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ABSTRACT 

Dopamine D3 receptor ligands are potential medications for psychostimulant addiction. Medication 

assessment may benefit from preclinical studies that evaluate chronic medication effects on choice 

between an abused drug and an alternative, non-drug reinforcer. This study compared acute and chronic 

effects of dopamine D2- and D3-preferring ligands on choice between intravenous cocaine and palatable 

food in rats. Under baseline conditions, cocaine maintained dose-dependent increases in cocaine choice 

and reciprocal decreases in food choice. Acutely, the D2 agonist NPA and antagonist L-741,626 produced 

leftward and rightward shifts in cocaine dose-effect curves, respectively, while the partial agonist 

terguride had no effect. All three drugs dose-dependently decreased food-maintained responding. 

Chronically, NPA and L-741,626 effects on cocaine self-administration showed marked tolerance, while 

suppression of food-reinforced behavior persisted. Acute effects of the D3 ligands were less systematic 

and most consistent with nonselective decreases in cocaine- and food-maintained responding. 

Chronically, the D3 agonist PF-592,379 increased cocaine choice, whereas an intermediate dose of the D3 

antagonist  PG01037 produced a therapeutically desirable decrease in cocaine choice early in treatment; 

however, tolerance developed to this effect, and lower and higher doses were ineffective. D3 ligands 

failed to significantly modify total cocaine intake, but caused persistent decreases in food intake. Thus, 

D2-and D3-preferring ligands showed distinct profiles, consistent with different pharmacological actions. 

Additionally, these results highlight the role of acute versus chronic treatment as a determinant of test 

drug effects. With the possible exception of the D3 antagonist PG01037, no ligand was promising in terms 

of cocaine addiction treatment.  
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INTRODUCTION 

Substance use disorders have become a problem of epidemic proportions in the US and worldwide. 

Cocaine remains one of the most widely used illegal substances, and despite decades of research, there is 

no approved medication to treat addiction to cocaine (O’Connor et al., 2014; Skolnick et al., 2015; Czoty 

et al., 2016). Ligands acting at receptors of the dopamine D2 family (D2/D3/D4) modulate cocaine self-

administration behavior in laboratory animals: agonists produce leftward shifts of the cocaine dose-effect 

function, while antagonists produce rightward shifts consistent with surmountable antagonism (Bergman 

et al., 1990; Caine et al., 1999; Barrett et al., 2004). As medication strategies, D2-preferring or non-

subtype selective D2-family antagonists were not promising, largely because of adverse effects limiting 

the use of effective doses, and because “anti-cocaine” effects observed with acute administration eroded 

when given chronically (see Discussion). The D3 subtype attracted attention as a potential target for 

treating psychostimulant addiction, due to its restricted localization and high concentration in parts of the 

mesolimbic reward pathway, its high affinity for dopamine, and the differential alteration of D2 vs. D3 

receptor availability as a consequence of psychostimulant use (for review see Heidbreder and Newman, 

2010; Keck et al., 2015; Sokoloff and Le Foll, 2016). Specifically, post-mortem and PET studies suggest 

that at least some psychostimulant users, especially heavy users, have elevated D3 receptor availability 

and decreased D2 receptor availability relative to controls (Staley and Mash, 1996; Segal et al., 1997; 

Boileau et al., 2012; but see Meador-Woodruff et al., 1995). In rats and monkeys, long-term cocaine 

exposure was shown to increase D3 receptor availability, decrease D2 receptor availability, and/or 

decrease D2/D3 ratios (Le Foll et al., 2002; Neisewander et al., 2004; Collins et al., 2011; Nader et al., 

2006). Unlike D2 receptor antagonists, D3 receptor antagonists administered acutely do not decrease 

cocaine self-administration under experimental conditions in which cocaine is available at relatively low 

cost (e.g., low response requirement, no competing reinforcers), but they can decrease cocaine taking 

under higher cost conditions, although selectivity over reduction in food-reinforced responding was often 

moderate (Heidbreder and Newman, 2010; Sokoloff and Le Foll, 2016).  

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on May 4, 2017 as DOI: 10.1124/jpet.117.241141

 at A
SPE

T
 Journals on M

arch 20, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


JPET #241141 

 5 

Critical review of laboratory animal evaluations of candidate medications strongly support the notion that 

predictive validity is dependent upon the inclusion of chronic dosing regimens, whereas acute-only results 

have often been misleading (Haney and Spealman, 2008; Czoty et al., 2016; see specific examples in the 

Discussion section). Further, effects on cocaine self-administration (i.e., direct reinforcing effects of 

cocaine) have predicted clinical efficacy better than modulation of subjective or conditioned effects alone 

(Comer et al., 2008; Haney and Spealman, 2008). One type of self-administration assay, choice 

procedures, is gaining popularity, with various proposed advantages over single-reinforcer assays (Banks 

et al., 2015a; Banks and Negus, 2016). Choice procedures allow behavior allocation to be assessed 

independently of rates of responding, and the simultaneous evaluation of effects on cocaine and food 

intake. Most importantly for the present investigation, we have found that choice procedures in rats are 

well suited to comparing acute vs. chronic effects of pharmacological manipulations: we previously used 

a choice procedure to compare acute and subchronic effects of d-amphetamine, and of the D2/D3 partial 

agonist aripiprazole, obtaining results in line with human studies (Thomsen et al., 2008; 2013; Greenwald 

et al., 2010; Haney et al., 2011). Other evidence also supports a concordance between effects of 

medication maintenance on cocaine choice in preclinical studies, cocaine choice in human laboratory 

studies, and cocaine use in clinical trials (Foltin et al., 2015; Johnson et al., 2016; Czoty et al., 2016; Lile 

et al., 2016).  

The primary objective of the present study was to evaluate dopamine D3 receptor-selective (or D3-

preferring) ligands, both agonist and antagonist, as a continuous (sub)chronic treatment, in a direct 

comparison with D2 receptor ligands. The effects of chronic administration were also compared to acute 

dosing effects. Table 1 shows the ligands tested and their respective affinities for D2 and D3 receptors, 

from previously published sources. All compounds penetrate the blood-brain barrier, except for RGH-237 

that showed poor brain penetration, but still showed behavioral effects consistent with partial D3 receptor 

agonist activity (Heidbreder and Newman, 2010; Mason et al., 2010; Morgan and Van Der Graaf, 2012; 

and see Table 1 references). The hypothesis being tested was that D2 and D3 receptor ligands would differ 
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in chronic as well as acute effects, and, specifically, that chronic administration of a D3 receptor ligand 

could decrease cocaine self-administration in the cocaine vs. food choice procedure in rats. 
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METHODS AND MATERIALS 

Animals. Experimentally naïve male Sprague-Dawley rats were acquired at 8 weeks of age from Charles 

River laboratories (Wilmington, MA) and acclimated to the laboratory for at least a week before training 

began. Rats were housed individually with free access to water in a temperature- and humidity-controlled 

facility maintained on a 12-h light/dark cycle (lights on at 07:00). Rats were fed ≈17g standard rat chow 

daily (Rat Diet 5001; PMI Feeds, Inc., St. Louis, MO), adjusted to maintain a healthy 400-500g 

bodyweight. For enrichment, “treats” were provided once or twice weekly, typically Bacon-flavored 

biscuits (5g, Bio-Serve, Frenchtown, NJ). Behavioral testing was conducted during the light phase. 

