}O_2$ declines prior to T_b. T_a is 16$^\circ$C, (mean ± SEM, n=4 (DR CHA), n=4 DR VEH, n=4 (AL CHA), n=3 (AL VEH)).

Figure 4: CHA (1.0 mg/kg) is more effective than either dose of capadenoson (1.0 and 2.0 mg/kg) at reducing body temperature. Variation in both magnitude and duration of response to CHA was not decreased by the higher dose (indicated by SEM; lighter shaded area). Arrowheads indicate time when rats were picked up for heart rate measurements.

Figure 5: Response to CHA (1.0 mg/kg) on the first injection (red lines) did not predict the response on the second injection (blue lines) in three out of ten rats. Colored region indicates ambient temperature (red, 23$^\circ$C; blue, 17$^\circ$C).
Figure 6: To prevent animals from over cooling with CHA on board, cage surface temperature was heated or cooled as needed. The cage floor was set to 17°C initially (blue region) and brought up to 32°C (red region) as body temperature reached the target temperature of 32°C to prevent overcooling. At this dose of CHA, heart rate drops to about 20% of baseline and is followed by a decrease in body temperature. This temporal relationship between body temperature and heart rate is similar to what is seen at onset of hibernation and is consistent with CHA-induced inhibition of thermogenesis. Ambient temperature within the cage did not vary significantly.
Table 1. Summary of experiments

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Experimental test</th>
<th>Drug</th>
<th>Doses</th>
<th>Route</th>
<th>Ambient temperature</th>
<th>Sample size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Diet and Oxygen Consumption</td>
<td>CHA</td>
<td>0.5 mg/kg</td>
<td>IP - bolus</td>
<td>16°C</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>↑ Dose of CHA</td>
<td>CHA</td>
<td>1.0 mg/kg</td>
<td>IP - bolus</td>
<td>17°C</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Compare Partial Agonist</td>
<td>Capadenoson</td>
<td>1.0 and 2.0 mg/kg</td>
<td>IP - bolus</td>
<td>17°C</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>Surface temperature modulation with IV CHA</td>
<td>CHA</td>
<td>0.25 mg/kg/h</td>
<td>IV - continuous</td>
<td>16°C - 32°C</td>
<td>2</td>
</tr>
</tbody>
</table>
Figure 1

A

Core Body Temperature (°C)

- DR
- AL

Days on feeding protocol

B

Core Body Temperature (°C)

- DR
- AL

Feed time

Time (h)

Lights on

C

Body Mass (g)

- DR
- AL

Days on feeding protocol
Figure 2

This article has not been copyedited and formatted. The final version may differ from this version.

Body temperature (°C)

Time after injection (minutes)

- DR, CHA
- DR, veh
- AL, CHA
- AL, veh

* * * * * * * *

* * * * * }

JPET Fast Forward. Published on June 26, 2017 as DOI: 10.1124/jpet.117.241315
Figure 3

(A)

VO₂ (mL O₂·g⁻¹·h⁻¹)

DR,CHA — DR,veh
AL,CHA — AL, veh

(B)

Body temperature (°C)

Tb — VO₂

Time after injection (minutes)
Figure 4

This article has not been copyedited and formatted. The final version may differ from this version.

JPET Fast Forward. Published on June 26, 2017 as DOI: 10.1124/jpet.117.241315

at ASPET Journals on August 15, 2017 jpet.aspetjournals.org Downloaded from
Figure 6

Rat 14-179, Continuous IV infusion CHA

- Temperature (°C)
 - T-core
 - T-ambient
- Heart Rate

Rat 14-176, Continuous IV infusion CHA

- Temperature (°C)
 - T-core
 - T-ambient
- Heart Rate

CHA infusion, 0.25mg/kg/h, 2μl/min
End CHA
Supplementary material for the manuscript titled “Optimization of thermolytic response to A₁ adenosine receptor agonists in rats”

IB, BL, LM, LK, ZB, KD: Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks AK, USA;
IB, BL, LM, LB, KD: Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks AK, USA;

Current address
LB: SomaLogic Inc; 2945 Wilderness Pl, Boulder, CO 80301
LM: Oregon Health & Science University, Portland OR; Vollum Institute and Oregon Hearing Research Center
Legends to Supplemental Figures

Supplemental figure 1: In AL animals, CHA (0.5 mg/kg) produced a bimodal response. Low responding animals resembled vehicle treated animals, and high responding animals resembled DR fed animals. T_a is 16°C, mean, $n=2$ AL CHA low responders; $n=2$ AL CHA high responders; $n=3$ AL, Vehicle.

Supplemental figure 2: Oxygen consumption declines sharply after 0.5 mg/kg CHA in DR animals ($n=6$). After AL feeding, animals that showed a large response to CHA ($n=2$) decreased $\dot{V}O_2$ at a rate similar to the decline in T_b. By contrast, animals that showed a low response to CHA displayed an abrupt increase and then decrease in $\dot{V}O_2$ with no change in T_b. T_a is 16°C, mean, $n=4$ (DR), $n=4$ (AL).

Supplemental figure 3: CHA and capadenoson-induced cooling is associated with bradycardia. The magnitude of bradycardia is greatest after CHA. T_a is 17°C, $n=10$.

