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Chronic constriction injury (CCI) surgery 

Following baseline (BL) behavioral assessment, the surgical procedure for chronic 

constriction of the sciatic nerve was completed as previously described (Bennett and Xie, 1988), 

but modified for mouse (Murphy et al., 1999). In brief, the mice were anesthetized with 

isoflurane- (induction 5% vol. followed by 2.0% in oxygen), and the mid to lower back and the 

dorsal left thigh were shaved and cleaned with 75% ethanol. Using aseptic procedures, the sciatic 

nerve was carefully isolated, and loosely ligated with 3 segments of 5-0 chromic gut sutures 

(Ethicon, Somerville, NJ). Sham surgery was identical to CCI surgery, but without the loose 

nerve ligation. The overlying muscle was closed with (1) 4-0 sterile silk suture (Ethicon, 

Somerville, NJ), and animals recovered from anesthesia within approximately 5 min. Mice were 

randomly assigned to either CCI or sham surgical group. Mice in both groups were re-assessed 

for allodynia and thermal hyperalgesia, as described above. Subjects were tested with drug or 

vehicle between 5 and 18 days after surgery. 

Drug discrimination  

A separate group of 12 male C57BL/6J mice, trained to discriminate CP55,940 (0.1 

mg/kg) from vehicle (30 min pretreatment time), was used to test whether JZL184 or MJN110 

would substitute for the training drug. Training and testing were conducted according to general 

procedures described previously (Long et al., 2009b; Walentiny et al., 2013; Ignatowska-

Jankowska et al., 2014), and described in Supplementary Information. Control tests were 

conducted with the training dose of the drug (0.1 mg/kg CP55,940) or vehicle. For substitution 

tests, MJN110 (0.25, 0.5, 1.25, 2.5) or JZL 184 (4, 16, 40, or 100 mg) was administered s.c. 120 

min before the test session. The JZL184 substitution assessment was conducted in two separate 

experiments, with the first experiment comparing vehicle vs. 4, 16, and 40 mg/kg JZL184 and 

the second experiment comparing vehicle vs. 100 mg/kg JZL184. The injections for the second 
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JZL184 experiment were double volume (i.e., 20 μl/g body mass). For antagonism studies, mice 

were injected with rimonabant (1 mg/kg, i.p.) or vehicle 130 min before the test session. Mice 

were returned to their home cages after each injection and placed in the test chamber immediately 

before the test period. Full substitution for of training drug was defined as equal to or greater than 

80% of responses on the aperture paired with administration of the training drug.  Partial 

substitution was defined as 20-79% of responses on the aperture paired with training drug, and 

less than 20% of responses on the aperture coupled with training drug was considered as no 

substitution. The percentage of responses on the “drug” aperture and response rates were 

recorded for each test session. 

Locomotor activity  

Locomotor activity was assessed in naïve mice placed individually in a clear, dimly lit 

Plexiglas box (42.7×21.0×20.4 cm) 120 min after injection of JZL184 or MJN110. Activity was 

monitored for 60 min using Anymaze (Stoelting, Wood Dale, Illinois) software, as described 

previously (Ignatowska-Jankowska et al., 2014). Distance travelled, running speed, and time 

spent mobile were measured. 

Triad assay 

Mice were housed individually overnight. Subjects were administered vehicle or MJN110 

(5 mg/kg) and 2, 4 and 24 h later were sequentially assessed in the following three procedures: 

bar test (catalepsy), tail withdrawal test, and rectal temperature. Testing was performed according 

to previously described procedures (Long et al., 2009b; Schlosburg et al., 2010; Ignatowska-

Jankowska, 2014), as detailed in supplementary methods. 
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Extraction and quantification of endocannabinoids by liquid chromatography-tandem mass 

spectrometry 

2-AG, arachidonic acid, AEA, PEA and OEA levels were quantified from the whole 

brain of C57BL/6J mice after acute treatment with JZL184, MJN110, or vehicle. Because each 

MAGL inhibitor significantly attenuated CCI-induced thermal hyperalgesia at 3 h after injection, 

mice were euthanized via rapid decapitation (at 11:00–17:00 EST) at this time point. The brains 

were rapidly harvested, snap-frozen in dry ice, and stored at -80°C until the time of processing. 

Tissues were further processed according to methods described previously (Ramesh et al., 2011; 

Ignatowska-Jankowska et al., 2014). See supplementary methods for details. 

