Sigma-1 receptor antagonism restores injury-induced decrease of voltage-gated Ca\(^{2+}\) current in sensory neurons

Bin Pan, Yuan Guo, Wai-Meng Kwok, Quinn Hogan, Hsiang-en Wu

Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin (B.P., Y.G., W.-M. K., Q.H., H.-E.W.); Department of Anesthesiology, Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin (Q.H.)
Running title: Sigma-1 receptor regulates I_{Ca} in sensory neurons.

*Corresponding author:

Hsiang-en Wu, M.D.

Medical College of Wisconsin

Department of Anesthesiology, Research

8701 Watertown Plank Road, MEB M4280

Milwaukee, WI 53226, U.S.A.

Phone: (414) 955-5663; Fax: (414) 955-6507

e-mail: hwu@mcw.edu

Number of text pages: 34

Number of tables: 1

Number of figures: 6

Number of references: 60

Number of words in Abstract: 200

Number of words in Introduction: 466

Number of words in Discussion: 1488

List of abbreviations: BD1047, N-[2-(3,4-Dichlorophenyl)ethyl]-N-methyl-2-(dimethylamino)ethylamine dihydrobromide; BD1063, 1-[2-(3,4-Dichlorophenyl)ethyl]-4-m
ethylpiperazine dihydrochloride; DH, dorsal horn; DRG, dorsal root ganglion; DTG, 1,3-Di-(2-tolyl)guanidine; G_{max}, maximum channel conductance; GVIA, ω-conotoxin GVIA; HVA, high voltage-activated; I_{Ca}, Ca^{2+} current; I_{max}, maximal current; L4, the 4th lumbar dorsal root ganglion; L5, the 5th lumbar dorsal root ganglion; LVA, low voltage-activated; MVIIC, ω-conotoxin MVIIC; $\sigma_{1\text{R}}$, sigma-1 receptor; SNL, spinal nerve ligation; $V_{1/2}$, the voltage at which current is half maximal; VGCC, voltage-gated calcium channel.

Recommended section assignment: Neuropharmacology
Abstract

Sigma-1 receptor (σ1R), an endoplasmic reticulum-chaperone protein, can modulate painful response after peripheral nerve injury. We have demonstrated that voltage-gated calcium current is inhibited in axotomized sensory neurons. We examined whether σ1R contributes to the sensory dysfunction of voltage-gated calcium channel (VGCC) after peripheral nerve injury through electrophysiological approach in dissociated rat dorsal root ganglion (DRG) neurons. Animals were received either skin-incision (Control) or spinal nerve ligation (SNL). Both σ1R agonists, (+)pentazocine (PTZ) and 1,3-Di-(2-tolyl)guanidine (DTG), dose-dependently inhibited calcium current (I_{Ca}) with Ba^{2+} as charge carrier in Control sensory neurons. The inhibitory effect of σ1R agonists on I_{Ca} was blocked by σ1R antagonist, BD1063 or BD1047. PTZ and DTG showed similar effect on I_{Ca} in axotomized 5th DRG neurons (SNL L5). Both PTZ and DTG shifted the voltage-dependent activation and steady-state inactivation of VGCC to the left and accelerated VGCC inactivation rate in both Control and axotomized L5 SNL DRG neurons. The σ1R antagonist, BD1063 (10 μM), increases I_{Ca} in SNL L5 neurons but had no effect on Control and non-injured 4th lumbar neurons in SNL rats. Together, the findings suggest that activation of σR1 decreases of I_{Ca} in sensory neurons and may play a pivotal role in pain generation.
Introduction

Once identified as an opioid receptor subtype, sigma-1 receptor (σ1R) is now recognized as an intracellular ligand-regulated chaperone protein that resides at the mitochondria-associated endoplasmic reticulum membrane (MAM) (Hayashi and Su, 2007, Su et al., 2010). After activation, σ1R traffics to various subcellular compartments including the plasmalemma and regulates diverse functions (Su et al., 2010). The σ1R is found in a range of tissues, including the central nervous system (Alonso et al., 2000, Matsumoto, 2007), where σ1R modulation of neuronal ion channels and activity is associated with neurological and psychiatric conditions (Kourrich et al., 2012). We have recently demonstrated that σ1R is also present in the peripheral nervous system, in both sensory neurons and satellite glial cells of the dorsal root ganglion (DRG) (Bangaru et al., 2013). The σ1R has been shown to modulate opioid activity, by which σ1R activation reduces opioid analgesia (Chien and Pasternak, 1994), while σ1R blockade potentiates opioid analgesia (Chien and Pasternak, 1995, Mei and Pasternak, 2002). A direct involvement of σ1R in pain processing is also evident by modulation of hyperalgesic responses after nerve injury. Specifically, intrathecal injection of σ1R antagonists, such as BD1047 or S1RA, reduces painf behavior after peripheral nerve injury (Roh et al., 2008b, Romero et al., 2012), whereas σ1R knockout mice reduces central sensitization and diminishes hyperalgesic responses after injury (de la Puente et al., 2009). Additionally, blockade of σ1R can prevent chemotherapy-induced neuropathic pain (Nieto et al., 2012). Finally, formalin and capsaicin induced inflammation pain is attenuated by σ1R knockout and by σ1R antagonist administration (Cendan et al., 2005, Entrena et al., 2009). Together, these findings suggest that σ1R plays an important role in pain modulation.

