Regulator of G Protein Signaling 6 Protects the Heart from Ischemic Injury

Department of Pharmaceutical and Biomedical Sciences, Raabe College of Pharmacy, Ohio Northern University, Ada, OH (BRR, NWM, SLS, ADB); Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA (BC, JY, RAF); Department of Pharmacology and Toxicology, Michigan State University East Lansing, MI (SWW and RRN).
Running Title: RGS6 Protects the Heart from Ischemic Injury

Corresponding Author:

Boyd Rorabaugh
Department of Pharmaceutical and Biomedical Sciences, Raabe College of Pharmacy
Ohio Northern University, 525 South Main Street, Ada, OH 45810 USA

Telephone: 419-772-1695
Fax: 419: 772-1917
e-mail: b-rorabaugh@onu.edu

Number of Text Pages: 14
Number of Tables: 1
Number of Figures: 6
Number of References: 39
Number of Words in Abstract: 218
Number of Words in Introduction: 317
Number of Words in Discussion: 1759

Non-Standard Abbreviations: β2AR: beta2 adrenergic receptor; ERK: extracellular regulated kinase; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GRK2: G protein-coupled receptor kinase 2; RGS: regulator of G protein signaling; RGS6+/+: RGS6 wildtype; RGS6-/-: RGS6 knockout

Section Assignment: Cardiovascular
Abstract

Gαi-coupled receptors play important roles in protecting the heart from ischemic injury. Regulator of G protein signaling (RGS) proteins suppress Gαi signaling by accelerating the GTPase activity of Gαi subunits. However, the roles of individual RGS proteins in modulating ischemic injury are unknown. In the present study, we investigated the impact of RGS6 deletion on myocardial sensitivity to ischemic injury. Hearts from RGS6 knockout (RGS6−/−) and wildtype (RGS6+/+) mice were subjected to 30 min ischemia and 2 hr reperfusion on a Langendorff heart apparatus. Infarcts in RGS6−/− hearts were significantly larger than infarcts in RGS6+/+ hearts. RGS6−/− hearts also exhibited increased phosphorylation of β2-adrenergic receptors and GRK2. Mitochondrial GRK2 as well as caspase-3 cleavage were increased significantly in RGS6−/− hearts compared to RGS6+/+ hearts following ischemia. Chronic propranolol treatment of mice prevented the observed increases in ischemic injury and GRK2 phosphorylation observed in RGS6−/− hearts. Our findings suggest that loss of RGS6 predisposes the ventricle to pro-death signaling through a β2AR-GRK2-dependent signaling mechanism and provide evidence for a protective role of RGS6 in the ischemic heart. Individuals expressing genetic polymorphisms that suppress the activity of RGS6 may be at increased risk of cardiac ischemic injury. Furthermore, the development of agents that increase RGS6 expression or activity might provide a novel strategy for the treatment of ischemic heart disease.
Introduction

Ischemic heart disease is the primary cause of death worldwide. Current treatments for acute myocardial ischemia focus on reperfusion therapy using fibrinolytic drugs and coronary catheter-based interventions. Coronary reperfusion is essential for the survival of myocardial tissue. However, the identification of endogenous signaling pathways that are either detrimental or cardioprotective (Cohen and Downey, 2011) to the ischemic heart could lead to development of novel pharmacotherapies to supplement reperfusion procedures and reduce cardiac injury in patients with ischemic heart disease.

G protein-coupled receptors play important roles in protecting the heart from ischemic injury. Adenosine, acetylcholine, bradykinin, opioids, and many other endogenous hormones and neurotransmitters activate GPCR signaling pathways that have cardioprotective effects in the ischemic heart (Eisen et al., 2004). Ga\textsubscript{i} signaling reduces myocardial infarct size, suppresses ischemia-induced apoptosis, and in some cases enhances postischemic recovery of contractile function (Schultz et al., 1998; Waterson et al., 2011; Kohler et al., 2014). Regulator of G protein signaling (RGS) proteins suppress Ga\textsubscript{i} signaling by increasing the rate of hydrolysis of Ga-bound guanine nucleotide triphosphate (GTP). We previously reported that disruption of interactions between RGS proteins and Ga\textsubscript{i2} enhances Ga\textsubscript{i} signaling in cardiac myocytes and protects the heart from ischemic injury (Waterson et al., 2011; Parra et al., 2014). However, it is unknown which RGS proteins modulate this cardiac response to ischemia. RGS6 is one of only a few RGS proteins that have been identified at the protein level in the ventricle (Stewart et al., 2012; Yang et al., 2013). Thus, we examined the impact of RGS6 deletion on myocardial sensitivity to an ischemic insult. We anticipated that deletion of RGS6 would result in a cardioprotective phenotype similar to that observed in mice expressing RGS insensitive Ga\textsubscript{i2}. Surprisingly, we
found that deletion of RGS6 worsens ischemic injury, indicating that RGS6 expression is cardioprotective. These data suggest that RGS6 may provide a novel therapeutic target for the treatment of ischemic heart disease.

