Label-free dynamic mass redistribution reveals low density, pro-survival α_{1B}-adrenergic receptors in human SW480 colon carcinoma cells

Dorathy-Ann Harris, Ji-Min Park, Kyung-Soon Lee, Cong Xu, Nephi Stella and Chris Hague

Author affiliations:
Department of Pharmacology (D.-A.H., J.-M.P., K.-S.L., C.X., N.S., C.H.); and Department of Psychiatry and Behavioral Sciences (C.X., N.S.), University of Washington School of Medicine, Seattle, Washington.
Running Title: Pro-survival α_{1B}-ARs in SW480 colon carcinoma cells

Address correspondence to:

Dr. Chris Hague Ph.D., Department of Pharmacology, University of Washington School of Medicine, 1959 Pacific St, HSB-D430/431, Box 357280, Seattle, Washington, USA.

E-mail: chague@uw.edu

Phone: 206-221-4612

Fax: 206-685-3822

Number of text pages: 28

Number of tables: 2

Number of figures: 7

Number of references: 59

Number of words in

Abstract: 147

Introduction: 464

Discussion: 900

Abbreviations:

AR, adrenergic receptor; DMR, dynamic mass redistribution; GPCR, G protein-coupled receptor; ISO, isoproterenol; NE, norepinephrine; pA_2, affinity constant; PHE, phenylephrine.
Abstract

Small molecules that target the adrenergic family of G protein-coupled receptors (GPCRs) show promising therapeutic efficacy for the treatment of various cancers. Herein, we report that human colon cancer cell line SW480 expresses low-density functional \(\alpha_{1B}\)-adrenergic receptors (ARs) as revealed by label-free dynamic mass redistribution (DMR) signaling technology and confirmed by quantitative reverse-transcriptase polymerase chain reaction analysis. Remarkably, while endogenous \(\alpha_{1B}\)-ARs are not detectable via either \([3H]\)-prazosin binding analysis or phosphoinositol hydrolysis assays, their activation leads to robust DMR and enhanced cell viability. We provide pharmacological evidence that stimulation of \(\alpha_{1B}\)-ARs enhances SW480 cell viability without affecting proliferation, whereas stimulating \(\beta\)-ARs diminishes both viability and proliferation of SW480 cells. Our study illustrates the power of label-free DMR technology for identifying and characterizing low-density GPCRs in cells and suggests that drugs targeting both \(\alpha_{1B}\)- and \(\beta\)-ARs may represent valuable small molecule therapeutics for the treatment of colon cancer.
Introduction

Catecholamines play a key role in regulating multiple physiological responses, with the overarching goal of enhancing organism survival. However, in certain instances, prolonged catecholamine exposure produces detrimental effects on target organs that lead to cardiovascular disease (e.g., congestive heart failure, hypertension, cardiac arrhythmias and renal failure) and/or psychiatric disorders (e.g., post-traumatic stress disorder and hyperactivity disorders). Although the molecular mechanisms that mediate these detrimental effects remain to be fully understood, it is well appreciated that chronic adrenergic receptor (AR) activation ultimately leads to deleterious alterations in cell morphology (Lefkowitz et al., 2000; O’Connell et al., 2006; Catapano et al., 2007).

Recent evidence suggests that catecholamine signaling may also play a role in cancer pathogenesis. Specifically, chronic β-AR activation drives primary tumor growth and metastasis by increasing the production of angiogenetic factors, enhancing invasion of cancer cells through the stimulation of matrix-metalloproteinase dependent-migration, and/or affecting cancer cell viability and resistance to apoptosis (reviewed in Cole et al., 2011). As such, non-selective β-AR antagonists improve clinical outcomes of human cancer patients, and single-nucleotide polymorphisms in the β-ARs (or its signaling effectors) influence disease outcome (reviewed in Perez-Sayans et al., 2010). These studies suggest that among the molecular mechanisms involved in catecholamine signaling, β-ARs represent a promising target to treat cancer.

The effect of chronic activation of α1-ARs on cancer pathogenesis and prognosis remains poorly understood. Quinazoline-based α1-AR antagonists doxazosin and terazosin can induce tumor cell apoptosis (Anglin et al., 2002; Partin et al., 2003), although it remains unclear if these effects occur through α1-AR and/or non-α1-ARs dependent mechanisms (reviewed in Kyprianou et al., 2009). This question is particularly relevant when considering the three known subtypes of α1-AR (α1A, α1B, α1D) and their differential coupling in various cell types. For example, in murine
models, chronic activation of α1A-ARs reduces cancer incidence and prolongs lifespan, whereas chronic α1B-AR activation typically produces deleterious effects on multiple organ systems (Collette et al, 2014; Wang et al, 2000; Zuscik et al, 2000; Papay et al, 2002; Doze et al, 2009). As such, understanding the effects of chronic α1-AR activation in specific cancer subtypes is essential.

