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Abstract 

 

Non-steroidal anti-inflammatory drugs (NSAIDs) can cause epithelial cell damage in the 

stomach, intestine, and colon. NSAIDs are reported to induce autophagy and apoptosis in 

intestinal epithelial cells; however, their role in cell damage is poorly understood. To 

examine the role of autophagy in cell damage, we used Atg5 conditional knocked-out mice 

(Atg5-CKO mice), where the Atg5 gene is only knocked out in intestinal epithelial cells. In 

an indomethacin (IM)-induced gastrointestinal ulcer mouse model, intestinal epithelium 

damage reduced in Atg5-CKO mice compared to the damage in wild-type mice. 

IM-induced damage in IEC6 rat intestinal epithelial cells was reduced when Atg5 was 

silenced (IEC6shAtg5 cells). Western blot analyses indicated that IM-induced apoptosis 

decreased, and the potent, oxidative-stress-related signaling pathway ERK/Nrf2/HO-1 was 

upregulated in IEC6shAtg5 cells. An experiment using a reactive oxygen species 

(ROS)-sensitive fluorescent dye in IEC6shAtg5 cells revealed that the amount of ROS 

under the baselines and the rate of increase after IM treatment were lower than in intact 

IEC6 cells. The mitochondrial membrane potential under the baselines and the reduction 

rate in IM-treated IEC6shAtg5 cells were lower than in intact IEC6 cells, indicating that 

autophagy deficiency increased ROS production caused by mitochondrial disturbance. 

Furthermore, MnTMPyP, an Mn-SOD mimetic, significantly inhibited IM-induced 

autophagy and subsequent apoptosis, as well as activation of the ERK/Nrf2/HO-1 pathway. 

These data suggest that autophagy deficiency and subsequent activation of the 
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ERK/Nrf2/HO-1 pathway diminished IM-induced, apoptosis-mediated intestinal epithelial 

cell damage, and genetic analyses of single nucleotide polymorphisms in autophagy-related 

genes could predict NSAID-induced intestinal injury.  
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Introduction 

Non-steroidal anti-inflammatory drugs (NSAIDs) are known to cause damage such as 

erosion, hemorrhage, or perforation in the gastric membrane. Recently, capsule endoscopy 

or balloon enteroscopy revealed that NSAIDs cause membrane damage in not only stomach, 

but also in the intestine and colon (Graham et al., 2005; Sidhu et al., 2006; Maiden et al., 

2007). It has been reported that 68% of patients experience damage in the intestinal 

membranes at 2 weeks after the internal use of NSAIDs combined with a proton pump 

inhibitor (PPI) (Maiden et al., 2007). In a Japanese analysis of the frequency of 

NSAID-induced intestinal ulcer using the database of balloon enteroscopy, intestinal 

ulceration was observed in about 51% of the patients taking NSAIDs (Matsumoto et al., 

2008). 

Because the pH is very low in the stomach, antacids such as H2 receptor antagonists 

(H2RA) or PPIs are an efficient treatment of NSAID-induced gastric ulcers (Yeomans et al., 

1998). However, antacids may not work in the intestine, because the pH is around 8. In the 

intestine, NSAIDs reduce ATP production in the mitochondria of intestinal epithelial cells, 

and therefore the membrane permeability is increased by the resulting disturbance to the 

maintenance system in the junction between the cells (Bjarnason et al., 1993). Thereby, 

enteric bacteria, bile acids, and proteases cross the cell membrane, resulting in the 

migration and activation of neutrophils. The activated neutrophils produce cytokines or 

nitric oxide, which induces damage in intestinal membranes (Higuchi et al., 2009).  