Supplemental figure 4: Minimum T_b after the first injection of CHA predicted weakly minimum T_b after the second injection of CHA with an R^2 of 0.43 ($p=0.041$), $n=10$.

Supplemental figure 5: CHA-induced bradycardia tended to precede the decline in T_b. T_a is 16°C, mean, $n=10$.
Supplemental Material

Supplemental Table 1. Balanced block design for experiment 2

<table>
<thead>
<tr>
<th>Group</th>
<th>Week 1</th>
<th>Week 2</th>
<th>Week 3</th>
<th>Week 4</th>
<th>Week 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (n=2)</td>
<td>CHA Vehicle</td>
<td>Cap Vehicle</td>
<td>CHA 1mg/kg</td>
<td>Cap 1mg/kg</td>
<td>Cap 2mg/kg</td>
</tr>
<tr>
<td>2 (n=2)</td>
<td>Cap 2mg/kg</td>
<td>CHA Vehicle</td>
<td>Cap Vehicle</td>
<td>CHA 1mg/kg</td>
<td>Cap 1mg/kg</td>
</tr>
<tr>
<td>3 (n=2)</td>
<td>Cap 1mg/kg</td>
<td>Cap 2mg/kg</td>
<td>CHA Vehicle</td>
<td>Cap Vehicle</td>
<td>CHA 1mg/kg</td>
</tr>
<tr>
<td>4 (n=2)</td>
<td>CHA 1mg/kg</td>
<td>Cap 1mg/kg</td>
<td>Cap 2mg/kg</td>
<td>CHA Vehicle</td>
<td>Cap Vehicle</td>
</tr>
<tr>
<td>5 (n=2)</td>
<td>Cap Vehicle</td>
<td>CHA 1mg/kg</td>
<td>Cap 1mg/kg</td>
<td>Cap 2mg/kg</td>
<td>CHA Vehicle</td>
</tr>
</tbody>
</table>
Supplemental Table 2. Minimum T_b, body weight and time between CHA injections

<table>
<thead>
<tr>
<th>Rat ID</th>
<th>Body wt (g)</th>
<th>Min T_b ($^\circ$C)</th>
<th>Body wt (g)</th>
<th>Min T_b ($^\circ$C)</th>
<th>Time between injection (weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>282</td>
<td>402</td>
<td>32.059</td>
<td>408</td>
<td>32.059</td>
<td>3</td>
</tr>
<tr>
<td>283</td>
<td>402</td>
<td>20.635</td>
<td>430</td>
<td>22.136</td>
<td>3</td>
</tr>
<tr>
<td>284</td>
<td>405</td>
<td>26.113</td>
<td>400</td>
<td>28.612</td>
<td>2</td>
</tr>
<tr>
<td>285</td>
<td>404</td>
<td>29.153</td>
<td>412</td>
<td>29.153</td>
<td>2</td>
</tr>
<tr>
<td>286</td>
<td>407</td>
<td>24.563</td>
<td>382</td>
<td>21.562</td>
<td>1</td>
</tr>
<tr>
<td>287</td>
<td>476</td>
<td>32.103</td>
<td>470</td>
<td>31.104</td>
<td>1</td>
</tr>
<tr>
<td>288</td>
<td>380</td>
<td>36.107</td>
<td>432</td>
<td>28.613</td>
<td>5</td>
</tr>
<tr>
<td>289</td>
<td>397</td>
<td>24.649</td>
<td>430</td>
<td>27.648</td>
<td>5</td>
</tr>
<tr>
<td>290</td>
<td>376</td>
<td>25.107</td>
<td>415</td>
<td>26.107</td>
<td>4</td>
</tr>
<tr>
<td>291</td>
<td>400</td>
<td>22.097</td>
<td>453</td>
<td>28.597</td>
<td>4</td>
</tr>
</tbody>
</table>
Figure S1

Body temperature (°C)

AL, CHA: low responder
AL, CHA: high responder
AL, veh

Time after injection (minutes)
Figure S2

Body Temperature (°C) vs. Time after injection (minutes)

- Tb DR
- Tb high responders
- Tb low responders
- O₂ cons DR
- O₂ cons AL high responders
- O₂ cons AL low responders

\[\dot{V}O_2 (\text{mL} O_2 \cdot g^{-1} \cdot \text{h}^{-1}) \]
Figure S3

Heart rate (% of baseline) vs. Time after injection (hours)

- Capadenoson Vehicle
- Capadenoson 2mg/kg
- CHA Vehicle
- CHA 1mg/kg
- Capadenoson 1mg/kg

Legend:
- Capadenoson Vehicle
- Capadenoson 2mg/kg
- CHA Vehicle
- CHA 1mg/kg
- Capadenoson 1mg/kg
$R^2 = 0.4263$

$p = 0.041$
Figure S5

Body temperature and heart rate over time after injection.

- **Body temperature (°C)**: Shows a decrease initially followed by a steady rise over time.
- **Heart rate (beats/min)**: Shows an increase over time.

Graph legend:
- Red square: Body temperature
- Blue dots: Heart rate