Our laboratory studies macromolecular complexes formed by distinct α1-AR subtypes and how complex architecture influences α1-AR signaling and physiological function. We recently showed that α1-AR subtypes associate with selective intracellular molecular scaffolds that dictate their pharmacodynamic and signaling characteristics (Camp et al, 2015; Lyssand et al, 2010; Lyssand et al, 2008). Interestingly, proteomic screening indicates cell-type specific α1-AR:PDZ-protein complexes are formed in human SW480 colon cancer cells, suggesting α1-ARs may couple to non-canonical, G-protein independent signal transduction mechanisms in this cell line (Camp et al, 2015). Thus, we used label-free dynamic mass redistribution assays to pharmacologically identify endogenous α1-AR subtypes functionally expressed in SW480 colon carcinoma cells, thereby facilitating their examination as potential anti-neoplastic drug targets.
Materials and Methods

Reagents and plasmids

Human α1B-AR cDNAs were subcloned in pSNAPf (New England Biolabs) using In-Fusion HD cloning technology (Clontech) as described in (Kountz et al, 2016). 5-methylurapidil (U101), BMY 7378 HCl (B134), clonidine HCl (C7897), (±) cyclazosin HCl (C247), dopamine HCl (H8502), doxazosin mesylate (D9815), histamine (H7125), (-)isoproterenol HCl (I6504), (R)-(−)niguldipine HCl (N162), phenylephrine hydrochloride (P6126), prazosin HCl (P7791), phentolamine HCl (P7547), phenoxybenzamine HCl (B019), (±)-propranolol HCl (P0884), serotonin HCl (H9523), tamsulosin HCl (T1330), terazosin HCl (T4680), were purchased from Sigma-Aldrich. Rauwolscine HCL from Tocris. [7-methoxy-3H]-prazosin and myo-[2-3H(N)]inositol from Perkin-Elmer. SNAP-782 substrate (S9142S) from New England Biolabs. Epic 384 well glass-bottomed biosensor plates from Corning Inc.

Cell culture and transfections

Human SW480 colon carcinoma cells were grown in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum and 2 mM L-glutamine. For SNAP-α1B-AR studies, cells were transfected with 1mg/ml polyethylenimine (PEI) and indicated concentrations of cDNA constructs, then assayed 48 hr post transfection.

Label-free dynamic mass redistribution assays

Label-free dynamic mass redistribution (DMR) assays were performed using a method derived from previously documented studies (Fang et al, 2006; Fang et al, 2007). SW480 cells (passage number 3-10) were seeded at ~500k/well in Corning Epic sensor microplates and cultured for 24 hr in DMEM + fetal bovine serum. On the day of the experiment, cells were washed 3x with HBSS buffer and transferred to the Corning Epic BT reader, which was permanently housed in a Thermo cell culture incubator @37°C with 5% CO2, as this magnified the amplitude of recorded DMR responses. Cells were incubated with antagonists dissolved in HBSS for at least 1 hr prior...
to adding agonist to ensure that equilibrium between antagonist and receptor had been reached, during which baseline DMR measurements were recorded. All compounds were added using a Sorenson Biosciences 96-well Benchtop Pipettor. Agonist DMR responses were recorded for 1 hr. Raw data were exported to Microsoft Excel using Epic Analyzer Software, and then imported into GraphPad Prism software to calculate agonist (potency, intrinsic activity) and antagonist (affinity) properties. Agonist concentration-response curves were fit using variable slope non-linear regression to determine potency (EC₅₀) and Hill slope. Y-axis values on raw DMR data and agonist DMR concentration-response curves represent the shift in light wavelength in picometers (pm) as a result of dynamic mass redistribution (DMR). Schild Plot analyses were performed when appropriate using a method derived from that first described in (Arunlakshana and Schild, 1959). Schild data were calculated for each experimental n (each having 4 replicates), and final Schild plots were calculated as the mean ± SEM of each experimental value. Schild plots were fit using linear regression analysis. Non-linear regression analysis was also used to determine if antagonist Schild slopes were significantly different than 1. Apparent affinity (pKₐ) was calculated using the equation pKₐ = log (DR-1) − log [B]. Control experiments were performed demonstrating antagonists used in this study did not stimulate significant DMR responses (see Supplemental Figure 1).

Quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) assays

Total RNA was isolated from SW480 cells using NucleoSpin RNA isolation kit according to manufacturer’s instructions (Macherey-Nagel). One-step qRT-PCR reactions were carried out in a final volume of 20 µL that included: 2 µL of template RNA (25 ng final concentration), 0.8 µL forward and reverse primer (10 µM final concentration), 0.4 µL ROX reference dye, 10 µL of 2x one step SYBR RT-PCR Buffer, and 5.2 µL of RNase free H₂O using the One Step SYBR PrimeScript RT-PCR kit (Clontech). Primers used for qRT-PCR analysis were:

α₁A Forward: 5’-TGCCAGATCAACGAGGAGC-3’, Reverse: 5’-GCGTCTTCTCGATGATGC-3’;
α1B Forward: 5’-CTTTCAACGGACACCCCTTAGC-3’, Reverse: 5’-GCCCAACGTCCTAGCTGCTT-3’;

α1D Forward: 5’-CTCCAGCCTGTCAAGCAAG-3’, Reverse: 5’-TGTAAGTCGCCAATTCTAGG-3’;

β2 Forward: 5’-TGTTGATTGATTGTAGCAGGC-3’, Reverse: 5’-GGCTTGGTTGCTGAAGAAGTC-3’;

APRT Forward: 5’-GGCGCATCGACTACATCG-3’, Reverse: 5’-CTCACCTCTCGGTACTCC-3’.

qRT-PCR reactions were performed using the following protocol: 42°C for 5 min; 95°C for 5 sec; 60°C for 20 sec. Melt curve data were collected from 60°C to 95°C at a ramping rate of 0.2°C per second. qRT-PCR reactions were performed in quadruplicate on a Stratagene Mx3000 Real Time PCR system. Relative expression values of each genes of interest were normalized to the expression value of housekeeping gene adenine phosphoribosyltransferase (APRT).