  Autophagy plays an important role in maintaining cell homeostasis during nutrient 

deprivation, oxidative stress, or ER stress (Kuma et al., 2004; Komatsu et al., 2005; Ogata 
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et al., 2006). Autophagy is induced by the proteins coded by the autophagy-related genes 

(Atg) (Suzuki et al., 2004; Mizushima et al., 2011). The process includes 1) the formation 

and elongation of isolation membrane, 2) autophagosome formation, 3) docking and fusion 

with lysosome, and 4) vesicle breakdown or degradation. The Atg12/Atg5 complex, which 

resides in the isolation membrane, has a pivotal role in membrane elongation, and thus is 

essential for autophagy. However, an excessive level of autophagy induces non-apoptotic 

cell death (Chiou et al., 2011). Sulindac sulfide, an NSAID, causes autophagy that induces 

the death of RGM-1 rat gastric epithelial cells. 

Although autophagy and apoptosis are different physiological processes, they have a 

complicated relationship in terms of their interactions with each other. The activation of 

autophagy can either promote or inhibit apoptosis depending upon the particular 

stimulating factors or cell types (Besirli et al., 2011; Saiki et al., 2011). Celecoxib inhibits 

the proliferation in human gastric cancer cell line, SGC-7901 by the induction of autophagy 

and subsequent apoptosis (Liu et al., 2014). On the other hand, when apoptosis is activated, 

autophagy-related proteins such as beclin-1 or Atg5 are degraded by a series of 

apoptosis-related proteases and caspases, which results in the gradual cessation of 

autophagy (Luo and Rubinsztein, 2010). Bcl-2 not only functions as an antiapoptotic 

protein, but also as an antiautophagy protein via its inhibition of beclin-1 (Pattingre et al., 

2005). 

Knockout of Atg5 in mice (Atg5 KO mice) was lethal to mouse embryos so tissue-specific 

conditional Atg5 KO mice have been used to investigate about autophagy in vivo (Nakai et 

al., 2007; Gukovsky and Gukovskaya, 2015). Here, we established intestinal epithelial 

cell-specific conditional Atg5 KO mice, and examined whether autophagy may effect 
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intestinal epithelial cell damage by an NSAID, indomethacin (IM) in vivo. Moreover, 

Atg5-silenced rat intestinal epithelial cells, IEC6shAtg5 cells, were used to reveal the 

molecular mechanisms underlying the effect of autophagy on IM-induced cell damage.
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Materials and methods 

Materials 

Antibodies: An anti-PARP1 antibody was purchased from Enzo Life Science Inc. 

(Farmingdale, NY). An anti-LC3 antibody was obtained from MBL (Nagoya, Japan). 

Anti-total and phospho-ERK antibodies were obtained from CST (Danvers, MA). 

Anti-HO-1 and anti-Nrf2 antibodies were from Stressgen Biotech (San Diego, CA) and 

Santa Cruz Biotech Inc. (Santa Cruz, CA), respectively.  

Fluorescent dye: Mitotracker Red CMX ROS was purchased from Life technologies 

(Carlsbad, CA). 

Other reagents: MnTMPyP was procured from Santa Cruz Biotech Inc. (Santa Cruz, CA). 

Total ROS/Superoxide Detection Kit was a product of Enzo Life Science Inc. (Farmingdale, 

NY). 

Oral administration of IM and extraction of intestine in WT or Atg5-CKO mice 

Oral administration of IM was performed as described previously (Tanaka et al., 2002). 

Briefly, WT and Atg5-CKO mice (n = 5–6 for each) were given IM p.o. at a dose of 10 

mg/kg and killed 24 h later under deep ether anesthesia. The small intestines (stomach to 

ileum) were excised and used for the measurement of a lesion score or Western blot 

analyses. 

Cell culture 

IEC6, a rat intestinal epithelial cell line, was obtained from RIKEN BRC (Saitama, 

Japan). This cell line was maintained in the growth medium DMEM (Life Technologies, 

Carlsbad, CA) supplemented with 10% fetal bovine serum, 100 U/mL penicillin, and 100 
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μg/mL streptomycin. 

  IEC6shAtg5 cells (shAtg5 cells), in which the Atg5 gene was suppressed by shRNA, 

were maintained in the same medium, except that it was supplemented with 1 μg/mL 

puromycin (Wako Pure Chemical Industries, Osaka, Japan).  