Data analysis 

All data are presented as mean ± standard error (SEM). For allodynia testing, 

psychometric behavioral analysis was performed to compute the log stiffness that would have 

resulted in the 50% paw withdrawal rate, as previously described (Treutwein and Strasburger, 

1999). Briefly, thresholds were estimated by fitting a Gaussian integral psychometric function to 

the observed withdrawal rates for each of the tested von Frey hairs, using a maximum-likelihood 

fitting method (Milligan et al., 2001; Wilkerson et al., 2012). Data were analyzed using t-tests, 

one-way or two-way analysis of variance (ANOVA). Tukey test was used for post hoc analyses 

of significant one-way ANOVAs. Multiple comparisons following two-way ANOVA were 

conducted with Bonferroni post hoc comparison. Correlations are reported as Pearson’s r values. 

Differences were considered significant at the level of p < 0.05. Statistical analysis was 

performed with IBM SPSS Statistics, version 20.0 (IBM Corp., Armonk, NY).
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Results 

MAGL Inhibitors reverse CCI-induced mechanical allodynia and thermal hyperalgesia  

CCI elicited significant allodynia in ipsilateral (p < 0.0001) and contralateral paws (p < 

0.0001), as well produced a significant hyperalgesic effect in the hot plate test (p < 0.0001) 

compared with the sham control mice (Figure 1). JZL184 and MJN110 reversed CCI-induced 

bilateral mechanical allodynia in dose-related and time-dependent manners (ipsilateral paw: 

Figure 1A; complete time course of each dose shown in Supplemental Figures 1A and 1B for 

ipsilateral paw; and contralateral paw: Figure 1B; complete time course for each dose shown in 

Supplemental Figures 2A and 2B). JZL184 produced maximal anti-allodynic effects at 3 h in 

ipsilateral [F(3,27) = 12.8, p < 0.0001] and contralateral [F(3,27) = 18.4, p < 0.0001] paws. 

MJN110 produced maximal anti-allodynic effects at 1 h in ipsilateral [F(5,41) = 16.6, p < 0.001] 

and contralateral [F(5,41) = 34.3, p < 0.001] paws. The respective ED50 (95% CL) values for 

MJN110 and JZL184 at their optimal time points were 0.43 (0.30-0.63) mg/kg and 17.8 (11.6-

27.4) mg/kg. The potency ratio (95% CL) for MJN110 versus JZL184 was 42.7 (24.6-82.9). 

Neither MAGL inhibitor altered paw withdrawal thresholds in sham mice at any time point 

(Supplemental Figures 1 and 2).  

Each MAGL inhibitor significantly reversed CCI-induced thermal hyperalgesia in dose-

related and time-dependent manners (Figure1C; Supplemental Figures 3A and B). Prior to 

injection of vehicle or drug, all CCI mice displayed comparable levels of thermal hyperalgesia (p 

= 0.9). JZL184 [F(3,27) = 8.11, p < 0.05] and MJN110 [F(5,41) = 3.72, p < 0.05] significantly 

reversed thermal hyperalgesia at 3 h. Neither drug altered hot plate latencies in sham mice 

(Supplemental Figure 3). 

To assess the involvement of CB1 and CB2 receptors in the anti-allodynic and anti-

thermal hyperalgesic actions of JZL184 (40 mg/kg; Figure 2A and 2C; Supplemental Figure 4A) 
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and MJN110 (1.25 mg/kg; Figure 2B and 2D; Supplemental Figure 4B), mice were pretreated 

with rimonabant (3 mg/kg) or SR144528 (3 mg/kg). JZL184 F(8,48) = 28.1; p < 0.0001] and 

MJN110 [F(8,48) = 8.26; p < 0.0001] significantly reversed CCI-induced allodynia. Rimonabant 

blocked the anti-allodynic effects of each MAGL inhibitor (JZL184: p < 0.0001; and MJN110: p 

< 0.0001). Similarly, SR144528 prevented the anti-allodynic effects of each inhibitor (JZL184: p 

< 0.001; and MJN110: p < 0.05). Following allodynia testing, the mice were tested for thermal 

hyperalgesia in the hot plate test. Again, JZL184 [F(8,48) = 10.9; p < 0.0001] and MJN110 

[F(8,48) = 24.6; p < 0.0001] produced significant anti-thermal hyperalgesic effects. Rimonabant 

significantly reduced the anti-hyperalgesic effects of JZL184 (p < 0.001) and MJN110 (p < 

0.001). In contrast, SR144528 did not antagonize the anti-thermal hyperalgesic effects of JZL184 

(p = 0.5) or MJN110 (p = 0.6). Rimonabant and SR144528 alone did not alter thermal responses 

or paw withdrawal thresholds in sham or CCI mice at any time point.  