Radioligand binding assays

Cell membranes were prepared from cultured SW480 cells via scraping and polytron grinding 3 times for 30 sec. Lysates were resuspended in ice cold phosphate buffered saline (PBS). Protein concentration was determined with an Eppendorf D30 BioPhotometer. 100 µL of PBS containing 100 µg of resuspended cell lysates were incubated with 100 µL of varying concentrations of [3H]-prazosin for 30 min at 37°C with gentle shaking, in the absence (representing Total [3H]-prazosin bound) or presence of 100 µM of the non-selective α-AR antagonist phentolamine (representing Non-specific [3H]-prazosin bound). Samples were then subjected to Brandel vacuum filtration (Brandel, Gaithersburg, MD). Filters were incubated with 5 mL liquid scintillation fluid and counted with a Tri-Carb 2200 CA liquid scintillation analyzer (Packard Instrument Co. Inc., Rockville, MD). Data were converted from CPM to fmol/mg protein (http://www.graphpad.com/quickcalcs/radcalcform/), and specific bound was calculated as Total Bound – Non-Specific Bound. Specific bound data were fit with one-site specific binding saturation analysis using GraphPad Prism 6 software. Data are expressed as mean ± SEM.
Phosphoinositol hydrolysis assays

SW480 cells were pre-labeled with 1 mCi/mL $[^3]$H]-myo-inositol. After 48 hrs, cells were stimulated with 100 µM phenylephrine for 1 h in HBSS buffer + 10 mM LiCl. Total inositol phosphates were purified via Dowex ion exchange chromatography using the method described in (Lyssand et al, 2008). Data were analyzed with GraphPad Prism 6 software and expressed as mean ± SEM.

SNAP protein gels

SW480 cells were transfected with empty SNAP vector or SNAP-tagged α_{1B}-AR cDNA using the previously described PEI transfection method. 48 hours after transfection, cells were lysed with 50 mM Tris-HCl, 150 mM NaCl, 1% NP40, and 0.1% Tween 20 buffer. 0.5 µM BG-782 substrate and 1 mM DTT were added to lysates and samples were incubated for 30 minutes @37°C in the dark. Approximately 10 ug of cell lysates were run on 8-10% gels using SDS-PAGE. Gels were imaged using the LI-COR Odyssey Scanner. Protein band size was determined by comparison with PageRuler Prestained NIR Protein Ladder (Thermo #26635).

Cell proliferation and viability

Cells grown in DMEM supplemented with 10% FBS were harvested using trypsin and seeded in DMEM supplemented with 1% FBS in 96 well plates (5000 cells per well). 24 hours later, cells were treated by adding drugs to the cell culture media as previously described (Cherry et al, 2016). 3 days later, cell proliferation was measured using 5-Bromo-2’-deoxy-uridine (BrdU) cell proliferation ELISA (colorimetric) kit (Roche, Indianapolis, IN, USA) and cell viability using WST-1 (1:20, Roche, Pleasanton, CA) following manufacturer’s protocols.
Results

One study has examined adrenergic receptor (AR) expression and function in SW480 cells (Masur et al, 2001). Specifically, using flow cytometry and primary antibodies targeting AR subtypes, this study suggested that SW480 cells express α2 and β-ARs, and little to no α1-ARs. To confirm this finding, we subjected SW480 cells to label-free dynamic mass redistribution assays, which measures agonist-stimulated changes in cell shape as a functional output. This highly quantitative technology detects deflections in the wavelength of polarized light reflected through glass-bottom microsensor plates (Camp et al, 2016). Up to 1 picometer changes in wavelength are reliably detected, thereby permitting detection of minute changes in cell shape stimulated by endogenous ARs. Our first set of experiments examined SW480 DMR responses stimulated by AR subtype selective agonists in real-time for 60 min. Raw DMR tracings are displayed in Figures 1A-E, which were then used to construct agonist-concentration curves at t = 60 min (Fig. 1F) to calculate agonist potencies and intrinsic activities (Table 1). As shown in Fig. 1A, the endogenous catecholamine norepinephrine (NE) stimulated robust, positive DMR responses in a concentration-dependent manner, presumably through the activation of β- and α2-ARs previously demonstrated to be expressed by this cell type (Masur et al, 2001). Accordingly, the β-AR selective agonist isoproterenol (Fig. 1B) and the α2-AR partial agonist clonidine (Fig. 1C) stimulated weaker DMR responses than those observed with NE. Clonidine was the most potent adrenergic agonist (Table 1). 5-HT (Fig. 1E) and histamine (data not shown) produced no significant DMR responses, suggesting members of these essential GPCR receptor families are not endogenously expressed by SW480 cells.

Unexpectedly, the α1-AR selective agonist phenylephrine stimulated positive DMR responses with higher intrinsic activity (IA = 0.68) than both clonidine and isoproterenol, suggesting that functional α1-ARs are present in SW480 cells, in direct contrast to the findings of previous studies (Masur et al, 2001).
Because DMR assays are thought to measure the summation of all cell signaling events, the possibility exists that the observed phenylephrine effects are a result of non-α₁-AR signaling mechanisms. Phenylephrine has been reported to activate β-ARs in human vascular beds (Torp et al, 1985), rabbit left ventricle (Wagner et al, 1974) and guinea-pig ventricles (Chess-Williams et al, 1990), depending on the relative density of α- versus β-ARs expressed. Thus, we assayed the efficacy of AR subtype-selective antagonists to block phenylephrine-stimulated DMR responses. If the observed phenylephrine DMR events are occurring via direct α₁-AR stimulation, we expect α₁-AR antagonists to inhibit phenylephrine responses at concentrations in the range of their reported nanomolar affinities. Saturating concentrations of the β-AR antagonist propranolol produced no significant changes in the phenylephrine DMR concentration response curve (Fig. 2A), nor did the α₂-AR antagonist rauwolscine (Fig. 2B), suggesting that phenylephrine DMR responses are not a result of β or α₂-AR receptor activation. By sharp contrast, pre-treating cells for 1 h with 100 nM of the α₁/α₂-AR irreversible antagonist phenoxybenzamine abolished phenylephrine DMR responses (Fig. 2C). Likewise, the competitive α₁/α₂-AR antagonist phentolamine produced progressive rightward shifts in phenylephrine concentration-response curve with successive half-log molar increments (Fig. 2D). Phenylephrine potencies in the absence and presence of phentolamine were determined and used to calculate phentolamine affinity using Schild regression analysis (Arunlakshana and Schild, 1959). Phentolamine inhibited phenylephrine DMR responses with pA₂ = -6.93, or 117 nM (Fig. 2E, Table 2), which is within the range of previously reported values for binding the α₁B-AR subtype (Morrow et al, 1986; Hong et al, 2005; Bavadekar et al, 2008).