Evaluation of intestinal lesion area and protein expression levels 

To evaluate lesion scores, the excised tissues were treated with 2% formalin to fix the 

tissue walls, opened along the anti-mesenteric attachment, and the area of macroscopically 

visible lesions was measured under a dissecting microscope with square grids (10×), 

summed per small intestine, and used as a lesion score. To delineate the damage, 1% Evans 

blue (Sigma Aldrich, St. Louis, MO) solution was injected i.v. in a volume of 0.5 ml/animal 

0.5 h before sacrifice. 

For Western blot analyses, the excised tissues were homogenized in lysis buffer (25 mM 

Tris-HCl, 100 mM NaCl, 1% TritonX-100, 0.25% deoxycholate, pH 7.4) containing 

protease inhibitor cocktail (Nacalai Tesque, Japan) using a Potter-Elvehjem type 

homogenizer.  

Western blot analysis 

  Following SDS-PAGE, the gel was put into a semi-dry blotting system (Bio-Rad, 

Hercules, CA, USA), and the proteins were transferred onto a PVDF membrane (PALL, 

Port Washington, NY, USA). The membrane was blocked with 5% skimmed milk in PBS 

containing 0.1% Tween 20 (PBST, blocking buffer), incubated in blocking buffer with the 

primary antibody of interest, washed three times with PBST, and then incubated with a 

secondary antibody conjugated with horseradish peroxidase. The membrane was visualized 

with ImmobilonWestern (Millipore, Hayward, CA, USA), and the image was captured with 
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Chemidoc (Bio-Rad, Hercules, CA, USA). 

Nrf2 promoter assay 

IEC6 cells were transfected with pGL4.37 (ARE/Hygro) and pGL4.74 (hRluc/TK) 

(Promega, Madison, NY) using Lipofectamine2000 (Life Technologies, Carlsbad, CA).  

After 48 h, the cells were incubated with indomethacin (IM) with or without MnTMPyP for 

5 h. The luciferase activity was measured using Dual-Luciferase Reporter Assay System 

(Promega, Madison, NY) according to manufacturer’s instructions. Chemiluminescence 

was detected using a GloMax Multi Detection System (Promega, Madison, NY). 

Evaluation of cell viability  

Cell viability was measured colorimetrically using Cell Counting Kit-8 (Wako Pure 

Chemical Industries, Osaka, Japan) following the manufacturer’s instructions. In brief, cells 

of interest were plated onto a 96-well plate and incubated overnight to allow the cells to 

attach. Then, the cells were incubated with or without inhibitors for various periods of time 

(24–72 h). To measure the daily rate of cell proliferation, the cells were incubated with a 

WST-8 reagent for 1 h and its absorbance was measured at a wavelength of 450 nm using a 

microplate reader (Model 680, Bio-Rad, Hercules, CA). 

Evaluation of oxidative stress 

Total ROS/superoxide Detection kit (Enzo Life Science Inc.) was used to evaluate 

whether oxidative stress increased in intact and shAtg5 cells before and after IM treatment. 

Briefly, the cells were plated onto a 96-well plate compatible with fluorescence assay. 

Twenty-four hours later, the cells were incubated with 200 μM IM for 1–2 h, which was 

preincubated for 30 min with or without 5 mM N-acetyl cysteine (NAC). Fluorescence was 

directly measured with GloMax Multi Detection System equipped with an appropriate 
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optical kit (blue for ROS, green for Superoxide) (Promega, Madison, NY). 

Measurement of mitochondrial membrane potential 

Mitochondrial function was estimated using a membrane potential-dependent mitochondria 

probe, MitoTracker Red CMXRos (Molecular Probe). The cells were pre-incubated with 

IM for 1 h, after which MitoTracker Red CMXRos was added and further incubation for 1 

h was performed. The fluorescence was measured using a 96-well microplate luminometer, 

GloMax (Promega, Madison, NY).   
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Results 

Evaluation of intestinal epithelial injury in wild-type (WT) and Atg5-CKO mice after 

IM administration. 