Methods

Mice. The generation of RGS6−/− mice has been previously described (Yang et al., 2010). RGS6+/− were crossed to produce RGS6+/+ and RGS6−/− animals which were subsequently used as breeders to produce RGS6+/+ and RGS6−/− mice used in experiments. Mice were backcrossed onto the C57BL/6 background for 12 generations. All mice used in this study were 12 – 16 weeks of age. Mean body weights for male RGS6+/+ and RGS6−/− animals were 28.4 ± 1.0 g and 28.2 ± 0.9 g, respectively. Female body weights were 22.3 ± 0.7 g for RGS6+/+ mice and 23.0 ± 0.5 g for RGS6−/− mice. This investigation conformed to the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health and was approved by the Institutional Animal Care and Use Committee of Ohio Northern University.

Langendorff isolated heart experiments. Mice were anesthetized with a single intraperitoneal injection containing sodium pentobarbital (100 mg/kg) and heparin (70 mg/kg). Hearts were quickly removed and mounted on a Langendorff isolated heart apparatus. Contractile function of the left ventricle was measured as previously described (Waterson et al., 2011). Hearts were equilibrated for 55 min prior to 30 min ischemia and 2 hours reperfusion. Hearts were paced at 500 beats /min throughout the experiment except during ischemia, and pacing was resumed after 3 min reperfusion. Following 2 hours reperfusion, hearts were stained with 1% triphenyltetrazolium chloride and infarct size was measured as previously described (Waterson et al., 2011).
Preparation of mitochondrial lysates. Mitochondrial lysates were prepared as previously described (Chen et al., 2013). Briefly, hearts were perfused on a Langendorff isolated heart apparatus and subjected to 30 min of ischemia and 30 min reperfusion. Ventricular tissue was diced with a razor blade and then homogenized with 30 strokes of a Dounce homogenizer in MSH buffer which contained 210 nM mannitol, 70 mM sucrose, 5 mM HEPES (pH = 7.5), and 1 mM EDTA. The homogenate was centrifuged at 4°C for 10 min at 600 x g. The supernatant was transferred to another tube and recentrifuged for 10 min at 600 x g. The supernatant was subsequently centrifuged again at 5,500 x g for 20 min at 4°C. The resulting mitochondrial pellet was resuspended in 1 ml of MSH buffer without EDTA and centrifuged at 5500 x g for 20 min. The pellet was resuspended in 125 µl RIPA buffer (150 mM NaCl, 10 mM Tris (pH = 7.4), 0.1% sodium dodecylsulfate, 1.0 % triton X-100, 1 % deoxycholate, 5 mM EDTA Sigma phosphatase inhibitor cocktail 2, Sigma phosphatase cocktail 3, and Sigma protease inhibitor). A 10 µl aliquot of the lysate was used to measure protein concentration, and the remainder was used for western blotting.

Chronic treatment with propranolol. Male mice were treated for 9 weeks with water alone or with propranolol (0.5 grams / liter) dissolved in their drinking water. This propranolol dose was chosen based on previous work demonstrating that 0.5 g/l in drinking water produces in vivo blockade of beta adrenergic receptors in the mouse heart (Asai et al., 1999; Dash et al., 2001; Adlam et al., 2012).

Western blots. Hearts were isolated and the atria were removed. Ventricular tissue was immediately frozen in liquid nitrogen and stored at -80 °C. The tissue was homogenized in RIPA buffer (150 mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 50 mM Tris,
pH 8.0), containing protease (p8340) and phosphatase (#3) inhibitor mixtures (Sigma), quantified and probed as we previously described (Stewart et al., 2015).

Statistical analysis. Data were reported as the mean ± S.E.M. Male and female data were analyzed separately. Infarct sizes were compared by the Student’s t test. Preischemic and postischemic parameters of contractile function were analyzed by two way ANOVA with time (preischemic vs postischemic recovery as repeated measures) and genotype (RGS6+/+ vs RGS6−/−) as factors. Bonferroni’s posthoc analysis was used to identify significant differences between specific groups. Western blots to measure expression of GRK2 and β2-adrenergic receptor (β2-AR) phosphorylation were analyzed using the Student’s t-test. Graphpad Prism software (San Diego, CA) was used for all statistical analyses, and P values ≤ 0.05 were considered statistically significant.