Husbandry and testing complied with the guidelines of the National Institutes of Health Committee on 

Laboratory Animal Resources, and all protocols were approved by the McLean Hospital Institutional 

Animal Care and Use Committee.  

 

Apparatus. Operant conditioning chambers (21 cm x 29.5 cm x 24.5 cm) and associated hardware from 

MED Associates (Georgia, VT) were placed within sound-attenuating cubicles equipped with a house 

light and an exhaust fan. Each chamber contained three response levers 3 cm above the grid floor, two 

“reinforcer” levers (referred to as the “left” and “right” levers) on one wall and a third “observer” lever 

centered on the opposite wall. A steel cup between the reinforcer levers, 2 cm above the floor, served as a 

receptacle for the delivery and consumption of liquid food reinforcers. A three-light array (red, yellow, 

and green) was located above the right lever and illuminated to signify the availability food. An identical 

array with one additional yellow light was located above the left lever and was used to signal the cocaine 

dose available. A white light was located above the observer lever. Each cubicle also contained two 

syringe pumps (3.3 rpm, model PHM-100), for the delivery of liquid food and intravenous cocaine, 

respectively, through Tygon tubing. Cocaine was delivered using a single-channel fluid swivel (MS-1, 

Lomir Biomedical, Malone, NY) mounted on a balance arm, which allowed rats free movement.  
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Operant training and surgery. Rats were trained and tested in a cocaine vs. choice food procedure as 

previously described (Thomsen et al., 2008; 2013; 2014). Between completion of the acute dosing 

experiments and beginning the chronic dosing experiments, the procedure was slightly modified, in two 

ways to allow for more efficient training: 1) acute experiments used static levers, while retractable levers 

were used in the chronic experiments; 2) the reinforcer magnitudes (food concentration and cocaine 

doses) were adjusted slightly (see below). All other parameters and training methods were identical, and 

as briefly outlined below: 

Food training. First, lever pressing was acquired in daily 2-h sessions, with liquid food (75 µl of 

vanilla flavor Ensure® nutrition drink, Abbott Laboratories, Abbott, IL) reinforcing responding under an 

FR 1 schedule of reinforcement. Food was diluted to 56% in water for acute dosing experiments and to 

32% for chronic experiments. Illumination of the triple cue light above the right lever signaled food 

availability, cues were turned off at reinforcer delivery. Responses on the other levers (cues off) were 

recorded but had no scheduled consequences. When ≥50 reinforcers were earned within one 2-h session, 

the response requirement was gradually increased to FR 5. When rats again earned ≥50 reinforcers, a 

chain schedule was introduced in which one response on the observer lever initiated an FR 5 schedule on 

the right lever (see Thomsen et al., 2013 for details). When rats again earned ≥50 food reinforcers per 

session for five consecutive sessions (training criteria), they were implanted with catheters. 

Surgery and catheter maintenance. Rats were anesthetized with an isoflurane/oxygen vapor 

mixture and implanted with chronic indwelling jugular vein catheters (see Thomsen and Caine, 2005). A 

catheter was inserted 3.7 cm into the external jugular vein and anchored to the vein. The catheter ran 

subcutaneously to the midscapular region where the base was located. Single doses of analgesic 

(ketoprofen 5 mg/kg) and antibiotic (amikacin 10 mg/kg) were administered subcutaneously immediately 

before surgery. Rats were allowed ≈7 days of recovery before being given access to intravenous cocaine. 

During this period, a prophylactic dose of cefazolin (30-40 mg/kg) was delivered daily through the 

catheter. Thereafter, catheters were flushed daily with sterile saline containing heparin (3 USP U/0.1 ml). 

Catheter patency was verified daily by withdrawing and immediately re-infusing a few microliters of 
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blood through the catheter (enough for visual detection of blood); if blood could not be withdrawn, 

catheter patency was tested by administering 0.05-0.1 ml of a ketamine-midazolam mixture (15 + 0.75 

mg/ml) through the catheter and observing prominent signs of sedation within 3 seconds of infusion. Only 

data collected with demonstrated patent catheters were included.  

Cocaine Self-Administration Training. Cocaine self-administration started with daily 2-h sessions, 

under an FR 1 FR 1 timeout 20s chain schedule, left lever active. Responses on the right lever were 

recorded and reset the ratio requirement on the left lever. Sessions started with a noncontingent “priming” 

cocaine infusion, then, flashing of the full cue light array over the left lever indicated availability of 1.0 

mg/kg/infusion cocaine. Cues were turned off at reinforcer delivery. The response requirement was 

gradually increased to FR 1 FR 5, and training continued until cocaine self-administration behavior 

stabilized, defined as three consecutive sessions with ≥10 mg/kg cocaine self-administered per 2-h session 

and ≥90% of left+right lever responses emitted on the drug-reinforced lever. Sessions were then modified 

to include five 20-min components of cocaine availability (1.0 mg/kg/infusion), with 2-min inter-

component timeout periods, using the same schedule of reinforcement. This schedule remained in effect 

until behavior stabilized, i.e., ≥10 mg/kg cocaine self-administered per session and ≥1 reinforcer earned 

per component. Rats were then given access to 0.32 mg/kg/infusion cocaine for at least one day before 

choice training began, to observe increased rates of responding. 

Cocaine vs. Food Choice Training. Daily sessions consisted of five 20-min components separated 

by 2-min timeout periods. Responding was reinforced under FR 1 concurrent FR 5 FR 5 chain schedule, 

responding on the right lever being reinforced with liquid food, responding on the left being reinforced 

with cocaine infusions of increasing dose for each component: 0, 0.032, 0.1, 0.32, 1.0 mg/kg/infusion 

(acute experiment), or 0, 0.056, 0.18, 0.56, 1.0 mg/kg/infusion (chronic experiment). Responding on one 

reinforcer lever reset the ratio requirement on the other. Cocaine doses were achieved by varying the 

infusion time, adjusted to each rat’s bodyweight. The light array over the left lever flashed when cocaine 

was available, indicating the unit dose available: no light for 0, green for 0.032/0.056, green+yellow for 

0.10/0.18, green+yellow+red for 0.32/0.56, and green+yellow+red+yellow for 1.0 mg/kg/infusion; cues 
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were turned off at reinforcer delivery. Per component, 15 total reinforcers were available (completion of 

the response requirement on the left lever during availability of the zero cocaine dose counted as one 

reinforcer). If all 15 reinforcers were earned in less than 20 min, all stimulus lights were extinguished, and 

responding had no scheduled consequences for the remainder of the 20-min component. Choice training 

continued until behavior stabilized satisfying: three consecutive sessions with ≥5 reinforcers/component 

earned in components 1-4 and ≥1 reinforcer earned in component 5, and with the dose of cocaine 

producing >80% cocaine choice on any given day remaining within one-half log unit of the 3-day mean. 