We next assayed the affinity of the quinazoline α₁-AR selective antagonists doxazosin (Fig. 3A,B), terazosin (Fig. 3C,D) and prazosin (Fig. 3E,F) for inhibiting phenylephrine DMR responses. All three antagonists produced progressive rightward shifts in DMR concentration-response curves facilitating Schild regression analysis to calculate antagonist pA₂ values (listed in...
Table 2). The affinities for terazosin and doxazosin are consistent with previously reported affinity values for antagonizing \(\alpha_1\)-AR stimulated contractions of the rabbit (Martin et al, 1997) and human prostate (Muramatsu et al, 1998; Kenny et al, 1996). However, the observed prazosin DMR affinity is appreciably lower than what is reported in isolated tissue in vitro contraction assays examining the three \(\alpha_1\)-AR subtypes (Docherty, 2010). Rather, our observed prazosin affinity value is within the range of the elusive “\(\alpha_{1L}\)-adrenoceptor”, or low-affinity \(\alpha_1\)-AR prazosin binding site previously documented to be present in dog saphenous vein (Muramatsu et al, 1990), rat small mesenteric artery (Stam et al, 1999), rabbit urinary tract (Van der Graaf et al, 1997), rat portal vein (Digges et al, 1983) and rat vas deferens (Muramatsu et al, 1996). Thus, the lack of effect of \(\beta\) and \(\alpha_2\)-AR antagonists, and the pronounced inhibition of phenylephrine DMR responses by mixed \(\alpha_1/\alpha_2\)-AR and \(\alpha_1\)-AR selective antagonists indicates SW480 cells express functional \(\alpha_1\)-ARs.

We next sought to identify the specific \(\alpha_1\)-AR subtype(s) expressed by comparing the ability of various \(\alpha_1\)-AR subtype selective antagonists to inhibit phenylephrine DMR responses. The antagonists tested included tamsulosin (\(\alpha_{1A,D}\)-AR selective), 5-methylurapidil and niguldipine (\(\alpha_{1A}\)-AR selective), cyclazosin (\(\alpha_{1B}\)-AR selective) and BMY7378 (\(\alpha_{1D}\)-AR selective). All antagonist functional data are compiled in Table 2.

BMY7378 inhibited DMR responses with \(pA_2 = -6.87\), or 134 nM (Fig. 4A,B), which is significantly lower than previously reported BMY 7378 functional affinities for inhibiting \(\alpha_{1D}\)-AR mediated contraction of rat (Goetz et al, 1995; Kenny et al, 1995; Indra et al, 2002; Cleary et al, 2005) or mouse thoracic aorta (Yamamoto et al, 2001), and more indicative of an \(\alpha_{1A}\) or \(\alpha_{1B}\) affinity for this antagonist. Accordingly, the \(\alpha_{1A,D}\)-AR antagonist tamsulosin blocked phenylephrine stimulated DMR (Fig. 4C) with significantly lower apparent affinity (1 \(\mu\)M tamsulosin \(pK_B = -6.83 \pm 0.08\)) than previously reported tamsulosin \(pA_2\) values for blocking the \(\alpha_{1A}\) or \(\alpha_{1D}\)-AR subtypes (Noble et al, 1997). The lack of \(\alpha_{1A}\)-AR contribution to phenylephrine
responses was supported by the limited ability of \(\alpha_{1A} \)-AR antagonists 5-methylurapidil (Fig. 4D) and niguldipine (Fig. 4E) to antagonize phenylephrine stimulated DMR responses. Interestingly, maximum phenylephrine DMR values were significantly decreased with increasing concentrations of tamsulosin, 5-methylurapidil and niguldipine. This observation demonstrates a potential limitation of using label-free DMR assays to calculate antagonist pA\(_2\) values. Label-free DMR assays are thought to measure the summation of all downstream signaling events following GPCR activation (Fang et al, 2006; Fang et al, 2007; Schroder et al, 2010). Thus, if an \(\alpha_{1} \)-AR antagonist binds and alters the activity of off-target proteins essential to the \(\alpha_{1} \)-AR signaling cascade, this may result in an alteration in the magnitude of the DMR output. For example, niguldipine, a member of the dihydropyridine family of anti-hypertensives, inhibits both L-type \(\mathrm{Ca}^{2+} \) channels (Boer et al, 1989) and bTREK-1 \(\mathrm{K}^{+} \) channels (Liu et al, 2007), such that decreases in maximum phenylephrine DMR responses observed at \(\mu \)M concentrations of niguldipine may be a result of disrupted electrochemical gradients. As such, the observed antagonist-dependent decreases in phenylephrine maximal DMR responses precludes pA\(_2\) determination for tamsulosin, 5-methylurapidil or niguldipine. Regardless, the inability of BMY7378, tamsulosin, 5-methylurapidil or niguldipine to antagonize phenylephrine-stimulated DMR responses in SW480 with high affinity strongly suggests the \(\alpha_{1A} \) and \(\alpha_{1D} \) subtypes do not functionally contribute to phenylephrine responses. Conversely, the \(\alpha_{1B} \)-AR selective antagonist cyclazosin potently inhibited phenylephrine responses with pA\(_2\) = -8.37, or 4.26 nM (Fig. 4F, G), consistent with reported affinities for blocking \(\alpha_{1B} \)-AR mediated contraction of rabbit thoracic aorta (Marucci et al, 2005). Given the \(\alpha_{1B} \)-AR antagonist cyclazosin produced the most potent inhibition of phenylephrine DMR responses in SW480 cells, we hypothesize SW480 cells express predominantly the \(\alpha_{1B} \)-AR subtype.