Voltage-gated calcium channels (VGCCs) control critical neuronal functions including development, excitability, and synaptic transmission (Catterall, 2011). The σ1R is a recognized
component of homeostatic system regulating cytoplasmic Ca\(^{2+}\) concentration (Hayashi et al., 2000, Hayashi and Su, 2007, Kourrich et al., 2012). Specifically, \(\sigma_1R\) agonists inhibit activity-induced Ca\(^{2+}\) influx through direct interactions with L-type VGCCs (Hayashi et al., 2000, Tchedre et al., 2008, Mueller et al., 2013). Our previous findings demonstrate that painful peripheral nerve injury decreases \(I_{Ca}\) through sensory neuron VGCCs (Hogan et al., 2000, McCallum et al., 2006), and increases neuronal excitability (Lirk et al., 2008). Thus, it is possible that \(\sigma_1R\) activation is a component of the processes leading to neuropathic pain. Since this hypothesis has not previously been tested, we examined the regulation of VGCC function by \(\sigma_1R\) activation in sensory neurons using the spinal nerve ligation (SNL) model of neuropathic pain (Kim and Chung, 1992). This model results in two populations of neurons, specifically the fifth lumbar (L5) DRG neurons that are directly axotomized by the ligation, and the L4 neurons whose peripheral processes are exposed to the inflammatory effects of the degenerating L5 axonal fragments.
Materials and Methods

Animals. All methods and use of animals were approved by the Medical College of Wisconsin Institutional Animal Care and Use Committee. Male Sprague-Dawley rats (Taconic Farms Inc., Hudson, NY) were housed individually in a room maintained at 22 ± 0.5°C and constant humidity (60 ± 15%) with an alternating 12hr light-dark cycle. Food and water were available ad libitum throughout the experiments.

Nerve injury. Rats weighing 125 to 150g were subjected to SNL modified from the original technique (Kim and Chung, 1992). Specifically, rats were anesthetized with 2% isoflurane in oxygen and the right paravertebral region was exposed. The L6 transverse process was removed, after which the L5 and L6 spinal nerves were ligated with 6-0 silk suture and transected distal to the ligature. To minimize non-neural injury, no muscle was removed, muscles and intertransverse fascia were incised only at the site of the two ligations, and articular processes were not removed. The muscular fascia was closed with 4-0 resorbable polyglactin sutures and the skin closed with staples. Control animals received skin incision and closure only. After surgery, rats were returned to their cages and kept under normal housing conditions with access to pellet food and water ad lib. In all animals subjected to nerve injury, anatomically correct SNL was confirmed at the time of tissue harvest.

Sensory testing. We measured the incidence of a pattern of noxious stimulus-induced hyperalgesic behavior, which is a specific neuropathic-related pain behavior that we have previously documented to be associated with conditioned place avoidance (Hogan et al., 2004, Wu et al., 2010). Thus, noxious stimulation (22G spinal needle) was used as only inclusion criterion after peripheral nerve injury. On 3 different days between 12d and 17d after surgery, right plantar skin was touched (10 stimuli/test) with a 22G spinal needle with adequate pressure
to indent but not penetrate the skin. Whereas control animals respond with only a brief reflexive withdrawal, rats following SNL may display a complex hyperalgesia response that includes licking, chewing, grooming and sustained elevation of the paw. The average frequency of hyperalgesia responses over the 3 testing days was tabulated for each rat. To assure high selectivity on effects associated with hyperalgesia (Hogan et al., 2004), only rats that displayed a hyperalgesia-type response after at least 20% of stimuli were used further after SNL in this study, which excludes approximately 35% of animal subjects. Since such nonresponder animals may result from various causes, including inter-animal anatomic variation and sensory testing inconsistency, nonresponder animals were not studied further.