 

Testing. Once training was completed, we tested the effects of D2- and D3-preferring agonists, partial 

agonists, and antagonists, under acute and chronic dosing conditions. Rats were allocated to test groups 

randomly. As much as possible, doses of each drug were tested within-subjects, but due to attrition, 

additional rats had to be added to some dose groups. Rat had at least three sessions of baseline between 

acute doses or at least one week between chronic doses. Baseline choice behavior had to satisfy the 

original criteria (see above) in order for a rat to test again. If the cocaine dose maintaining >80% cocaine 

choice was within one-half log unit of the previously established baseline, a rat could test again; if not, a 

new stable 3-day baseline was established with the criteria described above. 

In the acute treatment experiment, we tested the D2 agonist R(-)-norpropylapomorphine (NPA; 

0.01, 0.032, 0.1, 0.32, 0.56 and 1.0 mg/kg), the D2/D3 partial agonist terguride (0.032, 0.1, 0.32, 0.56, 1.0 

mg/kg), the D2 antagonist L-741,626 (0.32, 1.0, 3.2, 5.6 mg/kg), the D3 agonist PD-128,907 (0.1, 0.32, 

1.0, 3.2, 5.6 mg/kg), the D3 partial agonist RGH-237 (10, 32, 56 mg/kg), and the D3 antagonist PG01037 

(1.0, 3.2, 10, 18, 32 mg/kg), as well as corresponding vehicles, with doses presented in counterbalanced 

sequence. All drugs were administered intraperitoneally, 10 min before the session. 

In the chronic treatment experiment, the D3-preferring agonist PD-128,907 was replaced by the 

then newly available, more selective D3 agonist PF-592,379 (Attkins et al., 2010). We have previously 

reported the effects of acute and chronic administration of the partial D2/D3 agonist aripiprazole using the 

same assay (Thomsen et al. 2008), therefore partial agonists were not evaluated as chronic treatment in 
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the present investigation. Chronic treatment was achieved with the use of osmotic minipumps (Alzet 

model 2ML1; Durect, Cupertino, CA) that were implanted subcutaneously under brief isoflurane/oxygen 

vapor anesthesia, and delivered drug continuously at a rate of 10 µl/h. Before implantation, filled 

minipumps were primed overnight in sterile 0.9% saline at 37-38ºC as directed by the manufacturer. On 

day 1, rats were tested 2 h after pump implantation, then, pumps were left in place for 7 days, during 

which time rats were tested daily as they had been during training. Chronic treatments tested were as 

follows: NPA (0.00032, 0.001, 0.0032, 0.01 mg/kg/h), L-741,626 (0.056, 0.18, 0.32, 0.56 mg/kg/h), PF-

592,379 (0.56, 1.8, 3.2 mg/kg/h), and PG01037 (0.56, 1.8, 3.2, 5.6 mg/kg/h). Drug concentrations were 

adjusted for each rat according to bodyweight. Treatment was stopped by removing the minipump. We 

previously verified that 7 days of continuous water administration and presence of the minipumps did not 

produce any significant changes in choice behavior (Thomsen et al., 2013), and the present data set 

includes low doses that showed no effect (e.g., NPA, PF-592,379). Therefore, to reduce the number of 

animal lives needed, we did not include further chronic vehicle groups. Data are reported for the first and 

last day for brevity, and intervening days typically showed gradual shifts from the acute effects to the 

chronic effects. 

 

Drugs. Cocaine hydrochloride was provided by NIDA/NIH (Bethesda, MD). PF-592,379 was supplied by 

P. Butler and was synthesized as previously described at Pfizer, Sandwich, UK (Attkins et al., 2010). 

PG01037 dihydrochloride was supplied by A.H. Newman and was synthesized as previously described at 

the Medicinal Chemistry Section, National Institute on Drug Abuse, National Institutes of Health 

(NIDA/NIH), Baltimore, Maryland, USA (Grundt et al., 2005). RGH-237 was supplied by I. Gyertyán 

and synthesized as previously described at Gedeon Richter, Budapest, Hungary (Gyertyán et al., 2007). 

All other drugs were purchased from Sigma-Aldrich (St Louis, MO). Cocaine and terguride were 

dissolved in 0.9% saline. PF-592,379, PD-128,907 hydrochloride, and PG01037 dihydrochloride were 

dissolved in sterile water. NPA hydrochloride was dissolved in 0.1% ascorbic acid in water, L-741,626 

was dissolved in 22% β-cyclodextrin in water, and RGH-237 was dissolved in ethanol and diluted to a 
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final vehicle of 5% ethanol, 47.5% polyethylene glycol and 47.5% water. Doses reflect the weights of the 

respective salts. 

 

Data Analysis. The primary dependent variables recorded for each component were: (1) number of 

cocaine injections earned, (2) number of food reinforcers earned, and (3) percent cocaine choice, 

calculated as (number of ratios completed on the cocaine-associated lever ÷ total number of ratios 

completed) x 100. Total cocaine intake per session (mg/kg) and total food reinforcers earned per session, 

were also calculated for each rat. Total response rate (total number of responses ÷ total time responses 

had scheduled consequences) and response rate on the reinforcer levers alone (calculated using the time 

these levers were extended) were also recorded, but are not reported because they added no significant 

information on treatment effects, relative to numbers of reinforcers earned. Significance level was set at 

P<0.05. No data points collected with patent catheters were excluded (no “outliers”). 

For the acute treatments, two-way ANOVA was used to analyze the effects of test drugs and 

cocaine dose on numbers of cocaine and food reinforcers earned per component, factors being cocaine 

dose (repeated measures, within-subjects) and treatment dose (between-subjects). For the chronic 

experiment, repeated measures two-way ANOVA was used to analyze the effects of test drugs and 

cocaine dose on numbers of cocaine and food reinforcers earned per component, factors being cocaine 

dose and treatment day (i.e., baseline, first day, after one week). Because all doses of a test compound 

could not always be tested in each rat (within-subject), each chronic drug dose was analyzed separately, 

so that test vs. baseline could be analyzed within-subjects. Significant effects on a test day were 

scrutinized post-hoc by Bonferroni posttest vs. vehicle/baseline. In both acute and chronic experiments, 

the effect of cocaine dose was always highly significant and is not reported for each analysis, for brevity.  

The percent cocaine choice data was used to calculate A50 values (potency), defined as the dose of 

cocaine that produced 50% cocaine choice in each rat, and determined by interpolation from two adjacent 

points spanning 50% cocaine choice. In cases where cocaine choice was 50-60% at the lowest dose, 

extrapolation was used (<4% of all values). In cases where cocaine choice was >60% at the lowest dose, a 
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value of 0.018 or 0.032 mg/kg/injection was assigned (i.e., quarter-log below the lowest cocaine dose 

tested, in the acute and chronic experiments, respectively) as a conservative estimate; because many 

treatments, especially chronic, produced leftward shifts in the cocaine choice curve, these estimates 

amounted to 16% of all A50 values. Similarly in cases where cocaine choice was <40% at the highest 

dose, a value of 1.8 mg/kg/injection was assigned (2 values, <0.5% of total). Group means and 95% 

confidence intervals were calculated from the log(10) of individual A50 values, but are reported 

transformed back to linear values for ease of reading. In some cases, responding was completely 

suppressed in one or more rats for some time/dose points, resulting in missing values for the choice 

measure, precluding the use of repeated measures ANOVA for this measure. Instead, the log-transformed 

A50 values were compared by one-way ANOVA for the acute experiment (factor: dose, between-

subjects), and two-way ANOVA for the chronic experiment (factors: treatment dose, between-subjects; 

test day, within-subjects, using pooled baseline data for all rats tested with any dose of that drug). 