Evaluation of MAGL inhibitors in the drug discrimination paradigm 

The training dose of CP55,940 fully generalized for itself, while control injections of 

vehicle did not produce responding on the CP55,940 aperture (Figure 3A). Each MAGL inhibitor 

increased responding on the aperture associated with CP55,940 (0.1 mg/kg), but with different 

potencies (Figure 3A). JZL184  [F(4,27) = 9.57, p < 0.001; ED50 (95% CL) = 24.9 (14.6-42.5) 

mg/kg] and MJN110 [F(4,32) = 40.3, p < 0.001; ED50 (95% CL) = 0.84 (0.69-1.02) mg/kg] fully 

and dose-dependently substituted for CP55,940.  MJN110 was 30.4 (18.9-47.6) [potency ratio 

(95% CL)] more potent than JZL184 in substituting for CP55,940. JZL184 did not alter 

response rates, but 1.25 and 2.5 mg/kg MJN110 significantly increased rates of responding 

[F(4,32) = 10.1, p < 0.001]. Rimonabant (1 mg/kg) significantly blocked substitution of MJN110 

(2.5 mg/kg) and partial substitution of JZL184 (40 mg/kg) [F(3,13) = 42.9, p < 0.0001]. 
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Rimonabant also significantly decreased response rates regardless of inhibitor treatment [F(1,13) 

= 87.3, p < 0.0001]. 

Locomotor Activity  

As shown in Figure 4, JZL184, and MJN110 differentially affected locomotor activity 

(see Supplementary Figure 5 for time course data). JZL184 (16 and 40 mg/kg) produced 

profound decreases in distance travelled [F(3,30) = 25.0, p < 0.0001] and mobility time 

[F(3,30) = 52.8, p < 0.0001], but did not alter running speed at any dose (p = 0.08). MJN110 

significantly increased running speed [F(3,30) = 9.13, p < 0.001] and  concomitantly increased 

the distance travelled [F(3,30) = 5.6, p < 0.01], but did not affect mobility time (p = 0.5). 

Significant increases in running speed were observed following 1.25 mg/kg and 2.5 mg/kg 

MJN110 and distance travelled was significantly increased by 1.25 mg/kg MJN110. 

Assessment of acute cannabimimetic effects of MJN110 

MJN110 (5 mg/kg) produced a small, but significant, increase in the tail withdrawal 

latency [F(1,11) = 5.43, p < 0.05] from 1.25 ± 0.09 s before injection to 3.85 ± 1.12 s 2 h post-

injection, when this effect was most pronounced. MJN110 did not elicit cataleptic (p = 0.4) or 

hypothermic (p = 0.8) effects (Supplementary Figure 6).  

 

Evaluation of brain endocannabinoid levels following MAGL inhibitor treatment 

The effects of acute administration of each MAGL inhibitor on 2-AG, arachidonic acid, 

and AEA levels in whole brain 3 h after drug administration are shown in Figure 5. JZL184 

[F(3,25) = 40.1, p < 0.001] and MJN110 [F(3,25) = 41.5, p < 0.001] significantly increased 2-AG 

brain levels. Each of these inhibitors concomitantly decreased whole brain arachidonic acid 

levels [JZ184: F(3,25) = 7.9, p < 0.001; MJN110: F(3,25) = 12.4, p < 0.001]. 2-AG and 

arachidonic acid brains levels were negatively correlated for both JZL184 (r = -0.98, p < 0.05) 
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and MJN110 (r = -0.97, p < 0.05). In contrast, neither of the inhibitors significantly affected 

brain levels of AEA, OEA, or PEA (Supplementary Figure 7). 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on March 11, 2015 as DOI: 10.1124/jpet.114.222315

 at A
SPE

T
 Journals on N

ovem
ber 15, 2019

jpet.aspetjournals.org
D

ow
nloaded from

 

http://jpet.aspetjournals.org/


  JPET #222315 

16 
 

Discussion 

The primary objective of the present study was to evaluate the impact of MAGL 

inhibition in reducing neuropathic pain versus eliciting common cannabimimetic side effects. 