Neuron isolation and plating. Neurons were rapidly harvested from L4 and L5 DRGs during isoflurane anesthesia and decapitation 21 to 28 days after SNL or skin sham surgery. This interval was chosen since hyperalgesia is fully developed by this time (Hogan et al., 2004). Ganglia were incubated in 0.5mg/ml Liberase TM (Roche, Indianapolis, IN) in DMEM/F12 with glutaMAX (Life Technologies) for 30min at 37 °C, followed with 1 mg/ml trypsin (Sigma-Aldrich, St. Louis, MO) and 150 Kunitz units/ml DNase (Sigma-Aldrich) for another 10min. After addition of 0.1% trypsin inhibitor (Type II, Sigma-Aldrich), tissues were centrifuged, lightly triturated in neural basal media (1X) (Life Technologies) containing 2% (v:v) B27 supplement (50x) (Life Technologies), 0.5mM glutamine (Sigma-Aldrich), 0.05mg/ml gentamicin (Life technologies) and 10ng/ml nerve growth factor 7S (Alomone Labs Ltd., Jerusalem, Israel). Cells were then plated onto poly-L-lysine (70-150kDa, Sigma-Aldrich) coated glass cover slips (Deutsches Spiegelglas, Carolina Biological Supply, Burlington, NC) and incubated at 37°C in humidified 95% air and 5% CO₂ for at least 2 hours and were studied 3-8hr after dissociation.
Solutions and agents. Unless otherwise specified, the bath contained Tyrode’s solution (in mM): NaCl 140, KCl 4, CaCl₂ 2, Glucose 10, MgCl₂ 2, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) 10, with an osmolarity of 297-300 mOsm and pH 7.40. The σ₁R agonist, (+)-pentazocine (PTZ) (Su et al., 2010), was obtained from the National Institute on Drug Abuse (Baltimore, MD, USA). Other σ₁R ligands including 1,3-Di-(2-tolyl)guanidine (DTG), N-[2-(3,4-Dichlorophenyl)ethyl]-N-methyl-2-(dimethylamino)ethylamine dihydrobromide (BD1047), and 1-[2-(3,4-Dichlorophenyl)ethyl]-4-methylpiperazine dihydrochloride (BD1063) (Su et al., 2010) were purchased from Tocris (Ellisville, MO). Selective VGCC subtype antagonists used included nimodipine (Calbiochem, Billerica, MA) to block L-type current, with a dose (5 μM) that has been determined in previous studies (Oliveria et al., 2007, Wu et al., 2008, Duncan et al., 2013) and fully blocks L-type currents (Xu and Lipscombe, 2001). N-type current was blocked with ω-conotoxin GVIA (GVIA, 200nM; Tocris, Ellisville, MO) (McCallum et al., 2011), ω-conotoxin MVIIC (MVIIC, 200nM; Tocris, Ellisville, MO) was used to block both N- and P/Q-type current (McCallum et al., 2011), and SNX-482 (200nM; Tocris, Ellisville, MO) was used to block R-type current (McCallum et al., 2011). Stock solutions of DTG, BD1063, and nimodipine were dissolved in DMSO, and subsequently diluted in the relevant bath solution such that final bath concentration of DMSO was 0.2% or less, which does not effect cytoplasmic Ca²⁺ concentration (Gemes et al., 2011). PTZ and other VGCC antagonists were dissolved in water to make stock solutions.

Whole-cell patch-clamp electrophysiological recording. Voltage and currents were recorded in small to medium size neurons (33.8±0.2 μm, n=222), using the whole cell configuration of the patch-clamp technique. Patch pipettes (2-5 MΩ) were formed from borosilicate glass (Garner Glass Co., Claremont, CA) using a micropipette puller (P-97; Sutter Instrument), and were then fire polished. Currents were recorded with an Axopatch 200B.
amplifier (Molecular Devices), filtered at 2 kHz through a 4-pole Bessel filter, and digitized at 10 kHz with a Digidata 1320 A/D interface and pClamp 9 software (Molecular Devices) for storage on a personal computer. After achieving giga-ohm seal and breakthrough, membrane capacitance was determined and access resistance was compensated (60-85%). Neurons with 10 MΩ access resistances after breakthrough were discarded. Experiments were performed 3-5 min after breakthrough, and at room temperature (25°C).

Seals were achieved in Tyrode’s solution. Voltage-induced currents flowing through VGCCs, referred to as \(I_{\text{Ca}} \) although \(\text{Ba}^{2+} \) is the charge carrier, were recorded using an extracellular solution containing (in mM): 2 \(\text{BaCl}_2 \), 4.8 \(\text{CsCl} \), 2 \(\text{MgCl}_2 \), 5 4-aminophyridine, 132 NMDG, 10 HEPES, 5 D-glucose, pH of 7.4, with an osmolarity of 300 mOsm. The internal pipette solution contained (in mM): 110 \(\text{CsCl} \), 20 TEACl, 5 Mg-ATP, 0.4 \(\text{Li}_4\text{GTP} \), 0.5 EGTA, 1 \(\text{CaCl}_2 \), 1 \(\text{MgCl}_2 \), 0.1 cAMP and 10 HEPES, pH of 7.2, with an osmolarity of 300 mOsm. To selectively record low voltage-activated (LVA) T-type currents, a pipette solution that contained fluoride to facilitate high-voltage-activated \(I_{\text{Ca}} \) rundown was used (Fischer et al., 2014), which contained (in mM) 135 tetramethylammonium hydroxide, 10 EGTA, 40 HEPES and 2 \(\text{MgCl}_2 \), pH of 7.2 adjusted with hydrofluoric acid with an osmolarity of 300 mOsm. The free concentration for \(\text{Ca}^{2+} \) was calculated to be 211nM using Maxchelator (http://maxchelator.stanford.edu). Voltage clamp protocols were used to measure whole-cell \(I_{\text{Ca}} \). Peak current amplitude was used in constructing current-voltage (I-V) relationship, steady-state activation and inactivation as protocols are as described in relevant results and figure legends in the text. Current that remained after the application of \(\text{Cd}^{2+} \) (200 \(\mu \text{M} \)) at the end of each experiment was subtracted from measured currents to account for currents other than \(I_{\text{Ca}} \), including leak currents. Currents are normalized against cell capacitance (pA/pF) to account for neuronal size. Data were included only from neurons with \(I_{\text{Ca}} \) rundown of less than 25% during the entire recording period. The 1000µl recording chamber was superfused by gravity-driven flow at a rate of 3ml/min.
Statistical Analysis. To characterize whole cell current and voltage dependence of \(I_{\text{Ca}} \) each cell was fit to the following Boltzmann equations: \(I = G_{\text{max}} \frac{(V-V_R)}{1 + \exp \left(\frac{V-V_{1/2}}{K}\right)} \) for voltage-dependent activation; \(\frac{I}{I_{\text{max}}} = \frac{1}{1 + \exp \left(\frac{V-V_{1/2}}{K}\right)} \) for steady-state inactivation, where \(I \) is the current, \(G_{\text{max}} \) is the maximum conductance, \(I_{\text{max}} \) is the maximum current, \(V_{1/2} \) is the voltage at which current is half maximal, \(K \) is a slope factor describing voltage dependence of conductance, \(V_R \) is the reversal potential for current, and \(V \) is the membrane potential. Steady-state activation and inactivation data were normalized to \(G_{\text{max}} \) and \(I_{\text{max}} \), respectively. Data from whole-cell patch clamp recordings were analyzed with Axograph X (version 1.4.4, Axograph Sciences, New Zealand). Prism (version 6.1, GraphPad Software, Inc., San Diego, CA) was used to perform paired or unpaired Student’s t-test. Non-linear regression was used to fit the dose-response curve to calculate the EC\(_{50}\). Unless specified, data were derived from at least 3 DRGs for every group. Data are reported as mean±SEM. A \(P \) value less than 0.05 was considered significant.
Results