Significant effects or interactions were examined by one-way ANOVA for each time point. Significant 

effects were followed by Dunnett’s multiple comparisons test vs. vehicle or baseline. Total cocaine intake 

and total food reinforcers earned per session were analyzed in the same way as A50 values.  
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RESULTS 

Acute administration  

In a first experiment, we tested the acute effects of pretreatment with D2 and D3 agonists, partial 

agonists, and antagonists on cocaine vs. food choice. Figure 1 shows the effects of the D2 agonist NPA, 

the D2/D3 partial agonist terguride, and the D2 antagonist L-741,626 on numbers of cocaine injections and 

food reinforcers earned, and percent cocaine choice. To avoid crowding, three doses were selected for 

graphical presentation for each ligand, omitting some low and/or intermediate doses. Likewise, Figure 2 

shows the effects the D3 agonist PD-128,907, the D3 partial agonist RGH-237, and the D3 antagonist 

PG01037. The corresponding potencies of cocaine to produce 50% cocaine choice (A50 values) are 

reported in Table 2 (all doses tested). Total cocaine intake per session and total food reinforcers were also 

calculated, and are presented in Figure 3 for all doses tested.  

The D2 agonist NPA produced dose-dependent leftward shifts in the cocaine reinforcers dose-effect 

curve, with a significant cocaine dose by NPA dose interaction (intx) [F(24,140)=2.29, P<0.01]; effects 

of 0.32, 056 and 1.0 mg/kg reached significance post hoc (P<0.01; Figure 1). NPA also produced marked 

decreases in numbers of food reinforcers earned (NPA dose [F(6,140)=9.47, P<0.0001], intx 

[F(24,140)=3.71, P<0.0001]), with doses from 0.032 mg/kg and up producing significant decreases 

(P<0.01). This reallocation of behavior from food towards cocaine resulted in dose-dependent leftward 

shifts in the cocaine choice curve, with corresponding decreases in A50 values [F(6,32)=3.92, P<0.01], 

see Table 2 for statistical analysis. NPA’s effects on reinforcers earned resulted in dose-dependent 

decreases in both total cocaine intake [F(6,35)=2.94, P<0.05] and total food reinforcers earned 

[F(6,35)=9.49, P<0.0001], although post-hoc comparisons on cocaine intake did not reach significance 

(Figure 3). 

The D2/D3 partial agonist terguride did not affect cocaine reinforcers earned significantly, up to 

doses that significantly suppressed food reinforcers (terguride dose [F(5,128)=9.30, P<0.0001], intx 

[F(20,128)=5.74, P<0.0001]), significant at 0.1, 0.56 and 1.0 mg/kg (P<0.05). Terguride did not affect 

cocaine choice curves or A50 values consistently or significantly (Table 2). Terguride also failed to affect 
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total cocaine intake significantly, but did produce significant decreases in total food reinforcers earned 

[F(5,31)=10.7, P<0.0001] (see Figure 3). 

The D2 antagonist L-741,626 produced effects opposite to NPA on the cocaine reinforcers curve, 

i.e., dose-dependent rightward shifts (L-741,626 dose [F(4,136)=4.74, P<0.01], intx [F(16,136)=5.98, 

P<0.0001]. Effects of 3.2 and 5.6 mg/kg reached significance (P<0.001; Figure 1). L-741,626 also 

decreased the numbers of food reinforcers earned (L-741-626 dose [F(4,136)=12.0, P<0.0001], intx 

[F(16,136)=5.64, P<0.0001]), at the same dose that affected cocaine reinforcers, 3.2 and 5.6 mg/kg 

(P<0.05 and less). The combined effect on the cocaine choice curve was dose-dependent rightward shifts 

with corresponding increases in A50 values [F(3,27)=2.91, P=0.05], significant at the highest dose 

(P<0.05; Table 2). Although intermediate doses of L-741,626 increased the number of high-dose cocaine 

injections earned, total cocaine intake was only increased marginally; however, the highest dose of L-

741,626 decreased cocaine intake [F(4,40)=5.12, P<0.01]. The same profile was apparent for total food 

reinforcers earned [F(4,40)=18.0, P<0.0001], see Figure 3. 

The D3 agonist PD-128,907 produced downward shifts in the cocaine reinforcer curve at 

intermediate doses, and a downward/leftward shift at the highest dose (treatment by cocaine intx 

[F(20,160)=2.32, P<0.001]). Effects were significant at 0.32, 3.2, and 5.6 mg/kg (P<0.05, Figure 2). PD-

128,907 also produced marked downward and downward/rightward shifts in the food reinforcers curve 

(PD-128,907 dose [F(5,160)=6.69, p=0.0001], intx [F(20,160)=4.79, P<0.0001], with significant effects 

at doses from 0.1 mg/kg and up (P<0.05). The effect on percent cocaine choice was mixed, with small, 

non-significant rightward shifts at intermediate doses, and significant leftward shifts at the higher doses. 

Thus, PD-128,907 modulated A50 values [F(5,35)=3.62, P<0.01], with a significant decrease at 5.6 mg/kg 

(See Table 2). Effects of PD-128,907 on total cocaine intake were modest and not statistically significant 

(Figure 3), while effects on food were more pronounced [F(5,41)=7.02, P<0001]. 

The D3 partial agonist RGH-237 and the D3 antagonist PG01037 each produced moderate, non-

significant leftward shifts in the cocaine reinforcer curve at lower doses, and moderate downward shifts at 

high doses (Figure 2). However, the effect reached significance only for RGH-237 (intx [F(12,112)=1.90, 
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P<0.05]), the highest dose of 56 mg/kg producing a significant downward shift (P<0.05). Both ligands 

dose-dependently decreased the number of food reinforcers earned (RGH-237 by cocaine intx 

[F(12,112)=1.92, P<0.05]; PG01037 dose [F(5,136)=17.0, p=0.0001], intx [F(20,136)=5.43, P<0.0001]). 

RGH-237 produced significant decreases at 10 and 56 mg/kg (P<0.05), PG01037, at 18 and 32 mg/kg 

(P<0.0001). Neither ligand affected cocaine choice curves or A50 values systematically or significantly 

(Table 2). Likewise, neither drug affected total cocaine intake significantly, but PG01037 did decrease 

total food reinforcers earned dose-dependently [F(5,35)=17.9, P<0.0001], as shown in Figure 3. 

 

Chronic administration 

Figure 4 shows the acute and chronic effects of continuous administration of the D2 agonist NPA 

and the D2 antagonist L-741,626 on numbers of cocaine injections and food reinforcers earned, and 

percent cocaine choice, as a function of treatment dose (one dose per panel “column”). Figure 5 shows 

the acute and chronic effects of continuous administration of the D3 agonist PF-592,379 and the D3 

antagonist PG01037 in the same fashion. Data are reported for the first and last day for brevity, and 

intervening days typically showed gradual shifts from the acute effects to the chronic effects. 

The corresponding potencies of cocaine to produce 50% cocaine choice (A50 values) are reported in 

Table 3. Total-session cocaine intake and total food reinforcers were also calculated, and are presented in 

Figure 6.  