  It was reported that IM induced accumulation of cytoplasmic lipid droplets (LDs), and 

lipophagy—autophagic degradation of portions of LDs or whole LDs either alone or mixed 

with other cell contents—was promoted to remove the toxic LDs in IEC6 cells 

(Narabayashi et al., 2014). To examine how autophagy (including lipophagy) is involved in 

IM-induced intestinal epithelial injury, we used Atg5-CKO mice in which autophagy did 

not occur only in intestinal epithelial cells. At 24 h after the oral administration of IM to 

either WT or Atg5-CKO mice, they were sacrificed, and the extent of intestinal epithelial 

injury was evaluated. As a result, the intestinal epithelial injury was significantly decreased 

in Atg5-CKO mice compared to WT mice according to macroscopic finding and ulcer index 

(Fig. 1A, B).    

Evaluation of cell viability in IEC6 or IEC6shAtg5 cells after IM treatment. 

To further understand the role of autophagy in intestinal epithelial injury, we established 

IEC6shAtg5 cells (Fig. 2A) and evaluated them in vitro. Cell damage after IM treatment in 

IEC6shAtg5 cells was significantly increased compared with IEC6 cells, which is 

consistent with the data in vivo (Fig. 1C).      

Evaluation of autophagy and apoptosis in IEC6 or IEC6shAtg5 cells after IM 

treatment. 

  We retested whether autophagy might occur after IM treatment by carrying out Western 

blot analyses using an anti-LC3 antibody. The results confirmed that autophagy increased in 

intact cells after IM treatment, and the increase was totally reversed in IEC6shAtg5 cells 
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(Fig. 2A).  

Next, we evaluated whether apoptosis is related to the decline of cell viability, the 

cleavage of PARP1, which is the substrate of caspase-3, was evaluated by Western blot 

analyses. The data showed that the cleavage of PARP1 was significantly suppressed in 

IEC6shAtg5 cells, indicating that the augmented autophagy after IM treatment might 

induce apoptosis (Fig. 2B). The subsequent apoptosis is thought to deteriorate the intestinal 

epithelial cell damages. 

Total ROS and superoxide production in IEC6 or IEC6shAtg5 cells. 

Autophagy plays an important role in maintaining cell homeostasis during nutrient 

deprivation, oxidative stress, or ER stress. To examine the mechanism by which autophagy 

was induced after IM treatment, we focused on oxidative stress. Total ROS and superoxide 

generation before and after IM treatment were estimated using a Total ROS/superoxide 

Detection kit (Enzo Life Science Inc.). First, we examined the level of total ROS and 

superoxide generation in IEC6shAtg5 cells under the baselines. As a result, both total ROS 

and superoxide generation were significantly increased in IEC6shAtg5 cells compared to in 

intact cells. Second, we examined whether ROS generation was increased after IM 

treatment in both cells. The data showed that ROS generation were significantly increased 

in both cells after IM treatment (Fig. 3AB). The elevation of ROS generation was totally 

reversed by a radical scavenger, N-acetylcysteine (NAC). Interestingly, changing rates of 

relative ROS or superoxide production after IM treatment were significantly different with 

each other. The changing rate in IEC6shAtg5 cells was significantly lower than in IEC6 

cells, indicating that IEC6shAtg5 cells were more tolerated to ROS than IEC6 cells (Fig. 

3CD).  
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Mitochondrial membrane potential before and after IM treatment in IEC6 or 

IEC6shAtg5 cells. 

  To reveal the mechanism by which ROS generation were significantly increased in 

IEC6shAtg5 cells compared to in IEC6 cells at the basal line, and were both significantly 

increased in both cells after IM treatment, we measured mitochondrial membrane potentials 

in IEC6 cells and IEC6shAtg5 cells, which is the indicator of mitochondrial activity. If this 

potential is reduced, it is thought that the percentage of damaged mitochondria might be 

increased. As a result, the potential was significantly lower in IEC6shAtg5 cells compared 

with in IEC6 cells at the basal line. IM treatment lowered the potentials in IEC6 cells, but 

not in IEC6shAtg5 cells (Fig. 4).  