A total of 41 rats were used for the study, of which 26 were Control animals and 15 were SNL. The frequency of hyperalgesic responses after noxious punctate mechanical stimulation was 38±5% in SNL rats compared to 0% in Control rats (P<0.001). Within a single testing session, we saw no pattern of accumulating sensitivity or accommodation to the stimuli. The accuracy of the SNL surgery was confirmed at the time of tissue harvest in all SNL animals. While the SNL model alters pain behavior within a few days (Kim and Chung, 1992, Hogan et al., 2004), we have chosen to focus on the chronic phase (21 days) of neuropathic pain. This time point also allowed us to correlate our findings with previous study that had used that time point (Bangaru et al., 2013).

σ1R activation diminishes Ica through VGCC. We have shown that σ1R is present throughout the DRG including sensory neurons and satellite glial cells (Bangaru et al., 2013). To explore whether Ica in sensory neurons is modulated by σ1R, we first used a step voltage protocol. In Control DRG neurons, we found that both the PTZ and DTG reduced Ica with in a dose-dependent fashion (Fig. 1A-D). The EC50 for Ica blockade was 153.5±0.0 for PTZ and 237.7±0.1 μM DTG, with maximal observed blockade of approximately 74% and 70% (Fig. 1C and D). The average time to reach peak effect was 109±14s for PTZ and 192±22s for DTG. Both agonists were reversible with 97.6±1.1% recovery of Ica in 85±5s during washout of PTZ, and 94.8±1.6% in 128±15s for DTG. The rapid onset and incomplete inhibition of Ica are consistent with previous reports of σ1R agonist actions in other neuronal tissues (Zhang and Cuevas, 2002, Tchedre et al., 2008). Overall, these results reveal σ1R regulation of Ica in DRG neurons.

For further experiments, we chose to use a low to medium range doses of PTZ (50µM and 100µM) and DTG (100µM) in order to replicate the approximately 30% decrease of Ica in
sensory neuron somata after axotomy in the SNL model (McCallum et al., 2006), and to avoid possible non-specific effects of high dose exposure to σ1R agonists such as DTG (Matsumoto et al., 1995). To validate that the observed action of PTZ and DTG on I_{Ca} was via activation of the σ1R, we tested whether their effects were sensitive to blockade selective σ1R antagonists (BD1047 and BD1063) (Matsumoto et al., 1995, Su et al., 2010).

To avoid possible non-selective effects of higher doses BD1047 and BD1063, a low dose of antagonist i.e. 10µM (Mueller et al., 2013) was used, which itself has no effect on I_{Ca} per se. We observed that DTG modulation of I_{Ca} was prevented by prior incubation with BD1063 (10µM) (Fig. 2A). Although PTZ modulation of I_{Ca} was incompletely blocked by BD1063, we confirmed the specificity of PTZ by blockade using a related σ1R antagonist BD1047 (10µM) (Fig. 2B). Both antagonists had minimal direct effect on I_{Ca} (BD1047, 3.8±2.6% inhibition, n=5; BD1063, 3.2±2.1% inhibition, n=5). These data indicate that PTZ and DTG modulate I_{Ca} through the activation of σ1R.

Mechanism of the σ1R activation on I_{Ca} kinetics. From I-V relationship, whole cell I_{Ca} diminished significantly after PTZ (50µM) and DTG (100µM) bath perfusion (Fig. 3A), with peak current density diminished from -132.1±5.7 at baseline compared to -95.1±6.6 pA/pF (p<0.05) after PTZ treatment, and from -145.6±18.8 at baseline compared to -101.3±7.8 pA/pF (p<0.05) after DTG treatment. Boltzmann analysis revealed a reduction of G_{max} of approximately 25% by PTZ and approximately 31% by DTG (Fig. 3A). We further characterized their effect on voltage-dependent activation, which showed a hyperpolarized shift of activation (Fig. 3B), in which V_{1/2} was reduced from -10.8±1.7mV at baseline to -14.4±1.7mV after PTZ (p<0.01) and from -10.9±2.4mV to -14.7±2.0mV after DTG compared to (p<0.05). There was no effect of either agent on the Boltzmann slope factor K (baseline 3.52±0.16 vs. 3.47±0.29 for PTZ; baseline 2.88±0.26 vs. 2.82±0.23 for DTG).
To investigate the effect of \(\sigma 1R \) ligands on VGCC kinetics, we further characterized the effects of PTZ and DTG on steady-state inactivation, which showed a shift in a hyperpolarizing direction (V\(_{1/2}\) at baseline of -28.4±2.0mV vs. -38.0±2.8mV after PTZ, p<0.01; baseline -26.4±1.5mV vs. -33.7±2.5mV for DTG, p<0.01) (Fig. 3C), while the Boltzmann slope factor \(\kappa \) did not change (baseline -15.09±0.80 vs. -14.96±0.47 for PTZ; baseline -15.85±0.99 vs. -16.13±1.37 for DTG).