Here, we report that two MAGL inhibitors, JZL184 and MJN110, significantly reversed 

mechanical allodynia and thermal hyperalgesia in the CCI model of neuropathic pain. These 

effects were associated with elevated 2-AG and decreased free arachidonic acid in whole brain. 

However, these inhibitors produced differential effects on locomotor activity at doses that 

produced full inhibition of MAGL.  

Each MAGL inhibitor reversed CCI-induced bilateral allodynia and thermal hyperalgesia. 

MJN110 was approximately 42 fold more potent than JZL184. The onset of the effects for each 

drug was 1 h, but MJN110 had a longer duration of action than JZL184. Pharmacokinetic 

differences between these drugs may account for the quicker onset of peak antinociceptive 

effects of MJN110 than the maximal effects of JZL184. The anti-allodynic effects of each 

inhibitor are likely mediated by 2-AG at cannabinoid receptors, as cannabinoid receptor 

antagonists blocked these anti-allodynic effects. However, given that 2-AG is a major source of 

arachidonic acid synthesis in brain (Nomura et al., 2011), consequences related to reductions in 

this lipid may play a contributory role. For example, MAGL inhibition results in decreased levels 

of prostaglandins (Normura et al., 2011), which are known to play an important role in 

inflammatory processes (Vane, 1971). In contrast, neither of the MAGL inhibitors increased 

levels AEA, PEA, or OEA in brain.  

In the present study, the anti-allodynic effects of both JZL184 and MJN110 required 

activation of CB1 and CB2 receptors. Likewise, other reports have demonstrated that both 

cannabinoid receptors play a necessary role in the antinociceptive effects of JZL184 in 

neuropathic pain models (Woodhams et al., 2012; Guindon et al., 2013). The current findings 

demonstrating that CB2 receptors play a necessary role in the mediation of the anti-allodynic 
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effects of the MAGL inhibitors are divergent with previous mouse CCI studies from our 

laboratory in which the anti-allodynic effects of JZL184 and KML29 (Kinsey et al., 2009; 

Kinsey et al., 2013; Ignatowska-Jankowska et al., 2014) were mediated by CB1 receptors, while 

CB2 receptors did not play a necessary role. A key methodological difference between our 

previous and present studies is the type of suture used to ligate the sciatic nerve. The previous 

studies utilized silk sutures that elicited unilateral allodynia of the nerve-injured paw (Kinsey et 

al., 2009; Kinsey et al., 2010; Kinsey et al., 2011; Kinsey et al., 2013), while in the present study, 

we utilized chromic gut suture that led to a bilateral allodynia. Reports of CCI-induced allodynia 

in rodents vary between unilateral and bilateral allodynia depending on the use of silk or chromic 

gut suture material, respectively (Paulson et al., 2000; Milligan et al., 2006; Jancalek et al., 

2010). Accordingly, the bilateral allodynia resulting from chromic gut suture may have elicited 

an increased inflammatory response that was ameliorated by 2-AG stimulation of CB2 receptors. 

Indeed, CB2 receptor stimulation has been found to reduce levels of proinflammatory cytokines 

and secondary signaling molecules associated with neuropathic pain as well as increase levels of 

the anti-inflammatory cytokine IL-10 (Wilkerson et al., 2012).  

In contrast to the necessary role of both cannabinoid receptors in mediating the anti-

allodynic effects of JZL184 and MJN110, reversal of CCI-induced thermal hyperalgesia required 

only the CB1 receptor, while the CB2 receptor was dispensable. Thus, the CB2 receptor plays 

distinct roles in these two hallmark components of neuropathic pain, which is likely related to 

different mechanisms subserving the two pain modalities. Thermal hypersensitivity is mediated 

by lightly myelinated a-δ and myelinated C fibers, while mechanical allodynia is mediated by 

heavily myelinated a-β fibers (Woolf and Mannion, 1999; Costigan et al., 2009). A disconnect 

between sensory and thermal alterations in pain modalities has been previously reported in a rat 

model of peripheral IL-1β induced allodynia and thermal hyperalgesia. In these studies a protein 

kinase A inhibitor fully blocked allodynia, but did not alter thermal hyperalgesic responses (Kim 
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et al., 2014). Likewise, in several animal models of pain, TRPV-1 antagonists are sufficient to 

block or reverse thermal hyperalgesia without producing anti-allodynic effects (Urano et al., 

2012; Kim et al., 2014). Therefore, the underpinnings of observed behavioral measurements of 

allodynia and thermal hyperalgesia are complex and warrant further studies.  