Results

RGS6 protects the heart from infarction. Hearts from RGS6−/− and RGS6+/+ mice were exposed to 30 min ischemia and 2 hours reperfusion. Infarcts in both male and female RSG6−/− hearts were significantly larger than their respective wildtype controls (Fig. 1), indicating that deletion of RGS6 worsened myocardial ischemic injury. Deletion of RGS6 had no effect on preischemic contractile function of male or female hearts. Hearts completely stopped beating during the 30 min ischemic period. Developed pressure, +dP/dT, and –dP/dT, and coronary flow rate were significantly lower following 1 hour of reperfusion compared to their preischemic values in both sexes (Table 1). However, parameters of postischemic recovery of contractile function were unaffected by deletion of RGS6 with the exception of EDP which was significantly elevated in female RGS6−/− hearts compared to female RGS6+/+ hearts.
End diastolic pressure (EDP) was monitored throughout the 30 min ischemic episode. All hearts, regardless of genotype, exhibited a time-dependent increase in EDP during the 30 min ischemic episode (Fig. 2), indicating that the myocardium had developed a state of contracture and was unable to relax. However, EDP was significantly greater in male RGS6−/− hearts compared to male RGS6+/+ hearts. A similar effect was observed in female hearts (Fig. 2).

The data shown in Fig. 1, Fig. 2, and Table 2 indicate that RGS6 expression produces the same cardioprotective effect in both male and female mice. Since there was no apparent difference between the sexes, subsequent experiments designed to identify the mechanism by which RGS6 protects the ischemic heart were performed only in males.

RGS6 deletion alters β2-adrenergic receptor signaling. Hearts derived from RGS6−/− mice exhibit enhanced bradycardia in response to carbachol, indicating that they have increased sensitivity to cholinergic stimulation (Posokhova et al., 2010; Yang et al., 2010; Posokhova et al., 2013). In addition, muscarinic receptor blockade produces a significantly larger increase in heart rate in RGS6−/− vs RGS6+/+ mice (Posokhova et al., 2010), suggesting that RGS6−/− mice likely have an increase in sympathetic tone that compensates for their increased myocardial sensitivity to parasympathetic stimulation. Consistent with such a compensatory increase in sympathetic tone, we found no differences in basal heart rate (Yang et al., 2010) or mean blood pressure (unpublished) in RGS6−/− mice despite their increased parasympathetic sensitivity. Analysis of ventricular tissue (which was flash frozen in liquid nitrogen without exposure to ischemia) demonstrated that β2-AR phosphorylation was increased in RGS6−/− hearts (Fig. 3A). Ritodrine (β2-AR-selective agonist) induced a small but significant inotropic effect in RGS6+/+ hearts (Fig. 3B). In contrast, no significant inotropic response was observed in RGS6−/− hearts at the ritodrine concentrations that were tested (Fig. 3B). Increased β2-AR phosphorylation and the
lack of a significant ritodrine-induced inotropic effect are consistent with β2-AR desensitization (Hausdorff et al., 1990). The observation that isoproterenol (Fig. 3C) and phenylephrine (Fig. 3D)-induced inotropic responses were not altered by RGS6 deletion indicates that RGS6 deletion specifically altered β2-AR signaling and did not suppress signaling through β-ARs in general (β1-AR, β2-AR, and β3-AR) and α1-adrenergic receptors, respectively. Furthermore, chronic treatment of mice with propranolol abolished the difference in infarct size between RGS6+/+ and RGS6−/− hearts (Fig. 4), providing functional evidence for the involvement of β-AR signaling in promoting hypersensitivity to ischemic injury in RGS6−/− hearts.

RGS6 deletion increases basal GRK2 expression and phosphorylation. GRK2 is an important regulator of β2-AR signaling. Chronic stimulation of β-ARs increases the expression of GRK2 (Iaccarino et al., 1998) and enhances myocardial sensitivity to ischemic injury (Hu et al., 2006). GRK2-dependent phosphorylation of β2-ARs leads to receptor desensitization (Hausdorff et al., 1990) and also causes a shift in β2-AR signaling from Gαs coupling to Gαi coupling (Zhu et al., 2012). In addition to regulating β2-AR signaling, GRK2 also modulates pro-apoptotic signaling pathways in the ischemic heart. Under conditions of ischemia, ERK-dependent phosphorylation of GRK2 promotes GRK2 translocation to mitochondria where it enhances calcium-dependent opening of the mitochondrial permeability transition pore (Chen et al., 2013). This results in the activation of pro-apoptotic signaling proteins and triggers the death of cardiac myocytes (Chen et al., 2013). We found that deletion of RGS6 significantly increased GRK2 expression (Fig. 5A). GRK2 phosphorylation was also increased in RGS6−/− hearts (Fig. 5B). This effect was reversed by chronic treatment of mice with propranolol (Fig. 5C).