The kinetics of inactivation was next studied during a simple step voltage command and was fit with a two-exponential function (\(\tau_1 \) and \(\tau_2 \)). Although no significant change was noted in the initial fast phase (baseline 0.17±0.02s vs. 0.15±0.02s after PTZ; baseline 0.14±0.01s vs. 0.13±0.01s after DTG), both PTZ and DTG decreased the slow phase constant (\(\tau_2 \)) (Fig. 3D).

Together, these findings indicate that \(\sigma 1R \) activation in sensory neurons reduces \(G_{\text{Max}} \), reduces the current available at each \(V_m \), and accelerates the rate of \(I_{\text{Ca}} \) inactivation, which will have the effect of decreasing \(I_{\text{Ca}} \) during neuronal function. However, \(\sigma 1R \) ligands also result in VGCC activation at less depolarized \(V_m \), which would lead to greater current generation with neuronal firing.

Selectivity of the \(\sigma 1R \) effect on VGCC subtypes. Sensory neurons express a range of high-voltage-activated channel subtypes, including a predominance of N-type and L-type, and a smaller representation of P/Q- and R-type currents, as well as LVA T-type currents (McCallum et al., 2011). In order to identify the VGCC subtypes that contribute to the changes noted above, we employed step voltage commands and recorded the effects of PTZ (100\(\mu \)M) on \(I_{\text{Ca}} \) while selectively blocking channel subtypes. In neurons from Control animals, sensitivity to PTZ persisted during blockade of N-type currents (application of GVIA, 200nM, Fig. 4A) and during
blockade of L-type currents (nimodipine (5μM, Fig. 4B), demonstrating non-selectivity of σ1R regulation across VGCC subtypes and inhibition of the major HVA current subtypes in sensory neurons (McCallum et al., 2011). T-type I_{Ca}, isolated by blockade of HVA VGCCs and depolarizations to -30mV, also showed sensitivity to PTZ (Fig. 4C, D).

Effect of sensory neuron axotomy on σ1R regulation of I_{Ca}. σ1R antagonism attenuates behavioral manifestations of pain in experimental traumatic neuropathy (Roh et al., 2008b, Romero et al., 2012). Since, painful nerve injury is accompanied by reduction of I_{Ca} in axotomized sensory neurons (Hogan et al., 2000, McCallum et al., 2006), which in turn results in elevated sensory neuron excitability (Lirk et al., 2008), our new finding of σ1R regulation of I_{Ca} raises the possibility that σ1R activation contributes to pain after nerve injury by elevated sensitivity of injured neurons to σ1R agonists. To test the hypotheses, we determined if sensitivity of I_{Ca} to σ1R agonists is increased in injured neurons. Consistent with our previous findings (Hogan et al., 2000, McCallum et al., 2006), baseline I_{Ca} was depressed in axotomized L5 sensory neurons after SNL. Treatment of these neurons with PTZ (50μM) and DTG (100μM) further diminished I_{Ca} and G_{max} (Fig. 5A). Voltage dependence of activation was shifted in hyperpolarized direction by PTZ but not by DTG, while steady state inactivation was shifted left for both agonists (Fig. 5B and C). Slope factor K was unchanged except for a small increase for activation during DTG (baseline 3.14±0.35 vs. 3.80±0.41 for DTG; p<0.05). Kinetics of inactivation showed decreased τ_2 after PTZ and DTG administration, as well as decreased τ_1 after DTG (Fig. 5D). Thus, the ability of σ1R agonists to modulate I_{Ca} persists after neuronal injury. We further analyzed whether the size of these effects of σ1R activation are altered after injury. While most effects in injured neurons were comparable in scale to Control neurons, σ1R activation by DTG produced an enhanced shift of the V_{1/2} of steady state inactivation and
accelerated the slow phase of I_{Ca} inactivation (reduced τ_2) after axotomy (Table 1). This heightened action of σ_1R would have the effect of reducing I_{Ca} further in injured neurons. Whereas the σ_1R antagonist BD1063 did not affect peak I_{Ca} in Control and non-injured 4th lumbar (L4) neurons after SNL (Fig. 6A and B), we found increased peak I_{Ca} in SNL L5 neurons following σ_1R antagonism (Fig. 6C). This supports the view that ongoing σ_1R activation contributes to suppression of I_{Ca} in sensory neurons after injury.
Discussion

Our interest in identifying the functional effects of σ1R activation stems from our recognition of their expression in DRG sensory neurons (Bangaru et al., 2013), combined with behavioral studies demonstrating analgesia of σ1R blockade following nerve injury (Roh et al., 2008b, Romero et al., 2012). Several key findings emerge from our examination of σ1R effects in control and injured sensory neurons. We show that σ1R activation inhibits ICa through actions on multiple VGCC subtypes. Furthermore, nerve injury is accompanied by amplified σ1R suppression of VGCCs, based on the finding that σ1R antagonist augments ICa in SNL L5 but not in control neurons. We have noted prolonged hyperalgesia after SNL (at least 10 weeks, see (Kim and Chung, 1992)), but have not yet extended our σ1R analysis to this time frame. Together, these observations suggest that σ1R regulates Ca\(^{2+}\) influx during sensory neuron activity and participates in generating neuropathic pain.