Activity of ERK/Nrf2/HO-1 pathway in IEC6 or IEC6shAtg5 cells after IM treatment.  

Autophagy is a cytoprotective pathway for degradation of cellular components within 

autophagic vacuoles caused by various cellular stress.  

It was previously reported that heme oxygenase-1 (HO-1) prevented intestinal epithelial 

cells from IM-induced ulceration in rat. To reveal whether HO-1 is involved in the 

acquisition of tolerance against ROS in IEC6shAtg5 cells, we examined whether the 

ERK/Nrf2/HO-1 pathway might be activated in the cells. As shown in Fig. 5AB, ERK 

phosphorylation and Nrf2/HO-1 expression were upregulated in IEC6shAtg5 cells 

compared with IEC6 cells. Thus, activation of the ERK/Nrf2/HO-1 pathway could be 

involved in the acquisition of tolerance against ROS, resulting in the reduction of cell 

damages in IEC6shAtg5 cells. 

Effect of MnTMPyP on the upregulation of autophagy, apoptosis, and 

ERK/Nrf2/HO-1 pathway after IM treatment in IEC6 cells.   
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  To prove whether ROS regulates IM-induced autophagy and subsequent apoptosis, we 

used a Mn-SOD mimetic, Mn-TMPyP, to scavenge ROS in a series of experiments and 

examined the effect of Mn-TMPyP on the cleavage of LC3 or PARP1 after IM treatment. 

As a result, the upregulation of LC3-II or cleaved PARP1 were totally reversed by 

Mn-TMPyP (Fig. 6AB). Furthermore, we examined the effect of Mn-TMPyP on 

IM-induced upregulation of the ERK/Nrf2/HO-1 pathway. The result showed that the 

upregulation of the pathway was also totally reversed by Mn-TMPyP (Fig. 6C). We also 

performed Nrf2 promoter analysis to examine the effect of IM with or without Mn-TMPyP 

on the transcriptional activity, indicating that Nrf2 activity was also upregulated after IM 

treatment, which was reversed by Mn-TMPyP (Fig. 6D). These results indicates that ROS 

promoted IM-induced autophagy and subsequent apoptosis, resulting in the intestinal 

epithelial cell damages, and the damage was strongly blocked by the upregulation of the 

ERK/Nrf2/HO-1 pathway. 

Effect of autophagy deficiency on the ERK/Nrf2/HO-1 pathway in intestinal epithelial 

cells from WT and Atg5-CKO mice. 

The ERK/Nrf2/HO-1 pathway was activated to induce the acquisition of tolerance against 

ROS, resulting in the reduction of cell damages in IEC6shAtg5 cells (Fig.5AB). To confirm 

whether the pathway may be activated in intestinal epithelial cells from Atg5-CKO mice as 

well as in IEC6shAtg5 cells, the epithelial cells scraped from the intestines of WT and 

Atg5-CKO mice with or without IM administration were used for Western blot analyses. As 

shown in Fig. 7, the ERK/Nrf2/HO-1 pathway in the cells from Atg5-CKO mice was 

activated compared to those from WT mice without IM administration. Furthermore, the 

activity was significantly increased after IM treatment only in the cells derived from 
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Atg5-CKO mice. These data suggest that the ERK/Nrf2/HO-1 pathway is activated by 

autophagy deficiency in vivo.  
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Discussion 

  NSAID-induced gastric membrane damage has been very successfully treated with 

antacids such as H2 receptor antagonists (H2RA) or proton pump inhibitors (PPI) (Yeomans 

et al., 1998). Given that the pH of intestinal epithelium is neutral—not acidic like the 

stomach—it is not likely that NSAIDs will be effective, and some reports indicate that they 

did not ameliorate the damages of intestinal membrane (Daniell, 2012). Thus, in order to 

treat NSAID-induced intestinal membrane damage, it is very important to elucidate the 

mechanism. 