Each MAGL inhibitor fully substituted for CP55,940 in the drug discrimination assay, 

which is in contrast to the effects of MAGL inhibitors in previously reported drug discrimination 

studies. Specifically, the selective MAGL inhibitor KML29 did not substitute for THC 

(Ignatowska-Jankowska et al., 2014), which indicates differences between discriminative 

stimulus effects of those compounds. Moreover, JZL184 only partially substituted for THC 

(Long et al., 2009b, Wiley et al., 2014); however, the maximum doses of JZL184 tested in these 

respective prior studies were 40 mg/kg and 30 mg/kg. Higher doses were not assessed in those 

studies because of solubility constraints. However, in the present study, we found that 

administration of 100 mg/kg JZL184 in a double volume suspension fully substituted for 

CP55,940.  The finding that MJN110 was more potent than JZL184, is consistent with its lower 

IC50 for MAGL inhibition (Chang et al., 2012; Niphakis et al., 2013). For each inhibitor, 

substitution/partial substitution occurred at doses that also elicited significant increases of brain 

2-AG, but not AEA, and in each case, interoceptive effects were blocked by rimonabant. 

Although brain endocannabinoid levels were not assessed following 100 mg/kg JZL184, these 

results are consistent with the notion that the CP55,940-like discriminative stimulus effects of 

these MAGL inhibitors were mediated by 2-AG activation of the CB1 receptor.  

JZL184 has previously been found to produce a subset of effects in the tetrad assay (Long 

et al., 2009a; Long et al., 2009b; Ignatowska-Jankowska et al., 2014), a paradigm that has been 

used to infer cannabimimetic activity (Little et al., 1988). It is important to note that cannabinoid 

receptor agonists are generally more potent in the drug discrimination paradigm than the tetrad 

assay (Wiley et al., 1995a; Wiley et al., 1995b), which is consistent with the current study. 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on March 11, 2015 as DOI: 10.1124/jpet.114.222315

 at A
SPE

T
 Journals on N

ovem
ber 15, 2019

jpet.aspetjournals.org
D

ow
nloaded from

 

http://jpet.aspetjournals.org/


  JPET #222315 

19 
 

Specifically, JZL184 produced a small increase in the tail withdrawal latencies (Long et al., 

2009) and decreases in spontaneous locomotor activity. Likewise, here we found that MJN110 

produced a low magnitude of effect in the warm water tail withdrawal test. Interestingly, 

MJN110 did not produce hypomotility, but significantly increased running speed during the first 

10 min of the test, which led to concomitant increases in distance travelled. Moreover, MJN110 

did not produce hypothermic effects. The observations that MJN110 increased running speed are 

reminiscent with studies showing that low doses of THC and CP55,940 stimulate locomotor 

behavior (Anderson et al., 1975; Evans et al., 1976; McGregor et al., 1996).  

As JZL184 and MJN110 elevated 2-AG in whole brain to a similar degree, the cause of 

the differential effects of these drugs on locomotor activity remains an open question. One 

possibility is related to their off-target effects. Specifically, JZL184 inhibits FAAH, albeit with 

considerable less potency than its inhibition of MAGL (Long et al., 2009b). Nonetheless, acute 

administration of JZL184 does not lead to an increase in brain AEA levels. MJN110 also inhibits 

alpha/beta hydrolase domain 6 (ABHD6) (Niphakis et al., 2013), a serine hydrolase that is post-

synpatically located and known to metabolize 2-AG (Blankman et al., 2007). Another possibility 

is that pharmacokinetic differences may have affected absorption and distribution of each drug. 

Accordingly, these drugs may have led to differential rates of 2-AG elevation in specific neural 

circuits that mediate locomotor activity.  