The D2 agonist NPA produced leftward and downward shifts in the cocaine self-administration 

curve, with marked tolerance after a week of treatment. Cocaine reinforcers were affected significantly at 

the two highest doses, as a function of treatment day: at 0.0032 mg/kg/h (cocaine dose by treatment intx 

[F(8,50)=4.05, P<0.001]) and at 0.01 mg/kg/h (treatment [F(2,50)=13.4, P<0.0001], intx [F(8,50)=3.87, 

P<0.01]). In the same dose range, NPA significantly decreased the number of food reinforcers earned, but 

this effect was not generally diminished after chronic administration: at 0.0032 mg/kg/h (treatment 

[F(2,50)=8.10, P<0.001], intx [F(8,50)=3.87, P<0.01]), and at 0.01 mg/kg/h ([main F(2,50)=4.32, 

P<0.05, intx F(8,50)=2.92, P<0.001]). Percent cocaine choice was shifted to the left, with corresponding 
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decreases in A50 values (treatment day [F(1,30)=5.20, P<0.05]), although the effect did not reach 

statistical significance on specific days (Table 3). The shift in the cocaine dose-effect curve towards the 

lower cocaine doses resulted in a significant decrease in total cocaine intake on day 1, but this effect was 

abolished after a week of treatment (see Figure 6; effect of treatment dose, treatment time, and intx all 

p≤0.001). Total food intake was decreased as a function of NPA dose [F4,60)=3.04, P<0.05], with no 

effect of treatment time or dose by time interaction (i.e., no significant tolerance).  

Conversely, the D2 antagonist L-741,626 produced rightward shifts in the cocaine curve, which 

showed a high degree of tolerance up until the highest dose, 0.56 mg/kg/h, which produced a downward 

shift only as chronic treatment, suggesting drug accumulation or perhaps sensitization (see Figure 4 for 

statistical details). L-741,626 also decreased the number of food reinforcers earned, and this effect 

showed tolerance only at the two lowest doses. In fact, exacerbation of the effect upon chronic 

administration was apparent at the higher doses. L-741,626 also affected cocaine choice, as measured by 

A50 values, differentially as acute and chronic treatment (2-way ANOVA, effect of L-741,626 dose 

[F(3,28)=4.42, P<0.05], treatment day [F(1,28)=12.1, P<0.01], and dose by time intx [F(3,28)=3.46, 

P<0.05]). Specifically, choice curves were shifted to the right, and A50 values increased, on day 1 

[F(4,31)=4.09, P<0.01], with the converse effect after one week of treatment [F(3,28)=3.12, P<0.05] (see 

Table 3). As shown in Figure 6, the rightward shift in the cocaine curve (i.e., shift towards higher 

cocaine doses) resulted in an increase in total cocaine intake acutely, and this effect dissipated after 

chronic administration (L-741,626 dose by time intx [F(4,31)=3.55, P<0.05]). Total food intake was 

decreased both acutely and chronically (see Figure 6; effect of treatment dose [F(4,31)=8.41, p=0.0001], 

dose by time intx [F(4,31)=3.68, P<0.05]).  

 

The D3 agonist PF-592,379 had no effect on numbers of cocaine injections earned acutely, up to 

doses that decreased food reinforcers. However, the highest dose, 3.2 mg/kg/h, produced a leftward or 

upward shift in the ascending limb of the cocaine dose-effect curve after a week of continuous 

administration (see Figure 5; treatment [F(2,40)=5.89, P<0.01], intx [F(8,40)=5.91, P<0.0001]). This 
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shift was not accompanied by a decrease in the high-dose cocaine injections (descending limb). A trend 

towards the same effect was apparent at the intermediate dose of 1.8 mg/kg/h. Food reinforcers similarly 

were only affected significantly at the highest dose, which produced a decrease both acutely and 

chronically (treatment [F(2,40)=8.79, P<0.001], intx [F(8,40)=3.79, P<0.01]). Thus, after chronic 

treatment with the D3 agonist, behavior was reallocated from food towards cocaine taking, and percent 

cocaine choice was shifted leftwards, with decreased A50 values (2-way ANOVA effect of treatment day 

[F(1,21)=5.78, P<0.05] and dose [F(3,21)=1.22, P<0.05]), significant after chronic administration only 

[F(13,21)=5.94, P<0.01], Table 3). Despite this shift, seen only at the lowest unit dose cocaine, total 

cocaine intake was not significantly modified by PF-592,379, acutely or chronically (Figure 6). Food 

intake was suppressed moderately, and as much or more so by chronic administration relative to acute 

(effect of PF-592,379 dose [F(3,21)=4.43, P<0.05]).  

The D3 antagonist PG01037 had no effect on numbers of cocaine injections earned at most doses, 

acutely or chronically, but did produce a downward shift in the cocaine curve at the intermediate-high 

dose of 3.2 mg/kg/h, with partial tolerance after one week of treatment (treatment day [F(2,50)=4.86, 

P<0.05], intx [F(8,50)=2.45, P<0.05]). This decrease in cocaine choice was accompanied by a moderate 

and non-significant increase in food reinforcers. However, the highest dose, 5.6 mg/kg/h PG01037, 

decreased food-reinforced behavior significantly without affecting cocaine, and this effect on food 

remained as pronounced or more pronounced after one week (see Figure 5; treatment [F(2,30)=17.4, 

p=0.0001], intx [F(8,30)=5.99, P<0.0001]). Consequently, percent cocaine choice was shifted moderately 

to the right at the 3.2 mg/kg/h treatment, as supported by a significant increase in A50 values (effect of 

dose PG01037 [F(4,37)=2.85, P<0.05, see Table 3]). The 0.56 and 1.8 mg/kg/h doses produced only 

modest, non-significant rightward shifts in the cocaine choice curve, indicating a narrow dose window or 

variable effect of PG01037. While 3.2 mg/kg/h appeared to be the most effective dose across rats, some 

individual variability was observed, with some rats indicating a decrease in cocaine self-administration at 

lower doses. The shift produced by 3.2 mg/kg/h was much attenuated after chronic treatment, and only 

statistically significant on day 1 [F(4,37)=4.58, P<0.01], see Table 3. Regardless of treatment time, 
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PG01037 treatment failed to significantly alter total cocaine intake per session, while food intake was 

decreased at the highest dose of PG01037 (effect of dose [F(4,38)=3.62, P<0.05] (Figure 6).  
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DISCUSSION 

The dopamine D3 receptor continues to be of interest as a potential target for cocaine addiction 

medications. D3 receptor antagonists have generally failed to decrease the direct reinforcing effects of 

cocaine, but can decrease conditioned responding (for review, see Sokoloff and Le Foll, 2016). However, 

the evaluation of D3 receptor ligands has mostly concentrated on acute dosing. Preclinical and clinical 

studies have demonstrated that chronic administration of dopamine receptor ligands, and dopamine 

transporter ligands, can affect cocaine intake and other addiction-related effects of cocaine very 

differently from their acute effects. Non-selective dopamine receptor antagonists (e.g., flupenthixol), D2 

receptor antagonists (e.g., risperidone), and D1/D5 receptor antagonists (SCH 39166, SCH 23390), have 

been evaluated preclinically and clinically. All showed antagonism of cocaine’s effects, including reduced 

self-administration, as acute dosing, but were ineffective or increased cocaine intake and/or subjective 

effects of cocaine as chronic treatment, with good agreement between human studies (Romach et al., 

1999; Grabowski et al., 2000; Haney et al., 2001; Nann-Vernotica et al., 2001; Loebl et al., 2008; Kishi et 

al., 2013) and laboratory animal studies (Kleven and Woolverton, 1990; Negus et al., 1996; Negus, 2003; 

Hutsell et al., 2016). Similar effects were obtained with the D2/D3 partial agonist aripiprazole (Stoops et 

al., 2007; Bergman et al., 2008; Thomsen et al., 2008; Haney et al., 2011; Lofwall et al., 2014).  