Since it is reported that autophagy takes place after IM treatment in IEC6 cells as well as 

apoptosis (Narabayashi et al., 2014), we focused on autophagy, and examined the role of 

autophagy in intestinal epithelial damage. Here, we showed that prevention of autophagy 

reduced apoptosis- mediated IM-induced intestinal epithelial cell damage. The amelioration 

was due to activation of the ERK/Nrf2/HO-1 pathway.  

In some contexts, autophagy is regarded as an adaptive response to stress, which 

promotes survival, whereas in other cases it appears to promote cell death and morbidity 

(Nakai et al., 2007; Kundu and Thompson, 2008). In our in vitro and in vivo experiments, 

prevention of autophagy reduced IM-induced intestinal epithelial cell damage, meaning that 

autophagy promoted cell death and morbidity. To examine the mechanism, we examined 

the changes in intracellular signaling pathways before and after IM treatment in IEC6 and 

IEC6shAtg5 cells. We previously reported that lansoprazole, a PPI, prevented IM-induced 

intestinal epithelial damage through the upregulation of HO-1 (Yoda et al., 2010). 

Therefore, we examined whether the potent, oxidative-stress-related signaling pathway, 

ERK/Nrf2/HO-1 pathway, was upregulated or not. We found that the pathway was more 
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activated under the baselines and the rate of increase after IM treatment was higher in 

IEC6shAtg5 cells than in IEC6 cells. This indicates that autophagy deficiency makes the 

cells more resistant to oxidative stress through activation of the ERK/Nrf2/HO-1 pathway.  

The ERK/Nrf2/HO-1 pathway is upregulated by ROS (Papaiahgari et al., 2006; Xu et al., 

2013). Since the ERK/Nrf2/HO-1 pathway was activated before and after IM treatment in 

IEC6shAtg5 cells, it is possible that IEC6shAtg5 cells should produce more ROS than 

IEC6 cells. Expectedly, ROS production was increased in IEC6shAtg5 cells compared with 

IEC6 cells. It was revealed that the ROS increase activated ERK, followed by Nrf2 and 

HO-1 activation. We confirmed this by the fact that activation of the pathway was inhibited 

by the ROS scavenger MnTMPyP. Together, upregulated ROS production might activate 

the ERK/Nrf2/HO-1 pathway, resulting in tolerance towards IM-induced oxidative stress. 

The effects of autophagy deficiency with or without IM treatment on IEC6 cells (in vitro) or 

mouse intestinal epithelial cells (in vivo) are summarized in Table 1.     

We showed that Nrf2 was activated through the upregulation of ERK phosphorylation 

before and after IM treatment of IEC6shAtg5 cells. Since it is reported that autophagy 

deficiency activates Nrf2 through direct interaction between Keap1 and p62 (Lau et al., 

2010), Nrf2 might be activated by two ways, the upregulation of ERK phosphorylation and 

the inhibition of Keap1-mediated degradation. Nrf2 activation functions as a potent cell 

survival factor by the induction of not only antioxidative enzymes such as HO-1, but also 

detoxifying enzymes such as GSTM1(Chowdhry et al., 2013). Therefore, Nrf2 activation 

might be the most important factor in terms of the protective effect after IM treatment in 

IEC6shAtg5 cells.  

Autophagy normally recycles macro-molecular aggregates produced through 
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oxidative-stress mediated pathways, and also may reduce the mitochondrial production of 

reactive oxygen species through recycling of old and damaged mitochondria (Hensley and 

Harris-White, 2015). Thus, autophagy is thought to be an essential cellular antioxidant 

pathway (Giordano et al., 2014). In our experiment, IEC6shAtg5 cells where autophagy did 

not occur produced more ROS than IEC6 cells. The increase of ROS production in 

autophagy deficient cells might be because autophagy mainly reduces oxidative stress by 

degrading dysfunctional mitochondria, which releases ROS.  