RGS6 deletion increases mitochondrial GRK2 and pGRK2 as well as cleavage of caspase-3 following an ischemic insult. Previous work has demonstrated that myocardial ischemia
induces ERK-dependent translocation of GRK2 to the mitochondria where it activates caspase-3 and that this leads to myocyte apoptosis (Chen et al., 2013). Thus, we examined the potential role of this signaling pathway in promoting ischemic injury in RGS6⁻/⁻ hearts. Mitochondrial GRK2 phosphorylation (Fig. 6A) and GRK2 expression (Fig. 6B) were similar in RGS6⁺/⁺ and RGS6⁻/⁻ hearts in the absence of ischemia. However, an ischemic insult significantly increased both phospho-GRK2 (Fig. 6A) and total GRK2 (Fig. 6B) in RGS6⁻/⁻ heart mitochondria compared to RGS6⁺/⁺ heart mitochondria. The integrity of the mitochondrial fraction was verified in Figure 6D. We also found that cleaved caspase-3 was significantly increased in RGS6⁻/⁻ hearts (compared to RGS6⁺/⁺ hearts) following an ischemic insult (Fig. 6C). These data provide evidence that RGS6 expression protects the ischemic heart by suppressing the GRK2-dependent activation of proapoptotic signaling proteins in the mitochondria.

Discussion

The primary finding of this study is that expression of RGS6 protects the heart from ischemic injury. In light of the expression of RGS6 in the mouse ventricle (Yang et al., 2013), the ability of RGS6 to suppress Gαi signaling (Hooks et al., 2003), and previous work demonstrating that disruption of interactions between Gαi2 and endogenous RGS proteins enhances Gαi2 signaling and protects the heart from ischemic injury (Waterson et al., 2011; Parra et al., 2014), we anticipated that genetic deletion of RGS6 would protect the heart from ischemia. Thus, the finding that RGS6 deletion potentiates ischemic injury was unexpected. mRNA transcripts encoding at least 16 different RGS proteins have been identified in cardiac myocytes and fibroblasts (Zhang and Mende, 2011), and several have been found in the heart at the protein level (Jean-Baptiste et al., 2005; Chakir et al., 2011; Stewart et al., 2012; Miao et al., 2016).
However, this is the first study to provide evidence that a specific RGS protein (RGS6) plays a role in the myocardial response to an ischemic insult.

The observation that GRK2 expression (Fig. 5A) and GRK2 phosphorylation (Fig. 5B) are increased in RGS6−/− hearts is consistent with increased infarct sizes (Fig. 1) in RGS6−/− hearts and with previous work demonstrating that increased GRK2 signaling worsens ischemic injury (Brinks et al., 2010). Increased GRK2 expression and phosphorylation are also consistent with our findings that β2-AR phosphorylation was increased (Fig. 3A) and that the inotropic effect of β2-AR stimulation was diminished in RGS6−/− hearts (Fig. 3B), suggesting that β2-ARs were modestly desensitized. GRK2-dependent phosphorylation of β2-ARs causes these receptors to shift from coupling to Gαs to Gαi (Zhu et al., 2012). Gαi2 and Gαi3 are both expressed in the heart and are activated by cardiac β2-ARs (Xiao et al., 1999). Importantly, these Gαi isoforms have divergent effects on the ischemic heart. Gαi2 signaling is cardioprotective (Waterson et al., 2011; Kohler et al., 2014; Parra et al., 2014), while Gαi3 signaling worsens ischemic injury (Kohler et al., 2014). In vitro assays indicate that RGS6 catalyzes the hydrolysis of Gαi3-bound GTP at nearly twice (1.9-fold) the rate that it catalyzes the hydrolysis of Gαi2-bound GTP (Hooks et al., 2003). If this selectivity toward Gαi3 also occurs in the intact heart, then RGS6 deletion would be expected to enhance signaling through Gαi3 to a greater extent than it enhances cardioprotective signaling through Gαi2. Thus, it is possible that RGS6 protects the heart from ischemia by suppressing β2-AR-induced Gαi3 signaling. Alternatively, the increased myocardial sensitivity to ischemic injury in RGS6−/− hearts might result from increased GRK2 activity in the mitochondria. Previous work has demonstrated that under conditions of ischemia or oxidative stress ERK-dependent phosphorylation of GRK2 causes GRK2 to be translocated to the mitochondria where it promotes opening of the mitochondrial permeability transition pore,
leading to apoptosis and myocyte death (Chen et al., 2013). Our findings that RGS6−/− hearts exhibit overexpression of GRK2, increased basal phosphorylation of GRK2, and increased sensitivity to ischemic injury suggests that RGS6 expression protects the heart from ischemic injury by suppressing signaling through this pathway. The observations that RGS6 deletion increases the presence of phospho-GRK2 and total GRK2 expression in mitochondrial lysates and increases caspase-3 cleavage are also consistent with this mechanism.

It is well established that myocardial injury can occur as a result of both ischemia and reperfusion (Frohlich et al., 2013; Jivraj et al., 2015). Both male and female RGS6−/− hearts demonstrated significantly elevated end diastolic pressure relative to male and female RGS6+/+ hearts during the 30 min ischemic insult (Fig. 2). This state of contracture progressed more rapidly and to a greater extent in RGS6−/− hearts compared to hearts from RGS6+/+ mice. Importantly, this difference between RGS6−/− hearts and RGS6+/+ hearts was evident prior to the onset of reperfusion. The fact that RGS6−/− hearts developed significantly greater contracture than RGS6+/+ hearts during ischemia (prior to reperfusion) suggests that the increased myocardial injury observed in RGS6−/− hearts was likely the result of increased sensitivity to ischemia-induced injury rather than increased sensitivity to reperfusion-induced injury.