In sensory neurons, L- and N-type currents contribute the majority of ICa (McCallum et al., 2011). A direct interaction between σ1R and L-type VGCC accounts for suppression of ICa in hippocampal and retinal ganglion neurons (Sabeti et al., 2007, Tchedre et al., 2008), while other observations show σ1R regulation of N- and P/Q-type as well in cortical neurons (Lu et al., 2012). We demonstrate that σ1R inhibits multiple VGCC subtypes in sensory neurons based on the findings that sensitivity of HVA to σ1R agonist remains during nimodipine and GIVA blockade and isolated T-type current can be inhibited by σ1R agonist. Activation of σ1R inhibits VGCCs but also alters their kinetics. Unlike other VGCCs inhibitors (Catterall, 2011), σ1R agonists decrease channel G\(_{\text{max}}\) but also shift the activation and inactivation curves in a hyperpolarized direction, as has also been observed in sympathetic and parasympathetic peripheral neurons (Zhang and Cuevas, 2002). The leftward shift of the voltage dependence of activation would generally result in larger currents during neuronal depolarization, although the
size of this shift is small. In contrast, the decreased G_{max}, hyperpolarized $V_{1/2}$ of inactivation, and accelerated I_{Ca} inactivation following σ1R activation may combine to substantially depress I_{Ca} during neuronal function. Together, it is likely that the action of σ1R on VGCCs results in an overall decrease of Ca^{2+} influx.

Why high doses ($\geq 100\mu\text{M}$) of σ1R agonists are required on voltage-gated ion channel (Church and Fletcher, 1995, Lupardus et al., 2000, Zhang and Cuevas, 2002) compared to its high receptor affinity (McCann et al., 1994, Matsumoto, 2007, Su et al., 2010) is not clearly understood. This could be due to the influence of the cellular environment such as σ1R binding partners, post-translational modifications, isoform variations in σ1R (Shioda et al., 2012), or direct interaction with the VGCC independent of the σ1R high affinity binding site (Church and Fletcher, 1995, Tchedre et al., 2008). Although, non-specific effects by high concentration σ1R agonist cannot be ruled out, blockade of σ1R agonist effects on I_{Ca} supports our view that agonist action on I_{Ca} represents a relevant specific interaction between σ1R and I_{Ca}.

The means by which σ1R controls Ca^{2+} channel function is unknown. Upon activation, σ1R relocates from MAM to plasmalemma (Su et al., 2010). This process requires approximately 10min for initiation of σ1R-dependent secondary signaling (Brent et al., 1997, Hayashi et al., 2000). Our observation of a much quicker onset time (2-3min) for σ1R activity suggests an effect at the level of the plasmalemma directly on VGCCs, as has also been shown in other tissues for VGCCs (Zhang and Cuevas, 2002, Tchedre et al., 2008) and voltage-gated K^+ channels (Wilke et al., 1999). There are two possible anatomic explanations for the rapid onset of σ1R agonist effects. Although σ1Rs are enriched in microsomal fractions, σ1Rs are also found in the plasmalemma, even in the absence of the known triggers of translocation (Alonso
et al., 2000). Alternatively, σ1R located in MAM may be positioned adequately close to the plasmalemma for rapid ligand activation. In addition to the rapid σ1R action, further evidence for a direct interaction between σ1R and VGCCs is the lack of an effect on the slope of voltage-dependent activation and steady-state inactivation of VGCCs, which would be expected if σ1R acted through signaling pathways such as G-protein and protein phosphorylation (Mavlyutov et al., 2010). Our data thus support a close proximity interaction between the σ1R and VGCCs.