Label-free DMR pharmacological results were subsequently validated with quantitative reverse-transcriptase polymerase chain reaction (qPCR) assays. Internal primers directed against
individual α₁-AR subtypes and the β₂-AR were used to measure relative mRNA concentrations expressed as cycle threshold (CT) fold. All values were compared to adenine phosphoribosyltransferase (APRT) levels as a reference house-keeping gene. As shown in Figure 5A, α₁B-AR mRNA levels were 2.53 ± 0.09 fold greater than APRT, whereas α₁A-AR (0.02 ± 0.06) and α₁D-AR (6 × 10⁻⁴ ± 0.28) mRNA levels were barely detectable. β₂-AR mRNA levels (0.09 ± 0.04) were greater than α₁A- and α₁D-AR, yet significantly lower than α₁B-AR.

Thus, SW480 cells produce relatively high levels of α₁B-AR mRNA and robust phenylephrine-stimulated label-free DMR responses inhibited by the α₁B-AR selective antagonist cyclazosin. Yet, α₁-ARs are reported as minimally detectable in previous flow cytometry assays (Masur et al, 2001). To clarify this discrepancy, we quantified endogenous α₁B-AR functional receptor density with [³H]-prazosin radioligand binding and phosphoinositol hydrolysis assays. As a positive control we included SW480 cells transfected with N-terminal SNAP-epitope tagged α₁B-ARs. SNAP protein gels demonstrated 3 µg of SNAP-α₁B-AR cDNA was optimal for ensuring SW480 cell viability and maximal SNAP-α₁B-AR protein levels (Fig. 5B, denoted with arrow at ~ 76.6 kDa). Remarkably, we did not detect significant levels of endogenous α₁B-AR binding sites (<10 fmol/mg protein) in SW480 cell lysates with [³H]-prazosin saturation radioligand binding assays, whereas transfecting SNAP-α₁B-AR induced a robust increase in receptor density (Bₘₐₓ to 59.3 ± 10.7 fmol/mg protein, Fig. 5C). Phosphoinositol hydrolysis assays produced equivalent results (Fig. 5D). Specifically, application of 100 µM phenylephrine did not generate significant increases in WT SW480 cellular inositol phosphate levels, yet produced a 62.1% increase in inositol phosphate formation in SW480 cells transfected with SNAP-α₁B-AR. Congruent with this finding, maximal phenylephrine-stimulated DMR responses were enhanced by 25.8% in SW480 cells when transfected with SNAP-α₁B-AR (Fig. 5E). Taken together, these data demonstrate that SW480 cells express low levels of functional α₁B-ARs that...
are undetectable with radioligand binding and reductionist functional assays, but are robustly
detectable with label-free DMR assays.

While it is has been shown that AR stimulation induces migration of cultured SW480 cells
(Masur et al, 2001), this study used norepinephrine as the adrenergic agonist and thus the AR
subtype(s) involved remain unclear. With the discovery that SW480 cells express low level of
functional α_{1B}-ARs, we sought to delineate the effect of β and α_{1}-ARs stimulation on SW480 cell
viability and proliferation. β-AR stimulation with isoproterenol produced a dose-dependent
decrease in both cell viability and proliferation (Figure 6A). Note that the anti-proliferative
effects of isoproterenol were marginally greater than its anti-viability effects. Conversely, α_{1}-AR
stimulation with phenylephrine produced a striking increase in cell viability, with no significant
effects on cell proliferation (Figure 6B). The pro-survival effects of phenylephrine were
antagonized by the α_{1}-AR antagonists terazosin, cyclazosin, phenoxybenzamine and
phenotolamine (Figure 6C). These results show that SW480 cells express low densities of
functional α_{1B}-ARs, that when activated, are pro-survival.

Discussion
With the ongoing and increasing usage of small molecules targeting adrenergic signaling
mechanisms for the treatment of cardiovascular disease, central nervous system disorders and
numerous other indications, understanding whether these medicines also influence tumor growth
and/or metastasis is of critical importance. Accordingly, identifying subtypes of adrenergic
receptors (ARs) expressed by specific cancer cells, characterizing the action of small molecules
targeting this receptor family, and their resulting effect on tumor cell fate will provide critical
information that might drive patient-specific pharmacotherapy. In this study we illustrate the
inherent power of label-free dynamic mass redistribution signaling technology to identify low
density, yet highly-functional ARs in SW480 carcinoma cancer cells. Moreover, to the best of our
knowledge, our study represents the first to combine label-free DMR assays with Schild regression analysis of antagonist affinities to facilitate pharmacological characterization of cancer cell specific expression of endogenous GPCR subtypes. Based on these results, we provide evidence that antagonists targeting both α_{1B}-AR and β-AR may significantly effect cancer cell fate.