RGS6−/− hearts are hypersensitive to cholinergic stimulation (Posokhova et al., 2010; Yang et al., 2010; Posokhova et al., 2013), yet they have normal basal heart rates (Yang et al., 2010). This suggests that RGS6−/− mice compensate for increased sensitivity to parasympathetic stimulation by increasing the activity of sympathetic neurons. The observations that β2-AR phosphorylation was increased and that β2-AR-induced responses were functionally desensitized in RGS6−/− hearts are consistent with chronic β2-AR signaling. The finding that increased basal GRK2 phosphorylation and myocardial hypersensitivity to ischemic injury were reversed by
chronic propranolol treatment provides evidence that RGS6−/− hearts are hypersensitive to ischemic injury as a result of excessive β-adrenergic receptor signaling.

The present study used the Langendorff isolated heart model to investigate the impact of RGS6 deletion on the ischemic heart. However, our assessment of signaling pathways involved in RGS6-mediated cardioprotection were performed primarily in hearts that were isolated and immediately flash frozen in liquid nitrogen. Thus, our observations of increased β2-AR phosphorylation (Fig. 3A), increased GRK2 expression (Fig. 5A), increased GRK2 phosphorylation (Fig. 5B), and increased caspase 3 cleavage (Fig. 6C) in RGS6−/− hearts reflect their status under in vivo conditions. Based on these findings, we speculate that RGS6−/− hearts would have also exhibited increased sensitivity to ischemic injury if myocardial ischemia had been induced in vivo.

Cardioprotective stimuli that decrease infarct size do not always enhance postischemic recovery of contractile function (Cohen et al., 1999; Sumeray et al., 2000; Schulz et al., 2001; Perrin et al., 2003). Some investigators have attributed this observation to “myocardial stunning” which is characterized by contractile dysfunction without infarction. Myocardial stunning may result from the generation of reactive oxygen species which damage contractile proteins (Bolli and Marban, 1999) or from calcium overloading in cardiac myocytes (Kumar et al., 2009) which induces degradation of contractile proteins by calcium-dependent proteases (Bolli and Marban, 1999). Importantly, these processes do not destroy cardiac myocytes, and the contractile function can recover with prolonged reperfusion time as new protein synthesis enables the damage to be repaired. In addition, postischemic coronary flow rates are typically much lower than preischemic coronary flow rates. This decrease in coronary flow (and subsequent decrease in the delivery of oxygen and nutrients) can suppress cardiac contractile
function and mask the true contractile capacity of the myocytes. Importantly, our data indicate that RGS6 expression protects the heart from infarction but does not prevent postischemic contractile dysfunction within the 1 hour reperfusion period that was measured. One limitation of the Langendorff isolated heart model is that cardiac contractile function cannot be monitored over the long term. Thus, the extent to which RGS6 deletion would impact contractile function days or weeks following ischemia remains unknown.

RGS6−/− mice are resistant to doxorubicin-induced production of reactive oxygen species and apoptosis, suggesting that RGS6 might mediate the cardiotoxic effect of doxorubicin that is commonly observed in cancer patients being treated with this drug (Yang et al., 2013). It should be noted that the proapoptotic role of RGS6 following doxorubicin treatment of cardiac myocytes, mouse embryonic fibroblasts, and MCF-7 breast cancer cells occurs through a mechanism that is independent of its interaction with G proteins (Huang et al., 2011; Yang et al., 2013). Thus, the involvement of RGS6 in both G protein-dependent and G protein independent signaling mechanisms could account for its ability to either decrease or increase myocardial injury in the contexts of ischemia or doxorubicin treatment, respectively.

Single nucleotide polymorphisms have been identified in the human gene encoding RGS6 (Sibbel et al., 2011). Posokhova et al. (Posokhova et al., 2013) identified a RGS6 single nucleotide polymorphism (Genbank Accession number: NM_004296.5) in which cytosine 37 is deleted, resulting in a frame shift and a premature stop codon. This mutation results in a loss of RGS6 function, and is associated with increased heart rate variability in humans who are heterozygous for this polymorphism. The prevalence of this polymorphism is unknown. However, our data suggest that carriers of this polymorphism or other polymorphisms that result in a loss of RGS6 function may be at increased risk of cardiac ischemic injury.
RGS proteins represent a potential class of new therapeutic drug targets (Sjogren and Neubig, 2010). Our data demonstrate that a deficiency of RGS6 worsens ischemic injury, but it is unclear whether overexpression of RGS6 to quantities above endogenous levels would have a cardioprotective effect. Prior work has demonstrated that RGS2 and RGS6 expression can be enhanced in the ventricles by treatment with cardiotonic steroids and doxorubicin, respectively (Sjogren et al., 2012; Yang et al., 2013). Despite the cardiotoxic effects of these agents, these studies establish the proof of concept that pharmacological intervention can be used to increase the expression of RGS protein in the ventricles. The development of agents that increase RGS6 expression could potentially provide a new approach to treating ischemic heart disease.
Authorship Contributions:

Participated in research design: Rorabaugh, Fisher

Conducted experiments: Rorabaugh, Chakravarti, Mabe, Seeley, Bui, Yang, Watts

Performed data analysis: Rorabaugh, Chakravarti

Wrote or contributed to the writing of the manuscript: Rorabaugh, Watts, Neubig, Fisher

Sibbel SP, Talbert ME, Bowden DW, Haffner SM, Taylor KD, Chen YD, Wagenknecht LE, Langefeld CD and Norris JM (2011) RGS6 variants are associated with dietary fat intake in Hispanics: the IRAS Family Study. *Obesity (Silver Spring)* **19:**1433-1438.

Footnotes

This work was supported by the National Institute of General Medicine [GM39561 to RRN], National Cancer Institute [CA161882 to RAF], the American Heart Association [14GRNT20460208 to RAF], and an Ohio Northern University Bower and Bennet Endowment award to BRR.

Current affiliation for NWM: Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710

Current affiliation for ADB: Ohio University College of Osteopathic Medicine, Athens, OH 45701
Figure Legends

Fig. 1. Impact of RGS6 on infarct size following 30 min ischemia. Hearts isolated from male and female RGS6\(^{-/-}\) and RGS6\(^{+/+}\) mice were subjected to 30 min ischemia and 120 min reperfusion. Infarct sizes were measured by triphenyltetrazolium chloride staining. Male and female hearts were analyzed separately by the student’s t-test. Data represent the mean ± S.E.M of 8-10 hearts.

Fig. 2. Deletion of RGS6 increases the development of contracture during a 30 min episode of ischemia. End diastolic pressure (EDP) was measured throughout the 30 min ischemic period. Data from male and female hearts were analyzed separately by repeated measures two-way ANOVA with duration of ischemia and genotype as factors. Bonferroni’s posthoc analysis was used to identify differences between groups as specific time points. There were significant effects of the duration of ischemia [F = 108 (5, 80), p < 0.0001], genotype [F = 11 (1, 16) p < 0.005], and an interaction between the duration of ischemia and genotype [F = 11 (5, 80), p < 0.0001] on EDP in male hearts. There were also significant effects of the duration of ischemia [F = 79 (5, 75), p < 0.0001], genotype [F = 8 (1, 15) p < 0.05], and an interaction between the duration of ischemia and genotype [F = 5 (5, 75), p < 0.001] on EDP in female hearts. Data represent the mean ± S.E.M of 8 – 10 separate hearts. \(^{a}\) represents p < 0.05, \(^{b}\) indicate p < 0.01, \(^{c}\) indicates p < 0.005, and \(^{d}\) = p < 0.001.

Fig. 3. RGS6 deletion increases \(\beta_2\)-AR phosphorylation and alters \(\beta_2\)-AR signaling. Ventricular tissue from male mice was homogenized and blotted for phosphorylated (Ser\(^{355}\) / Ser\(^{356}\)) \(\beta_2\)-adrenergic receptor (P-\(\beta_2\)-AR) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Blots were quantified by densitometry using NIH Image J software. P-\(\beta_2\)-AR band
intensities were normalized to those of GAPDH, and data were analyzed using the Student’s t-test (A). Inotropic responses to ritodrine (B), isoproterenol (C) and phenylephrine (D) were measured on a Langendorff isolated heart apparatus in hearts that were not subjected to ischemia. Each agonist was infused by a syringe pump for 5 min through a side arm located immediately upstream of the heart. Hearts were continuously paced at 500 bpm, and contractile force of the left ventricle was measured by an intraventricular balloon. Data were analyzed by two-way ANOVA and Bonferroni’s posthoc analysis with genotype and drug concentration as factors. Data represent the mean ± S.E.M of 5-7 hearts.

Fig. 4. Infarct size following chronic treatment with propranolol. Male RGS6+/+ and RGS6−/− mice were treated for 9 weeks with water alone or with propranolol (0.5 grams/liter) dissolved in their drinking water. Hearts were isolated and subjected to 30 min ischemia and 2 hours reperfusion prior to the measurement of infarct sizes by triphenyltetrazolium chloride staining. Data were analyzed by two way ANOVA with drug treatment (propranolol vs water) and genotype (RGS6+/+ vs RGS6−/−) as factors. There was a significant effect of genotype [F = 8.3 (1,21), p = 0.009]. Tukey's posthoc analysis indicated a significant difference (p < 0.01) between RGS6−/− and RGS6+/+ hearts given water alone. There was also a significant interaction between genotype and propranolol [F = 5.1 (1, 21), p = 0.035] indicating that propranolol did not have the same effect on both genotypes. No effects of propranolol were observed on either heart size or mouse behavior.