A distinct feature of sensory neurons is that lowered inward ICa has the dominant, overriding effect of decreasing outward current through Ca2+-activated K+ channels, thus reducing afterhyperpolarization (AHP) and thereby increasing excitability (Malmberg and Yaksh, 1994). Following nerve trauma, ICa is reduced in DRG neurons (Hogan et al., 2000, McCallum et al., 2006), which leads to decreased activation of Ca2+-activated K+ currents. The resulting loss in AHP and reduced membrane input resistance leads to hyperexcitability of primary afferent fibers and enhanced pain (Sapunar et al., 2005, Lirk et al., 2008). The analgesic agents gabapentin and pregabalin, commonly used for neuropathic pain, also inhibit ICa (Hendrich et al., 2008, Patel et al., 2013), resulting in an apparent paradox. However, the roles of ICa are not uniform throughout the sensory neuron. At the dorsal horn (DH), ICa drives neurotransmission (Auer and Ibanez-Tallon, 2010), including that for pain pathways (Chen et al., 2009). Contrasting effects are found elsewhere (impulse generation and propagation) where repetitive firing is controlled by K+ channels activated by ICa (Berkefeld et al., 2010). Further complexity is introduced into the system since ICa controls neurotransmission in both the excitatory (EAA, neuropeptide) and inhibitory (GABA, Glycine) pathways in the DH (Bourinet et al., 2014), which in parallel compete for influence on the aggregate output of DH projection neurons. Thus, the final outcome of ICa loss cannot be easily anticipated from current understanding of integrated pain mechanisms.
Can the actions of σ1R on VGCCs account for the loss of \(I_{\text{Ca}} \) following nerve injury? Although expression of σ1R protein is decreased in axotomized sensory neurons (Bangaru et al., 2013), we show that σ1R agonists influence the function of \(I_{\text{Ca}} \) in injured neurons at a level equal to or greater than in control neurons (Table 1). From this, we infer that the per-receptor efficacy of σ1R signaling is amplified following injury, and that the intrinsic activity of σ1R antagonist is increased after axotomy. In addition, the sensitivity of \(I_{\text{Ca}} \) to σ1R blockade after injury (Fig. 6) reveals the possible persisting activity of an endogenous σ1R ligand, whereas Control neurons are unresponsive to σ1R blockade. The residual effects of an endogenous σ1R ligand after dissociation on \(I_{\text{Ca}} \) may result from persistence of the ligand bound to the σ1R, but also may be the consequence of persisting effects downstream from σ1R activation, such as elevated channel expression in the membrane or σ1R-triggered channel modification e.g. G-protein signaling (Tokuyama et al., 1997, Kim et al., 2010, Brimson et al., 2011). Neurosteroids such as pregnanolone are endogenous σ1R agonists (Maurice, 2004) and are tonic release after injury (Mensah-Nyagan et al., 2008), so these ligands may account for this observation that σ1R activation persists selectively in injured neurons, and may also contribute to sensory neuronal hyperexcitability (Sapunar et al., 2005). Supporting this view, allopregnanolone, a neurosteroid σ1R antagonist (Maurice, 2004), has been shown to have analgesic effect on neuropathic pain (Patte-Mensah et al., 2014). Additional supportive data show that intrathecal σ1R agonists elicit hypersensitivity (Roh et al., 2008a) while antagonist and σ1R knockout reduce injury-induced hypersensitivity (Roh et al., 2008b, Romero et al., 2012).

Both systemic and central administration of σ1R antagonists are effective in attenuating nociception after peripheral nerve injury (Roh et al., 2008b, Entrena et al., 2009, Bura et al., 2012, Romero et al., 2012). While systemically delivered σ1R can be expected to act on VGCCs...
throughout the body, and therefore have uncertain final consequences on pain due to the heterogeneous effects noted above, selective targeting of \(\sigma_1 \)R antagonism may allow specific actions. We predict that antagonism of sensory neurons \(\sigma_1 \)R at peripheral sites (including the DRG) may relieve pain by rescuing \(I_{\text{Ca}} \). Because of the complexity of \(I_{\text{Ca}} \) signaling in the dorsal horn, results may be harder to anticipate.

Together, our observations suggest a mechanism by which the \(\sigma_1 \)R may mediate neuropathic pain. Elevated endogenous \(\sigma_1 \)R ligand levels and amplified \(\sigma_1 \)R signaling combine to suppress \(I_{\text{Ca}} \) in injured sensory neurons. While decreased \(I_{\text{Ca}} \) might be expected to reduce neurotransmitter release in dorsal horn pain pathways and therefore result in analgesia, a different result is expected in the periphery, where \(I_{\text{Ca}} \) is required for natural suppression of repetitive firing via opening of \(\text{Ca}^{2+} \)-activated \(K^+ \) channels, and for filtering of high frequency pulse trains at the sensory neuron T-junction in the DRG (Hogan et al., 2008, Lirk et al., 2008). We have identified loss of \(I_{\text{Ca}} \) in sensory neuron somata as a reliable consequence of painful nerve injury (Hogan et al., 2000, McCallum et al., 2006, McCallum et al., 2011) that, like \(\sigma_1 \)R activation, acts through all VGCC subtypes. Thus, \(\sigma_1 \)R may provide a useful target for analgesia therapy in painful neuropathy.
Authors' contributions

Participated in research design: Pan, Kwok, Hogan, Wu.

Conducted experiments: Pan, Yuan, Wu.

Performed data analysis: Pan, Wu.

Wrote or contributed to the writing of the manuscript: Kwok, Hogan, Wu.
References

Hayashi T, Maurice T, Su TP (2000) Ca(2+) signaling via sigma(1)-receptors: novel regulatory mechanism affecting intracellular Ca(2+) concentration. J Pharmacol Exp Ther 293:788-798.

Hayashi T, Su TP (2007) Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell 131:596-610.

Roh DH, Kim HW, Yoon SY, Seo HS, Kwon YB, Kim KW, Han HJ, Beitz AJ, Na HS, Lee JH (2008b) Intrathecal injection of the sigma(1) receptor antagonist BD1047 blocks both mechanical allodynia and increases in spinal NR1 expression during the induction phase of rodent neuropathic pain. *Anesthesiology* **109**:879-889.

between sigma-1 receptors and the voltage-gated L-type calcium channel. *Invest Ophthalmol Vis Sci* **49**:4993-5002.