We found that IM-induced intestinal epithelial cell damage might be mediated by ROS 

production, followed by a decrease in mitochondrial membrane potential (Chung et al., 

2003). Decreased mitochondrial membrane potential is thought to induce ROS production 

(Hosseini et al., 2014). Since the increase in ROS, which results from decreased 

mitochondrial membrane potential, induced disturbance of mitochondrial membranes, it is 

likely that IM-induced ROS production took the form of a vicious cycle. This cycle might 

result in the deterioration of oxidative stress, leading to apoptosis.   

Here, we demonstrated that autophagy deficiency diminishes IM-induced intestinal 

epithelial cell damage through activation of the ERK/Nrf2/HO-1 pathway. This does not 

simply mean that autophagy deteriorates IM-induced intestinal epithelial cell damage. Since 

autophagy is primarily a protective process for the cell, autophagy deficiency may not be 

protective in a different situation. If oxidative stress is increased and ROS production is 

harmful to the cells, autophagy deficiency will not be protective. Although oxidative stress 

was increased in IEC6shAtg5 cells under the baselines, the amount of ROS might not be 

harmful to the cells; instead, the ROS level could make the cells resistant toward oxidative 

stress. Furthermore, the data may also indicate that individuals with an autophagy-related 
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disorder such as Crohn’s disease (Scharl et al., 2012; Spalinger et al., 2014) or with a 

functional variant of the autophagy-related gene, ATG, (Latiano et al., 2008; Martin et al., 

2012; Kimura et al., 2014) are resistant towards NSAID-induced intestinal epithelial cell 

damage. Genetic analyses of single nucleotide polymorphisms in ATG genes could be used 

to predict NSAID-induced intestinal injury.  

In summary, we revealed that IM-induced intestinal epithelial cells were damaged by 

oxidative stress due to mitochondrial dysfunction. The cell damage was partly caused by 

apoptosis. In a condition where autophagy does not function, the cell damage was reduced 

through activation of the ERK/Nrf2/HO-1 pathway. The possible mechanism by which 

autophagy deficiency diminishes IM-induced intestinal epithelial cell damage was 

designated in Fig. 8. Oxidative stress might be one of the most important factors inducing 

IM-induced intestinal epithelial cell damage. Activation of anti-oxidative signaling systems 

such as the ERK/Nrf2/HO-1 pathway could be very effective to prevent small intestine 

from IM-induced injury.  
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Table 1. Effect of autophagy deficiency with or without IM treatment on IEC6 cells or 
mouse intestinal epithelial cells.   

 Epithelial 
cell damage 

Autophagy Apoptosis Oxidative 
stress 

ERK/Nrf2/HO-1 

WT -      +      +      +       + 
WT +IM    +++    +++    +++    +++      ++ 
Atg-KO      -      -      +     ++      ++ 
Atg-KO +IM      +      -     ++    +++     +++ 
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Legends to figures 

 

Fig. 1.  Role of Atg5 in the injury of small intestine after IM treatment in vitro and in 

vivo. 

 (A) Gross appearance of intestinal lesions and (B) the ulcer index after IM administration 

in WT and conditional Atg5KO mice. The arrows indicate epithelial erosion caused by 

IM-induced intestinal injuries. The values of ulcer index are expressed as the mean ± SE. (n 

= 5). The statistical analysis was performed with Tukey’s method. (*; P < 0.05) (C) The 

cytotoxicity was estimated after the treatment with various concentrations of IM in IEC6 

and IEC6shAtg5 cells. Open bar; IEC6 cells, closed bar; IEC6shAtg5 cells. The statistical 

analysis was performed using Tukey’s method. (*; P < 0.05) 

Fig. 2.  Induction of autophagy and subsequent apoptosis by IM treatment in IEC6 

cells, not in IEC6shAtg5 cells. 

 The cells were treated with various durations (0, 1, 2, 4, 8, 12 h) of 200 μM IM. (A) LC3 

expression levels at each timing in IEC6 cells and IEC6shAtg5 cells were determined using 

Western blot analyses. Arrow and arrowhead indicate LC3-I and LC3-II, respectively. (B) 

The cleavage of PARP1 in IM-treated IEC6 cells and IEC6shAtg5 cells was determined. 