Fig. 5. Deletion of RGS6 increases basal expression and phosphorylation of GRK2. Hearts from male mice were isolated and immediately flash frozen. Ventricular tissue was homogenized and blotted for G protein-coupled receptor kinase 2 (GRK2) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (A). The impact of chronic β-AR blockade on GRK2
phosphorylation was investigated by giving mice drinking water alone (B) or water containing propranolol (0.5 g/liter) (C) for 9 weeks. Hearts were isolated and immediately flash frozen. Ventricular tissue was homogenized and blotted for phospho-GRK2 and total GRK2. Blots were quantified by densitometry using NIH Image J software, and data were compared using the Student’s t test. Data represent the mean ± S.E.M of 4-7 hearts.

Fig. 6. Mitochondrial GRK2 phosphorylation and cleavage of caspase-3 are enhanced in RGS6−/− hearts following an ischemic insult. Male RGS6+/+ and RGS6−/− hearts were mounted on a Langendorff isolated heart system and either subjected to 30 min ischemia and 30 min reperfusion (Ischemia + Reperfusion) or continuously perfused for the same amount of time (No Ischemia) prior to mitochondrial isolation and blotting for mitochondrial GRK2, phospho(Ser570)-GRK2, and HSP60 (A and B). Cleaved caspase-3 (C) was measured in ventricular homogenates following 30 min ischemia and 2 hours reperfusion. Blots were quantified by densitometry using NIH Image J software. Two-way ANOVA (factors = genotype and ischemia vs no ischemia) indicated a significant effect [F = 23(1,8) p < 0.01] of genotype and an interaction between genotype and ischemia [F = 6(1,8) p = 0.05] on mitochondrial phospho-GRK2 (A). There was also a significant effect of genotype [F = 39(1,8) p < 0.0005] on mitochondrial GRK2 expression and a significant effect of ischemia [F = 6 (1,8) p < 0.05] on GRK2 expression (B). Caspase-3 cleavage was significantly increased (p < 0.01, analyzed by Student’s t test) in RGS6−/− hearts compared to RGS6+/+ hearts following an ischemic insult (C). Data in panels A – C represent the mean ± S.E.M of 3 hearts. The purity of the mitochondrial preparation was validated (D) by blotting mitochondrial lysates and ventricular homogenates from RGS6+/+ hearts for sodium-potassium ATPase (cell membrane marker), LC3 (lysosomal
marker), heat shock protein 60 (mitochondrial marker), and glyceraldehyde-3-phosphate dehydrogenase (cytosolic marker).
Table 1. Parameters of preischemic and postischemic recovery of contractile function in RGS6+/+ and RGS6-/- hearts.

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Developed Pressure (mmHg)</th>
<th>+dP/dT (mmHg/sec)</th>
<th>-dP/dT (mmHg/sec)</th>
<th>End Diastolic Pressure (mmHg)</th>
<th>Flow rate (ml/min/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RGS6+/+(Preischemic)</td>
<td>10</td>
<td>107 ± 3</td>
<td>4107 ± 181</td>
<td>-3328 ± 126</td>
<td>3 ± 1</td>
<td>30 ± 2</td>
</tr>
<tr>
<td>RGS6-/(Preischemic)</td>
<td>8</td>
<td>104 ± 3</td>
<td>3872 ± 89</td>
<td>-3293 ± 72</td>
<td>4 ± 1</td>
<td>27 ± 1</td>
</tr>
<tr>
<td>RGS6+/+(Recovery)</td>
<td>10</td>
<td>42 ± 5†</td>
<td>1670 ± 209†</td>
<td>-1289 ± 145†</td>
<td>22 ± 2†</td>
<td>19 ± 2†</td>
</tr>
<tr>
<td>RGS6-/-(Recovery)</td>
<td>8</td>
<td>34 ± 3†</td>
<td>1246 ± 109†</td>
<td>-1089 ± 109†</td>
<td>24 ± 1†</td>
<td>15 ± 1†</td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RGS6+/+(Preischemic)</td>
<td>9</td>
<td>116 ± 4</td>
<td>4141 ± 218</td>
<td>-3370 ± 135</td>
<td>3 ± 0.7</td>
<td>27 ± 2</td>
</tr>
<tr>
<td>RGS6-/(Preischemic)</td>
<td>9</td>
<td>121 ± 5</td>
<td>4118 ± 238</td>
<td>-3454 ± 142</td>
<td>2 ± 0.5</td>
<td>27 ± 3</td>
</tr>
<tr>
<td>RGS6+/+(Recovery)</td>
<td>9</td>
<td>37 ± 3†</td>
<td>1397 ± 137†</td>
<td>-1137 ± 86†</td>
<td>8 ± 3</td>
<td>17 ± 2†</td>
</tr>
<tr>
<td>RGS6-/-(Recovery)</td>
<td>9</td>
<td>34 ± 3†</td>
<td>1178 ± 125†</td>
<td>-1017 ± 98†</td>
<td>21 ± 5†*</td>
<td>15 ± 2†</td>
</tr>
</tbody>
</table>