Conversely to dopamine receptor antagonists, agonist medication strategies using chronic 

administration of monoamine releasers such as D-amphetamine, methamphetamine, phenmetrazine, or 

their pro-drugs, decreased cocaine taking and cocaine choice in humans (Grabowski et al., 2001; Shearer 

et al., 2003; Mooney et al., 2009; Greenwald et al., 2010; Pérez-Maña et al., 2011; Nuijten et al., 2016), 

monkeys (Negus, 2003; Negus and Mello, 2003; Czoty et al., 2010, 2011; Banks et al., 2011, 2013, 

2015b; Hutsell et al., 2016), and rats (Chiodo et al., 2008; Thomsen et al., 2013). Acutely, amphetamines 

mimic and increase behavioral and subjective effects of cocaine and increase cocaine intake/choice 

(Barrett et al., 2004; Thomsen et al., 2013). Thus, both agonist and antagonist dopaminergic 

manipulations show either profound tolerance, or indeed a complete reversal of effect direction between 

acute and chronic administration. Therefore, it is becoming clear that potential cocaine addiction 
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medication strategies must be evaluated using chronic or subchronic dosing conditions to better predict 

effects of clinical use, in which medications will most likely be administered as chronic treatment to 

promote abstinence.  

While there is mounting evidence to support the efficacy of agonist medications with 

psychostimulant properties such as d-amphetamine (but not of direct dopamine receptor agonists), the 

acceptance and FDA approval of those drugs are faced with serious challenges based on concerns about 

their addictive potential and safety (Pérez-Maña et al., 2011; Minozzi et al., 2015; Negus and 

Henningfield, 2015). Here, we compared acute and chronic dosing effects of dopamine D2 and D3 

receptor agonists and antagonists, using a cocaine vs. food choice assay in rats. A primary objective of 

these studies was to evaluate D3 receptor agonists and antagonists as (sub)chronic treatments, and test the 

hypothesis that chronic administration may decrease cocaine choice and/or intake, despite the general lack 

of acute effect of D3 receptor-selective ligands on cocaine self-administration. D2 receptor agonists and 

antagonists were also tested using acute and chronic treatment regimens to allow for direct comparisons.  

A summary of treatment effects in the present investigation is presented in Table 4, as well as 

previous results obtained with aripiprazole and d-amphetamine, for comparison. Acute dosing with D2 

receptor ligands produced results in agreement with previous single-reinforcer experiments (Caine et al., 

2000; Haile and Kosten, 2001; Barrett et al., 2004; Rowlett et al., 2007): the agonist NPA shifted the 

cocaine self-administration dose-effect curve to the left, the antagonist L-741,626 shifted the curve to the 

right, and the partial agonist had little effect. All three compounds also suppressed food-reinforced 

responding, also consistent with single-reinforcer studies (Barrett et al., 2004). Acute effects of the D3 

receptor ligands differed from this typical agonist/antagonist profile. A flattening of the cocaine self-

administration curve was observed with the highest dose of the agonist PD-128,907 and with lower doses 

of both the partial agonist RGH-237 and of the antagonist PG01037. The variable and non-significant 

increase in self-administration of a low dose of cocaine most likely reflects modulation of the conditioned 

reinforcing effects of the cocaine-associated cues, rather than an increase in the reinforcing effect of 

cocaine or direct reinforcing effects of the D3 receptor ligand, based on previous studies failing to 
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demonstrate reinforcing effects of D3 receptor-selective ligands, as well as the fact that cocaine choices 

were not increased in the no-cocaine component in the present investigation (Beardsley et al., 2001; 

Collins and Woods, 2009; Collins et al., 2012). Lower doses of PD-128,907 and higher doses of RGH-

237 or PG01037 produced downward shifts of similar magnitude in cocaine and food choices, suggesting 

non-selective suppression of behavior rather than modulation of cocaine’s reinforcing effects specifically. 

This is consistent with a general lack of effect of D3 receptor ligands in single-reinforcer cocaine self-

administration studies in monkeys and rodents at doses that did not also cause general suppression of 

behavior (Beardsley et al., 2001; Gál and Gyertyán, 2003; Achat-Mendes et al., 2009; Caine et al., 2012). 

It is also possible that both stimulation and blockade of D3 receptors can mediate a moderating effect on 

reward pathways, at least in rats. Although speculative, this notion of D3 systems as performing a 

“dampening”, modulatory function is consistent with both PD-128,907 and PG01037 decreasing ICSS 

acutely in rats (Lazenka et al., 2016). 

Chronic administration of a D2 receptor agonist (NPA) or antagonist (L741,626) also produced 

effects in agreement with previous studies in monkeys. For example, in agreement with the present study, 

chronic 5-day treatment with NPA in rhesus monkeys initially shifted the cocaine self-administration 

curve to the left and down and decreased cocaine intake, but tolerance developed after 5-day 

administration, at least in subordinate monkeys (Czoty and Nader, 2013). NPA also produced some 

cocaine-lever choice during the first component, both acutely and after continuous administration, when 

no cocaine was available. This is consistent with acute effects of D2-family receptor agonists in rats and 

monkeys under similar conditions, and with NPA functioning as a positive reinforcer in monkeys 

(Weissenborn et al., 1996; Gasior et al., 2004; Barrett et al., 2004; Rowlett et al., 2007). Consistent with 

the present findings using L741,626, chronic L741,626 or eticlopride suppressed food- and cocaine-

reinforced responding nonselectively in monkeys (Claytor et al., 2006; Achat-Mendes et al., 2010). 

Despite an initial decrease in cocaine choice with one dose L741,626 in the present study, both NPA and 

L741,626, if anything, increased % cocaine choice after continuous administration, and neither decreased 

total cocaine intake. 
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Chronic administration of a D3 receptor agonist (PF-592,379) or antagonist (PG01037) also 

produced effects distinct from the D2 ligands. Acutely, PF-592,379 moderately decreased food choices 

with no effect on cocaine, but chronic PF-592,379 increased self-administration of low doses of cocaine 

while further decreasing food choices. This undesirable profile is in agreement with the effects of a D3-

preferring partial agonist in monkeys, and of 15-day treatment with pramipexole, which strongly 

increased positive subjective effects of cocaine in humans (Achat-Mendes et al., 2009; Newton et al., 

2015). Unlike NPA, PF-592,379 produced little responding on the cocaine-associated lever during the 

first component, consistent with the notion that D3-preferring agonists can enhance the conditioned 

reinforcing effects of cocaine-associated cues, but maintain little responding per se (Collins and Woods, 

2009; Collins et al., 2012). Consistent with the acute dosing data and with previous single-reinforcer 

studies in monkeys, PG01037 had minimal effects on cocaine self-administration up to doses that also 

suppressed food-reinforced responding (Achat-Mendes et al., 2010). However, consistent with choice 

studies in monkeys, 3.2 mg/kg PG01037 produced a significant downward shift in the cocaine curve, with 

tolerance after continuous administration (Czoty and Nader, 2015; John et al., 2015a). A higher dose 

suppressed responding nonselectively. Although effects on food did not reach statistical significance, it is 

perhaps worth noting that PG01037 was the only treatment that increased food intake after chronic 

administration in the present studies, while L741,626 mostly decreased food-reinforced responding. This 

is consistent with recent studies using dopamine receptor knockout mice, which indicated that D2, rather 

D3 or D4 receptors, mediate reinforcing effects of food (Soto et al., 2015). 