The effects of chronic AR stimulation on human health and disease have been extensively studied and documented. Thus far, the overwhelming majority of the data indicates chronic β-AR stimulation produces negative outcomes on cancer prognosis. Epidemiological data compiled from breast cancer outcomes of patients on chronic β-blocker therapy had a 57% reduced risk of metastasis and 71% reduction in mortality after 10 years (Powe et al, 2010). A subsequent study discovered brain metastasis derived from breast cancer cells have increased β_2-AR mRNA and protein expression levels, and exhibit enhanced cell proliferation and migration (Choy et al, 2016). Chronic β-AR activation induced by stress promotes colon cancer metastasis (Zhao et al, 2015), possibly through trans-activation of the EGFR-Akt/ERK pathway (Chin et al, 2016). Accordingly, β-AR blockade has been shown to be an effective treatment in experimental models of colon cancer (Barbieri et al, 2015; Sorski et al, 2016) and reduces the incidence of colon cancer in human populations (Chang et al, 2015). Contrary to these findings, we found β-AR activation decreased SW480 cell viability and proliferation, similar to what has been reported in cardiomyocytes during heart failure, where prolonged β-AR stimulation leads cell death, fibrosis and adverse remodeling (reviewed in Lefkowitz et al, 2000).

Significantly less information exists on the role of α_1-AR activation in cancer outcomes. Studies investigating the effects of chronic α_1-AR stimulation on cell survival from cardiovascular studies provide valuable insights (Furberg et al, 2002). A major revelation of the groundbreaking Anti-Hypertensive and Lipid-Lowering treatment to prevent Heart Attack Trial (ALLHAT) was the increased incidence of deleterious cardiovascular events in the doxazosin-
treatment arm, forcing an early termination of this portion of the study (Piller et al, 2002). This single observation has significantly diminished the use of α₁-AR antagonists for hypertension, heart failure and other cardiovascular diseases. Subsequent basic science studies showed that α₁-AR stimulation inhibits apoptosis in \textit{in vitro} and \textit{in vivo} and enhances ischemic preconditioning in human volunteers via activating pro-survival mechanisms such as induction of fetal gene transcription, increased protein synthesis, enhanced glycolysis, activation of ERK, protein kinase C, and others (reviewed in Jensen et al, 2011). Additionally, a series of elegant KO mice studies show that knocking the α₁A and α₁B-AR subtypes induces maladaptive cardiac morphological alterations, resulting in diminished cardiac output, impaired exercise tolerance and enhanced mortality induced by transverse aortic constriction (TAC), suggesting α₁-ARs are pro-survival in cardiomyocytes (O’Connell et al, 2006). Despite these significant studies, the specific contributions of individual α₁-AR subtypes to the pro-survival phenotype in various cancers remains unclear.

We found that α₁B-AR stimulation enhanced SW480 cell survival, despite their relatively low expression. Interestingly, mice overexpressing constitutively active α₁B-AR mutants display a host of maladaptive phenotypes including cardiac hypertrophy post TAC (Wang et al, 2000), depression-like behavior (Doze et al, 2009), age-related apoptotic neurodegeneration (Zuscik et al, 2000; Papay et al, 2000), and reduced life-span (Collette et al, 2014). Taken together, the effects of α₁B-AR stimulation on cell outcome may be directly correlated to their functional expression levels, with low to moderate expression of α₁B-ARs be pro-survival, whereas overexpression promotes morphological changes leading to cell death. Further studies are needed to clarify the effect of chronic α₁B-AR stimulation on cancer cell fate, and if these effects are specific to colon carcinoma cells.

In summary, we leveraged the power of label-free DMR signaling technology to identify and characterize low-density α₁B-ARs previously undetectable with traditional experimental
approaches used to quantify GPCR functional expression levels in cell culture (i.e. as measured by flow cytometry, radioligand binding or reductionist functional assays), which when activated, increase the survival of human SW480 colon carcinoma cells. To our knowledge, this study is the first to examine the effects of α1B-AR stimulation on human colon carcinoma cell fate. Thus, label-free DMR should prove useful for characterizing membrane signaling proteins functionally expressed on specific carcinoma cell types, thereby facilitating their investigation as potential anti-neoplastic targets using available therapeutic agents, or to predict the side effects of concurrently-used medications on tumor cell outcome. As health-care systems move towards the era of precision medicine, the translational advantages of label-free technology provides a unique opportunity to drive patient-specific pharmacotherapy. Our discovery that α1B-ARs are pro-survival in SW480 colon carcinoma cells may have relevance for the increasing number of patients taking α1-AR antagonists for benign prostatic hypertrophy, post-traumatic stress disorder and/or cardiovascular disease. Thus, further investigation into the effects of α1-AR stimulation on colon carcinoma cell fate are warranted.

Author Contributions

Participated in research design: Harris, Lee, Stella, and Hague.

Conducted experiments: Harris, Park, Lee, Xu, and Hague.

Contributed new reagents or analytic tools: None.

Performed data analysis: Harris, Lee, Stella, and Hague.

Wrote or contributed to the writing of the manuscript: Harris, Stella, and Hague.
References

diverging importance of PDZ-ligands for G protein-coupled receptor pharmacodynamics.

Cleary L, Murad K, Bexis S, and Docherty JR (2005) The α_{1D}-adrenoceptor antagonist BMY 7378 is also an α_{2C}-adrenoceptor antagonist. *Auton Autacoid Pharmacol* 25(4): 135-41.

Footnotes

This work was supported by the National Institutes of Health [GM100893, DA014486, 5T32GM00775].
Figure Legends

Fig. 1. Agonist-stimulated dynamic mass redistribution (DMR) responses in human SW480 colon carcinoma cells. Raw label-free DMR responses were measured for the non-selective adrenergic receptor (AR) agonist norepinephrine (A), the β-AR selective agonist isoproterenol (B), the α2-AR selective agonist clonidine (C), the α1-AR selective agonist phenylephrine (D) and 5-hydroxytryptamine/5-HT (E). Data were used to construct concentration-response curves to calculate agonist potencies and intrinsic activities for stimulating DMR responses at t = 60 min (listed in Table 1). Data are mean ± SEM from 3-4 independent experiments performed with 4 replicates.