Arrow and arrowhead indicate intact and cleaved PARP1, respectively.  

Fig. 3.  ROS generation before and after IM treatment in IEC6 and IEC6shAtg5 

cells.  

(A, B) Both total ROS and superoxide were estimated before and after the treatment of 

200 μM IM in IEC6 and IEC6shAtg5 cells using a Total ROS/superoxide Detection kit 
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(Enzo Life Science Inc.). The effect of N-acetyl cysteine (NAC) was evaluated to confirm 

that the assay was suitable (*P < 0.05). (C, D) The changing rates of relative ROS or 

superoxide production after various concentrations (0, 50, 100, 200 μM) of IM treatment 

were estimated in both cells and compared with each other. (*P < 0.05; **P < 0.01) 

Fig. 4.  Quantitative evaluation of functionally active mitochondria before and after 

IM treatment in IEC6 cells and IEC6shAtg5 cells. 

 (A) Mitochondria staining with MitoTracker Red CMXRos, a membrane potential 

dependent mitochondria probe. Cells were pre-incubated with or without 200 μM IM for 1 

h; then, MitoTracker Red CMXRos was added, and further incubated for 1 h. The 

fluorescence was measured using GloMax (Promega). *P < 0.05; Tukey’s test. (B) The rate 

of decrease in functionally active mitochondria before and after IM treatment in IEC6 and 

IEC6shAtg5 cells. The fluorescence of IM-treated cells was divided with that of control cell. 

**P < 0.01; Mann-Whitney U-Test. 

Fig. 5.  Changes of protein expression levels after IM treatment in IEC6 and 

IEC6shAtg5 cells. 

 The cells were treated with 200 μM IM for the indicated times. The protein expression 

levels of total and phosphorylated ERK (A), Nrf2, and HO-1 (B) at each time after IM 

treatment in IEC6 and IEC6shAtg5 cells were determined using Western blot analyses.  

Fig. 6.  Involvement of ROS in IM-induced autophagy (A), subsequent apoptosis (B), 

and ERK/Nrf2/HO-1 pathway (C, D).  

After the preincubation with or without 10 μM MnTMPyP for 30 min, IEC6 cells were 

treated with 200 μM IM for another 2 h. The cleavage of LC3 (A) or PARP1 (B) were 

determined using Western blot analyses. Arrow indicates LC3-I (A) or intact PARP1 (B), 
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and arrowhead indicates LC3-II (A) or cleaved PARP1 (B). (C) Using the same samples, 

the levels of ERK phosphorylation, Nrf2 stabilization and HO-1 induction were determined 

using Western blot analyses. (*p<0.01) (D) After the preincubation with or without 1 μM 

MnTMPyP for 30 min, IEC6 cells were treated with 200 μM IM for another 2 h. Nrf2 

promoter activity was evaluated by a luciferase assay. 

Fig. 7. Effects of autophagy deficiency and IM administration on the ERK/Nrf2/HO-1 

pathway in small intestinal mucosa.  

WT and Atg5 KO mice were treated with or without IM administration orally. After 24h, 

small intestines (stomach to ileum) of the sacrificed animals were excised, and the mucosa 

were surgically scraped. The scraped tissues were collected and analyzed with Western blot 

analyses. (*p<0.05) 

Fig. 8. Possible mechanism for the amelioration of IM-induced intestinal epithelial cell 

injury by autophagy deficiency. 

(A) In normal cells, oxidative stress is suppressed by autophagy and, therefore, the 

ERK/Nrf2/HO-1 pathway is not activated under basal conditions. After IM treatment, the 

cells cannot fully prevent apoptosis-induced cell damage due to the increase of oxidative 

stress.  

(B) In autophagy-deficient cells, the ERK/Nrf2/HO-1 pathway is activated by oxidative 

stress even under basal conditions. The cells can minimize apoptosis-induced cell damage 

after IM treatment, because it is more resistant to oxidative stress due to the upregulated 

ERK/Nrf2/HO-1 pathway. 
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