In terms of total cocaine intake and overall food-reinforced behavior, none of the treatment 

regimens offered promising medication-like profiles in this assay. Up to doses that disrupted food-

reinforced behavior, no compound decreased cocaine intake significantly. Similarly, the 5-HT1A agonist 

and D3/D4 antagonist buspirone reduced cocaine self-administration in monkeys acutely, but increased 

cocaine choice after 5-day treatment, and failed to improve time to relapse or cocaine-taking in clinical 

trials (Bergman et al., 2013; Winhusen et al., 2014; John et al., 2015b; Bolin et al., 2016; but see Mello et 

al., 2013). In fact, buspirone increased cocaine use in women (Winhusen et al., 2014). One possible 
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reason for the variable and typically modest effects of PG01037 and other D3 receptor antagonists may be 

highly variable sensitivity between individuals, which was observed here and in monkeys (Czoty and 

Nader, 2015; John et al., 2015a). For all compounds tested, the effects of high doses on food-reinforced 

behavior persisted or increased during chronic administration. Although blood drug levels were not 

measured, it is likely that some or all ligands were tested up to doses that produced moderate drug 

accumulation, although the development of sensitization rather than tolerance is also possible. Drug 

accumulation is most likely to have occurred for L-741,626 and PF-592,379 based on pilot 

pharmacokinetic studies (PF-592,379) and the observation that rats typically required at least three days 

to re-establish baseline levels of responding after minipump removal with those ligands. Regardless of 

mechanism, the dissociation of chronic effects on cocaine and food indicates that distinct pharmacological 

mechanisms underlie effects on cocaine and non-drug reinforcement. Unfortunately, this profile may 

suggest that dose-limiting, undesirable effects of dopamine receptor ligands in humans may also be 

resistant to tolerance.  

In conclusion, the cocaine vs. food choice procedure in rats produced data consistent with studies 

in monkeys and human subjects. Further, these findings underline the importance of testing chronic or 

subchronic administration of compounds of interest, at the preclinical stage. In particular, both the D2 

antagonist L-741,626 and the D3 antagonist PG01037 decreased cocaine choice at some dose as acute 

treatment, but after 1 week, neither drug significantly altered cocaine choice. Here, access to cocaine was 

not suspended during treatments, and it is possible that effects of chronic D3 receptor antagonism could be 

larger if tested under suspended access conditions (Czoty and Nader, 2013). However, the difficulty in 

establishing abstinence in cocaine-dependent patients means that candidate medications should also be 

evaluated under conditions of continued cocaine access during treatment (Moran et al., 2016). Other 

factors that may influence the effectiveness of dopamine receptor ligands include feeding conditions, age, 

sex, and social status (Czoty and Nader, 2013, 2015; Baladi et al., 2014; Collins et al., 2014; Jupp et al., 

2016), and the present data may not generalize to smaller/leaner subjects, females, etc. It would be of 
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interest to examine cocaine self-administration behaviors of rats living in social groups, where access to 

social interactions, mating, etc. would arguably function as competing reinforcers. 
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FIGURE LEGENDS 

 

Figure 1 

Acute dosing effects of dopamine D2-preferring ligands on concurrent cocaine self-administration and 

food-reinforced responding as a function of cocaine dose. Abscissae: unit dose cocaine [mg/kg/injection]; 

ordinates: cocaine injections earned (top), food reinforcers earned (center), %cocaine choice (bottom), per 

component. Group sizes: see Table 2; choice data for higher pretreatment doses may be a lower group 

size due to missing values, and are not shown when responding was reduced to the point that %choice 

could be calculated for fewer than two mice. *P<0.05, **P<0.01, ***P<0.001 vs. vehicle, Bonferroni 

posttest following significant ANOVA. 

 

Figure 2 

Acute dosing effects of dopamine D3-preferring ligands on concurrent cocaine self-administration (top 

panels) and food-reinforced responding (bottom panels) as a function of cocaine dose. Group sizes: see 

Table 2. Other details as in Figure 1. 

 

Figure 3 

Acute effects of dopamine D2-preferring or D3-preferring ligands on total cocaine intake and total food 

reinforcers per session. Abscissae: dose of pretreatment drug [mg/kg]; ordinates: total cocaine intake 

[mg/kg/session] (top) or total food reinforcers earned per session (bottom). Group sizes as in Table 2. 

*P<0.05, **P<0.01 Dunnett’s multiple comparisons test vs. vehicle following significant ANOVA. 

 

Figure 4 

Acute vs. chronic effects of continuously administered dopamine D2-preferring ligands on concurrent 

cocaine self-administration and food-reinforced responding. Data shown are baseline, day 1 (2 hours of 

administration), and day 7 (one week of continuous administration). Abscissae: unit dose cocaine 
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[mg/kg/injection]; ordinates: cocaine injections earned (top), food reinforcers earned (center), %cocaine 

choice (bottom), per component. Group sizes: see Table 3; choice data for higher pretreatment doses may 

be a lower group size due to missing values, and are not shown when responding was reduced to the point 

that %choice could be calculated for fewer than two mice. *P<0.05, **P<0.01, ***P<0.001 vs. baseline, 

Bonferroni posttest following significant ANOVA; red asterisks refer to day 1, blue asterisks, to the 

chronic 1 week test. 

 

Figure 5 

Acute vs. chronic effects of continuously administered dopamine D3-preferring ligands on concurrent 

cocaine self-administration and food-reinforced responding. Group sizes: see Table 3. Other details as in 

Figure 4. 

 

Figure 6 

Acute vs. chronic effects of continuously administered dopamine D2-preferring or D3-preferring ligands 

on total cocaine intake and total food reinforcers per session. Data shown are baseline, day 1 (2 hours of 

administration), and day 7 (one week of continuous administration). Abscissae: dose of pretreatment drug 

[mg/kg]; ordinates: total cocaine intake [mg/kg/session] (top) or total food reinforcers earned per session 

(bottom). Group sizes as in Table 3. *P<0.05, **P<0.01 Dunnett’s multiple comparisons test vs. baseline 

following significant ANOVA. 
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TABLES 
 
Table 1. Classifications based on relative efficacies and affinities for dopamine D2 or D3 receptors 

determined in vitro, from published reports. 