Fig. 2. Phenylephrine-stimulated SW480 dynamic mass redistribution responses (DMR) are blocked by α-adrenergic receptor (AR) antagonists. Label-free DMR responses were measured for the α1-AR selective agonist phenylephrine in the absence and presence of (A) the β-AR antagonist propranolol, (B) the α2-AR antagonist rauwolscine, (C) the irreversible α1/α2-AR antagonist phenoxybenzamine (D), or the competitive α1/α2-AR antagonist phentolamine. For each condition, concentration-response curves were constructed using DMR values obtained at t = 60 min, and used to calculate agonist potency. (E) Schild regression analysis of phentolamine affinity from data in (D). Data are mean ± SEM from 3 independent experiments performed with 4 replicates.

Fig. 3. Phenylephrine-stimulated SW480 dynamic mass redistribution (DMR) responses are blocked with high affinity by α1-adrenergic receptor (AR) antagonists. Label-free DMR responses were measured for the α1-AR selective agonist phenylephrine in the absence and presence of the α1-AR selective antagonists (A) doxazosin, (C) terazosin, and (E) prazosin. For each condition, concentration-response curves were constructed using DMR values obtained at t = 60 min, from which agonist potencies were calculated for subsequent Schild regression analysis of affinity for doxazosin (B), terazosin (D) and prazosin (F). Data are mean ± SEM from 3 independent experiments performed with 4 replicates.
Fig. 4. Phenylephrine-stimulated SW480 dynamic mass redistribution (DMR) responses are blocked with high affinity by the α_{1B}-adrenergic receptor (AR) selective antagonist cyclazosin. Label-free DMR responses were measured for the α_1-AR selective agonist phenylephrine in the absence and presence of the α_{1D}-AR subtype selective antagonist BMY7378 (A, Schild regression analysis in B); the $\alpha_{1A/D}$-AR subtype selective antagonist tamsulosin (C); the α_{1A}-AR subtype selective antagonists 5-methylurapidil (D), and nifedipine (E); and the α_{1B}-AR subtype selective antagonist cyclazosin (F, Schild regression analysis in G). For each condition, concentration-response curves were constructed using DMR values obtained at $t = 60$ min. When appropriate, agonist potencies were calculated for subsequent Schild regression analysis of affinity. Data are mean ± SEM from 3 independent experiments performed with 4 replicates.

Fig. 5. SW480 cells express high levels of α_{1B}-adrenergic receptor (AR) mRNA and low densities of functional α_{1B}-ARs. A, Quantitative reverse transcriptase PCR was performed on mRNA isolated from SW480 cell lysates using internal primers targeted to the α_{1A} (ADRA1A), α_{1B} (ADRA1B), α_{1D} (ADRA1D) and β_2 (ADRB2) AR subtypes. Data were normalized as cycle threshold (CT) fold change relative to APRT mRNA levels and are as expressed as mean ± SEM (n = 2 with 3 replicates). B, Polyacrylamide gel electrophoresis of wild type SW480 cell lysates (MOCK lane), or SW480 cell lysates following transfection with empty pSNAP vector (SNAP), and 2, 3 or 5 ug of N-terminal SNAP-epitope tagged α_{1B}-AR cDNA. SNAP-α_{1B}-AR protein bands are denoted with black arrow on right (76.6 kDa). C, Saturation $[^3]$H-prazosin radioligand binding assays were performed on SW480 cell lysates transfected with empty pSNAP vector (■) or 3 ug of SNAP-α_{1B}-AR cDNA (■). Non-specific binding was determined with 10 μM phentolamine. Data are the mean ± SEM of 3 experiments with 3 replicates. D, Phosphoinositol hydrolysis assays were performed on SW480 cells transfected with empty pSNAP vector or 3 ug of SNAP-α_{1B}-AR cDNA. Cells were pre-incubated with 1 μCi of $[^3]$H-myoinositol for 48 h and treated with HBSS buffer or 100 μM phenylephrine for 1 h. Data are expressed as the mean ± SEM of 3 experiments performed in triplicate. ** (student’s t-test, p <0.05). E, Label-free dynamic mass redistribution (DMR) responses were measured for the α_1-AR selective agonist phenylephrine in SW480 cells transfected with empty pSNAP vector (■) or 3 ug of SNAP-α_{1B}-AR cDNA (■). Data are the mean ± SEM of 2 experiments with 4 replicates.
Fig. 6. Stimulation of β-adrenergic receptors (AR) decreases cell proliferation and viability and stimulation of α1B-AR increases cell viability of SW480 cells. Changes in SW480 cell proliferation and viability in response to drug treatment was measured using Brd-U and WST-1 assays, respectively. The β-AR selective agonist isoproterenol produces concentration-dependent decreases in both cell proliferation and viability whereas the α1-AR selective agonist phenylephrine increases cell viability without affecting proliferation (B). C, Phenylephrine-stimulated increases in cell viability (100 µM) were antagonized by 10 min pre-treatment with cyclazosin (CYS, 100 nM) terazosin (TRZ, 1 µM), phenoxybenzamine (PBZ, 300 nM) or phentolamine (PHN, 10 µM). Data are the mean ± SEM of 3 experiments with 4 replicates. ** p < 0.01 compared with vehicle treated cells (control) (one-way ANOVA with Dunnett’s post hoc test).
Table 1. Pharmacological properties of GPCR agonists in SW480 cells. Agonist stimulated dynamic mass redistribution (DMR) concentration-response curves were constructed for responses measured at endogenous receptors expressed in SW480 cells. Log molar agonist potencies (pEC50) were calculated using the time at which peak DMR response was observed. Intrinsic activities (IA) were calculated by setting norepinephrine maximal DMR responses equal to 1 and then normalizing other observed agonist maximal DMR values to this value. All data were analyzed with GraphPad Prism using non-linear regression curve analysis and are expressed as mean ± SEM of 3-4 independent experiments performed with 4 replicates. Max = maximum response observed in pm. IA = intrinsic activity. ND = not determined.