Preischemic contractile function was measured prior to the onset of ischemia. Postischemic recovery of contractile function was measured following 1 hour of reperfusion. Male and female data were analyzed separately by two way ANOVA with genotype (RGS6+/+ vs RGS6-/-) and time (preischemic vs postischemic recovery as a repeated measure) as factors. Bonferroni’s posthoc analysis was used to identify significant differences between specific groups. In male hearts, time (preischemic vs recovery) had significant effects on developed pressure [F = 375 (1, 16), p < 0.0001], +dP/dT [F = 272 (1, 16), p < 0.0001], -dP/dT [F = 354 (1, 16), p < 0.0001], EDP [F = 209 (1, 16), p < 0.001], and coronary flow rate [F = 148 (1, 16) p = 0.04]. In female hearts, time (preischemic vs postischemic recovery) had significant effects on developed pressure [F = 585 (1, 16), p < 0.0001], +dP/dT [F = 402 (1, 16), p < 0.0001], -dP/dT [F = 469 (1, 16), p < 0.0001], EDP [F = 17 (1, 16), p < 0.001], and coronary flow rate [F = 5 (1, 16) p = 0.04]. † indicates a significant difference (p < 0.001) compared to preischemic value. * indicates a significant difference (p< 0.05) compared to the recovery of EDP in RGS6+/+ hearts.
Fig. 1

Infarct Size

<table>
<thead>
<tr>
<th></th>
<th>RGS6(^{+/+})</th>
<th>RGS6(^{-/-})</th>
<th>p < 0.01</th>
<th>RGS6(^{+/+})</th>
<th>RGS6(^{-/-})</th>
<th>p < 0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>male</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>8</td>
<td></td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>female</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Infarct Size (% area at risk)
Fig. 3

A
β₂-Adrenergic Receptor Phosphorylation
RGS6⁺/ RGS6^{-/-}
Phospho-β₂-AR / GAPDH
[p < 0.05]

B
Ritodrine
RGS6⁺/ RGS6^{-/-}
Developed Pressure (mmHg)

C
Isoproterenol
RGS6⁺/ RGS6^{-/-}
Developed Pressure (mmHg)

D
Phenylephrine
RGS6⁺/ RGS6^{-/-}
Developed Pressure (mmHg)
Fig. 4

Infarct Size Following Chronic Propranolol

<table>
<thead>
<tr>
<th></th>
<th>RGS6+/+</th>
<th>RGS6-/-</th>
</tr>
</thead>
<tbody>
<tr>
<td>water</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>propranolol</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

p < 0.01
Fig. 5

A
GRK2 Expression

![Graph showing GRK2 expression levels for RGS6^{+/-} and RGS6^{-/-} genotypes.](image)

GRK2 / GAPDH (Arbitrary Units)

<table>
<thead>
<tr>
<th>Genotype</th>
<th>GRK2 / GAPDH</th>
</tr>
</thead>
<tbody>
<tr>
<td>RGS6^{+/-}</td>
<td>0.5</td>
</tr>
<tr>
<td>RGS6^{-/-}</td>
<td>0.6</td>
</tr>
</tbody>
</table>

p < 0.05

B
GRK2 Phosphorylation

![Graph showing GRK2 phosphorylation levels for RGS6^{+/-} and RGS6^{-/-} genotypes.](image)

P-GRK2 / GRK2 (Arbitrary Units)

<table>
<thead>
<tr>
<th>Genotype</th>
<th>P-GRK2 / GRK2</th>
</tr>
</thead>
<tbody>
<tr>
<td>RGS6^{+/-}</td>
<td>1.2</td>
</tr>
<tr>
<td>RGS6^{-/-}</td>
<td>2.3</td>
</tr>
</tbody>
</table>

p < 0.05

C
GRK2 Phosphorylation + Propranolol

![Graph showing GRK2 phosphorylation levels for RGS6^{+/-} and RGS6^{-/-} genotypes with Propranolol.](image)

P-GRK2 / GRK2 (Arbitrary Units)

<table>
<thead>
<tr>
<th>Genotype</th>
<th>P-GRK2 / GRK2</th>
</tr>
</thead>
<tbody>
<tr>
<td>RGS6^{+/-}</td>
<td>0.75</td>
</tr>
<tr>
<td>RGS6^{-/-}</td>
<td>0.50</td>
</tr>
</tbody>
</table>

4 5