Ligand name Classification Binding selectivity (D2-Ki / D3-Ki) 

NPA a,b D2/D3 agonist 0.6-8 

Terguride c D2/D3 partial agonist 1.1 

L-741,626 d,e,g D2-preferring antagonist 0.02 – 0.07 

PD-128,907 a,f D3-preferring agonist 6.3-210 

PF-592,379 h, i D3-selective agonist >470 

RGH-237 j D3-selective partial agonist >1000 

PG01037 k D3-selective antagonist 133 

a Sautel et al., 1995 

b Freedman et al., 1994 

c Millan et al., 2002  

d Kulagowski et al., 1996 

e Millan et al., 2000 

f Pugsley et al., 1995 

g Caine et al., 2002 

h Attkins et al., 2010 

i Collins et al., 2012 

j Gyertyan et al., 2007 

k Grundt et al., 2005  
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Table 2. Changes in cocaine choice A50 i.e., mg/kg/injection cocaine that produced 50% cocaine 

choices, acute administration experiment. 

 Agonist (N)  Partial 

Agonist (N) 

 Antagonist 

(N) 

 

D2  NPA 

 Vehicle (7) 

  0.01 (5) 

  0.032 (6) 

  0.10 (6) 

  0.32 (7) 

  0.56 (6) 

  1.0 (4) 

 

0.18 [0.11 – 0.29] 

0.16 [0.09 – 0.27] 

0.06 [0.02 – 0.18] 

0.03 [0.02 – 0.08]* 

0.03 [0.01 – 0.06]** 

0.03 [0.01 – 0.06]** 

0.04 [0.01 – 0.17] 

Terguride 

 Vehicle (7) 

  0.032 (4) 

  0.10 (7) 

  0.32 (7) 

  0.56 (6) 

  1.0 (6) 

 

0.15 [0.11 – 0.21] 

0.12 [0.06 – 0.26] 

0.15 [0.10 – 0.22] 

0.14 [0.10 – 0.20] 

not calculated 

not calculated 

L-741,626 

 Vehicle (8) 

  0.32 (8) 

  1.0 (8) 

  3.2 (9) 

  5.6 (6) 

 

0.21 [0.16 – 0.28] 

0.21 [0.15 – 0.27] 

0.29 [0.17 – 0.48] 

0.44 [0.27 – 0.71]* 

not calculated 

 

D3  

 

PD-128,907 

 Vehicle (11) 

  0.10 (6) 

  0.32 (7) 

  1.0 (8) 

  3.2 (8) 

  5.6 (6) 

 

 

0.15 [0.11 – 0.19] 

0.19 [0.17 – 0.20] 

0.29 [0.15 – 0.57] 

0.21 [0.15 – 0.29] 

0.15 [0.05 – 0.44] 

0.05 [0.01 – 0.14]* 

 

RGH-237 

 Vehicle (8) 

  10 (8) 

  32 (8) 

  56 (8) 

 

 

0.21 [0.15 – 0.27] 

0.11 [0.07 – 0.20] 

0.15 [0.07 – 0.30] 

0.24 [0.17 – 0.33] 

 

PG01037 

 Vehicle (6) 

  1.0 (5) 

  3.2 (8) 

  10 (8) 

  18 (6) 

  32 (8) 

 

 

0.15 [0.11 – 0.21] 

0.22 [0.15 – 0.34] 

0.14 [0.06 – 0.33] 

0.14 [0.09 – 0.20] 

not calculated 

not calculated 

Values are group means, with 95% confidence limits indicated in brackets. N indicates group sizes. 

Not calculated: responding was suppressed completely in more than half the animals, resulting in missing 

%choice values. 

*P<0.05, **P<0.01 vs. vehicle (Dunnett’s multiple comparisons test after significant ANOVA). 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on May 4, 2017 as DOI: 10.1124/jpet.117.241141

 at A
SPE

T
 Journals on M

arch 20, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


JPET #241141 

 39 

Table 3. Changes in cocaine choice A50 [mg/kg/injection cocaine], chronic administration experiment 

 

Data are group means with 95% confidence intervals in brackets. N indicates group sizes. 

 Day 1 1 Week 

NPA (N) 

   Baseline (11) 

   0.00032 (6) 

   0.001 (6) 

   0.0032 (6) 

   0.01 (6) 

 

0.06 [0.04 – 0.07] 

0.05 [0.03 – 0.08] 

0.08 [0.04 – 0.17] 

0.04 [0.03 – 0.06] 

0.05 [0.03 – 0.08] 

 

  – 

0.05 [0.03 – 0.08]  

0.05 [0.03 – 0.08] 

0.04 [0.03 – 0.06] 

0.03 [0.03 – 0.04] 

L-741,626 (N) 

   Baseline (15) 

   0.056 (6) 

   0.18 (6) 

   0.32 (5) 

   0.56 (4) 

 

0.09 [0.07 – 0.10] 

0.19 [0.11 – 0.32]** 

0.14 [0.08 – 0.24] 

0.08 [0.04 – 0.13] 

0.11 [0.10 – 0.13] 

 

  –   

0.08 [0.06 – 0.12] 

0.10 [0.10 – 0.10] 

0.05 [0.03 – 0.09]* 

not calculated 

PF-592,379 (N) 

   Baseline (8) 

   0.56 (6) 

   1.8 (6) 

   3.2 (5) 

 

0.07 [0.06 – 0.09] 

0.10 [0.06 – 0.16] 

0.07 [0.04 – 0.10] 

0.06 [0.04 – 0.11] 

 

–   

0.07 [0.05 – 0.11] 

0.05 [0.03 – 0.08] 

0.03 [0.03 – 0.03]** 

PG01037 (N) 

   Baseline (21) 

   0.56 (6) 

   1.8 (6) 

   3.2 (6) 

   5.6 (4) 

 

0.08 [0.06 – 0.10] 

0.12 [0.08 – 0.19] 

0.08 [0.06 – 0.12] 

0.20 [0.11 – 0.38]** 

0.07 [0.03 – 0.14] 

 

  –  

0.11 [0.05 – 0.24] 

0.13 [0.04 – 0.39] 

0.15 [0.07 – 0.33] 

not calculated 
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*P<0.05, **P<0.01 vs. baseline (Dunnett’s multiple comparisons test after significant ANOVA). 

Not calculated: responding was suppressed completely in more than half the animals, resulting in missing 

%choice values. 
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Table 4. Summary of present and previous findings 

Acute effects Chronic effects Classification Ligand  

Cocaine  

intake 

Food  

intake 

Cocaine  

choice 

Cocaine  

intake 

Food  

intake 

Cocaine  

choice 

D2 agonist NPA    --  () 

D2/D3 partial 

agonist 

Terguride  --  --    

D2 antagonist L741,626     --   

D3 agonist PD-128,907 --       

D3 agonist PF-592,379     --   

D3 partial 

agonist 

RGH-237  -- () --    

D3 antagonist PG01037 --  -- or  --  -- 

D2/D3 partial 

agonist 

Aripiprazole 

med. Dose a 

() ()  --  -- 

D2/D3 partial 

agonist 

Aripiprazole 

high dose a 

() () -- ()  () 

Monoamine 

reuptake inhibitor 

D-amphetamine b    ()   

Effects refer to total cocaine intake per session, total food reinforcers per session, and percent cocaine 

choice, respectively. 

: decrease, : increase, --: no change; arrows in parentheses indicate trends that did not reach statistical 

significance. 

a Thomsen et al., 2008 

b Thomsen et al., 2013  
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FIGURES 
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