<table>
<thead>
<tr>
<th>Agonist</th>
<th>pEC50</th>
<th>EC50 (µM)</th>
<th>Max (pm)</th>
<th>IA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norepinephrine</td>
<td>-5.96 ± 0.04</td>
<td>1.08</td>
<td>354.74 ± 4.72</td>
<td>1</td>
</tr>
<tr>
<td>Isoproterenol</td>
<td>-4.27 ± 0.13</td>
<td>54.4</td>
<td>151.35 ± 7.66</td>
<td>0.43</td>
</tr>
<tr>
<td>Clonidine</td>
<td>-6.52 ± 0.12</td>
<td>0.3</td>
<td>144.47 ± 13.2</td>
<td>0.41</td>
</tr>
<tr>
<td>Phenylephrine</td>
<td>-5.40 ± 0.03</td>
<td>13.9</td>
<td>238.21 ± 4.52</td>
<td>0.67</td>
</tr>
<tr>
<td>5-HT</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

This article has not been copyedited and formatted. The final version may differ from this version.
Table 2. Pharmacological values used for α₁-AR subtype selective antagonist Schild regression analyses. Phenylephrine stimulated concentration-response curves were calculated for stimulating dynamic mass redistribution (DMR) responses in SW480 cells. Log molar agonist potencies (pEC₅₀) were calculated using the time at which peak DMR response was observed in the absence and presence of various α-AR antagonists (concentration of antagonist used shown in brackets for each phenylephrine pEC₅₀ value). Agonist potencies were subsequently used to calculate antagonist affinity and slope via Schild regression analysis. All data were analyzed with GraphPad Prism and are expressed as mean ± SEM of 2-4 independent experiments performed with 4 replicates. ** indicates calculated Schild slope is significantly different than unity as determined by non-linear regression analysis including extra sum-of-squares F test to hypothetical value of 1. ^^ indicates agonist concentration-response curve Hill slope is <1 as determined by non-linear regression curve four parameter variable slope analysis. ND = not determined.

<table>
<thead>
<tr>
<th>Antagonist</th>
<th>Phenylephrine pEC₅₀ ± SEM</th>
<th>Schild analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>Dose 1</td>
</tr>
<tr>
<td>Phenylephrine</td>
<td>5.12 ± 0.03</td>
<td>4.52 ± 0.03 (300 nM)</td>
</tr>
<tr>
<td>Doxazosin</td>
<td>5.56 ± 0.05</td>
<td>5.24 ± 0.05 (10 nM)</td>
</tr>
<tr>
<td>Terazosin</td>
<td>5.28 ± 0.05</td>
<td>4.98 ± 0.11 (100 nM)</td>
</tr>
<tr>
<td>Prazosin</td>
<td>5.70 ± 0.06</td>
<td>5.29 ± 0.05 (100 nM)</td>
</tr>
<tr>
<td>Tamsulosin</td>
<td>5.43 ± 0.06</td>
<td>4.87 ± 0.07 (300 nM)</td>
</tr>
<tr>
<td>5-Methylurapidil</td>
<td>-5.45 ± 0.1</td>
<td>-5.17 ± 0.14 (300 nM)</td>
</tr>
<tr>
<td>Niguldipine</td>
<td>-5.65 ± 0.08</td>
<td>-5.08 ± 0.11 (3 µM)</td>
</tr>
<tr>
<td>Cyclazosin</td>
<td>-5.42 ± 0.11</td>
<td>-4.86 ± 0.12 (10 nM)</td>
</tr>
<tr>
<td>BMY7378</td>
<td>-5.14 ± 0.03</td>
<td>-4.57 ± 0.05 (300 nM)</td>
</tr>
</tbody>
</table>
Fig. 1.
Fig. 4.

A. BMY7378

- DMR (nm)
- log [PHE] (M)
- Buffer
- 100 nM
- 300 nM
- 1 µM
- 3 µM
- 10 µM

B.

- pA₂ = -6.87 (134 nM)
- slope = 1.06

C. Tamsulosin

- DMR (nm)
- log [BMY7378] (M)
- Buffer
- 300 nM
- 1 µM
- 3 µM
- 10 µM

D. 5-methylurapidil

- DMR (nm)
- log [PHE] (M)
- Buffer
- 300 nM
- 1 µM
- 3 µM
- 10 µM

E. Niguldipine

- DMR (nm)
- log [PHE] (M)
- Buffer
- 300 nM
- 1 µM
- 3 µM
- 10 µM

F. Cyclazosin

- DMR (nm)
- log [PHE] (M)
- Buffer
- 10 nM
- 30 nM
- 100 nM

G.

- pA₂ = -8.37 (426 nM)
- slope = 0.97
Fig. 6.

A

- Cell Response (% Vehicle)
- Log [ISO] (M)

B

- Cell Response (% Vehicle)
- Log [PHE] (M)

C

- Cell Viability (% Vehicle)
- Vehicle
- Phenylephrine

** Control, CYS, TRZ, PBZ, PHN