In conclusion, MAGL inhibitors reliably reverse nociceptive behaviors in the CCI model 

of neuropathic pain with reduced cannabimimetic side effects. While both JZL184 and MJN110 

produced cannabimimetic interoceptive effects in the drug discrimination paradigm, they 

produced opposing effects on locomotor behavior. In particular, MJN110 reversed nociceptive 

behavior in the CCI model of neuropathic pain with a two fold greater potency than required to 

substitute for CP55,940 in the drug discrimination paradigm, and did not produce hypomotility, 

catalepsy, or hypothermia. More generally, the present study taken together with previous 
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work (Long et al., 2009b; Kinsey et al., 2009; Schlosburg et al., 2010; Guindon et al., 2011; 

Guindon et al., 2013; Kinsey et al., 2013; Ignatowska-Jankowska, 2014) suggests that MAGL 

inhibition represents a promising strategy to alleviate neuropathic pain with decreased incidence 

of cannabimimetic side effects. 
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Figure Legends 

Figure 1. JZL184 and MJN110 reverse CCI-induced allodynia and thermal hyperalgesia in dose-

related fashions at their optimal time points, which were 3 h and 1 h, respectively. Von Frey 

filaments were used to test mechanical allodynia in the ipsilateral paw (A) and contralateral paw 

(B). Immediately following allodynia assessment, thermal hyperalgesia was assessed in the hot 

plate assay (C). Filled symbols denote significance from CCI + vehicle. Data reflect mean ± 

SEM, n = 5-7 mice per group.  

Figure 2. The anti-allodynic and anti-thermal hyperalgesic effects of MAGL inhibitors are 

differentially altered by blockade of CB1 and CB2 receptors. Rimonabant (SR1) and SR144528 

(SR2) block anti-allodynic effects of (A) JZL184 (40 mg/kg), and (B) MJN110 (1.25 mg/kg). 

(C) Rimonabant (3 mg/kg), but not SR144528 (3 mg/kg), blocks anti-thermal hyperalgesic 

effects of 40 mg/kg i.p. JZL184. (D) Rimonabant, but not SR144528, blocks anti-thermal 

hyperalgesic effects of MJN110 (1.25 mg/kg). Ipsilateral paw data only are displayed for A,B.  

*** p<0.0001, ** p<0.005, * p < 0.05 vs. CCI vehicle+vehicle, ### p<0.0001, ## p<0.001, # 

p<0.05 vs. CCI vehicle+MAGL inhibitor. Data reflect mean ± SEM, n = 5-7 mice per group. 

Horizontal lines spanning across the ordinates reflect sham values (top lines) and CCI values 

(bottom lines). 

Figure 3. MAGL inhibition with JZL184 (4, 16, 40, 100 mg/kg, n = 7 mice per dose), and 

MJN110 (0.25, 0.5, 1.25, 2.5 mg/kg, n = 9 mice per dose) produced dose-related substitution for 

the potent, synthetic cannabinoid receptor agonist CP55,940 in mice trained to discriminate 

CP55,940 from vehicle (A). Rimonabant (SR1, 1 mg/kg) blocked substitution produced by 

JZL184 (40 mg/kg), and MJN110 (2.5 mg/kg) (A). JZL184 did not produce significant changes 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on March 11, 2015 as DOI: 10.1124/jpet.114.222315

 at A
SPE

T
 Journals on N

ovem
ber 15, 2019

jpet.aspetjournals.org
D

ow
nloaded from

 

http://jpet.aspetjournals.org/


  JPET #222315 

31 
 

in rates of responding, while MJN110 at high doses increased response rates (B). Rimonabant 

produced significant decrease in rates of responding. Significant changes as compared to vehicle-

treated mice are denoted as filled symbols (p < 0.05). Data shown as mean ± SEM. 

Figure 4. The MAGL inhibitors JZL184 and MJN110 elicit bidirectional effects on locomotor 

activity of mice. JZL184 (16 and 40 mg/kg) produced signfiicant decreases in distance travelled 

(A) and time spent mobile (B), but did not affect average running speed (C). MJN110 (1.25 and 

2.5 mg/kg) increased running speed (C) and distance travelled (A), while time mobile was 

unaffected (B). Filled symbols denote significance from vehicle (p < 0.05). Data shown as mean 

± SEM, n = 7-13. 

Figure 5. JZL184 (4, 16, 40 mg/kg) and MJN110 (0.25, 1.25, 2.5, 5 mg/kg) produced significant 

increases in 2-arachidonoylglycerol (2-AG) concentration (A) and concomitant reductions in 

arachidonic acid (AA) levels (B) in the whole brain of mice. Significant changes as compared to 

vehicle-treated mice are marked with filled symbols (p < 0.01). Data shown as mean ± SEM, n = 

7-8 mouse brains per group. 
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