Footnotes:

This work was supported by the National Institutes of Health National Institute of Drug Abuse [Grant DA-K01-024751] (to H.-E. W.); and the National Institutes of Health National Institute of Neurological Disorders and Stroke [NS42150] (to Q.H. H.).
Figure legends:

Fig. 1. Sigma-1 receptor (σ1R) agonists inhibit voltage-gated calcium current in Control sensory neurons. After whole cell configuration, the \(I_{\text{Ca}} \) was measured with a square wave voltage command (holding potential at -90mV and step to 0mV for 100ms) using \(\text{Ba}^{2+} \) as charge carrier. PTZ (A) reduced \(I_{\text{Ca}} \) (sample traces top panel, averaged time data bottom panel) in a dose-related fashion (B), as did 1,3-Di-(2-tolyl)guanidine (DTG; C, D). N=4-10 for each concentration.

Fig. 2. Effect of PTZ and 1,3-Di-(2-tolyl)guanidine (DTG) on voltage-gated calcium current (\(I_{\text{Ca}} \)) is mediated by sigma-1 receptor (σ1R). After whole cell configuration, the \(I_{\text{Ca}} \) was measured with a square wave voltage command (holding potential at -100mV and step to 0mV for 50ms). Cells were pre-incubated with BD1047 or BD1063 for 15 min before PTZ and DTG administration. (A) Sample traces from Control animal showed that DTG (10μM) inhibited \(I_{\text{Ca}} \) and the inhibition was prevented by BD1063 (10μM). (B) Sample traces from Control animal showed that PTZ (100μM) inhibited \(I_{\text{Ca}} \) and the inhibition was prevented by BD1047 (10μM). Summary data of \(I_{\text{Ca}} \) inhibition were derived from the current density, which was normalized to its baseline current density. Mean±SEM; number in bars represents the sample size; ***p < 0.001.

Fig. 3. Sigma-1 receptor modulates kinetic properties of voltage-gated calcium channel (VGCC) in Control animals. (A) \(I_{\text{Ca}} \) was measured with a square wave voltage command (200ms; 10mV increment from -100 to 50mV; holding potential at -65mV). Average inward current density (pA/pF) against voltage relationship (I-V) elicited by PTZ (50μM) and 1,3-Di-(2-tolyl)guanidine (DTG) (100μM) were fit to a single Boltzmann function (see Methods). (B) Voltage-dependent activation of VGCC was derived from the I-V curve by Boltzmann analysis. (C) The steady-state inactivation of \(I_{\text{Ca}} \) was measured during a 4s square wave depolarization (-100mV to 30mV in
10mV increments) with I_{Ca} determined by a subsequent test pulse (20ms to 0mV). Results are normalized to maximal peak current (I/I_{max}). (D) A simple step protocol (-100mV to 0mV for 2s) was applied to measure the inactivation kinetics by a two exponential function (τ_1 and τ_2). Inset figures revealed summary data of maximal conductance (G_{max}, A), voltage at which current is half maximal ($V_{1/2}$, B and C), and inactivation constant (τ, D). Mean±SEM; number in bars represents the sample size; *p < 0.05, **p < 0.01; ***p < 0.001.

Fig. 4. Inhibition of sigma-1 receptor (σ_1R) agonists on voltage-gated calcium current (I_{Ca}) encompasses multiple I_{Ca} subtypes in Control sensory neurons. (A) In whole cell configuration, I_{Ca} was measured with a square wave voltage command (holding potential at -90mV and step to 0mV for 150ms). Sample current traces (top panel) and averaged data (bottom panel) show response to σ1R activation by pentazocine (PTZ, 100µM) after blockade of N-type channels with ω-conotoxin GVIA (GVIA, 200nM) (B) Similarly, sensitivity to PTZ is demonstrated after blockade of L-type channels with nimodipine (5µM). (C) T-type I_{Ca} was triggered by depolarizations from a holding potential at -100mV and step to -30mV after incubation (20 min) with R-type current blocker SNX-482 (200nM) and P/Q-type current blocker ω-Conotoxin MVIIC (200nM), and addition of L-type current blocker nimodipine (5µM) and GVIA (200nM) to the recording bath. These currents also showed sensitivity to PTZ. (D) Summary data. Mean±SEM; number in bars represents the sample size; **p < 0.01, ***p < 0.001.

Fig. 5. Sigma-1 receptor modulates kinetics of voltage-gated calcium channel (VGCC) in axotomized animals. After whole cell configuration, the current-voltage relationship (I-V), voltage-dependent activation, and steady-state inactivation of the I_{Ca} was measured as described in **Fig. 4** using Ba$^{2+}$ as charge carrier in spinal nerve ligated 5th lumbar (SNL L5) dorsal root ganglion (DRG) sensory neurons. (A) Average inward current density (pA/pF)
against voltage relationship (I-V) elicited by PTZ (50μM) and 1,3-Di-(2-tolyl)guanidine (DTG) (100μM) were fit to a single Boltzmann function (see Methods). (B) Voltage-dependent activation of VGCC was derived from the I-V curve. (C) In steady-state inactivation, V_{1/2} was shifted toward a hyperpolarization direction. (D) Sample traces showed that both PTZ and DTG administration decreased slow inactivation constant (τ2). Inset figures revealed summary data of maximal conductance (G_{max}, A), voltage at which current is half maximal (V_{1/2}, B and C), and inactivation constant (τ, D). Mean±SEM; number in bars represents the sample size; *p < 0.05, **p < 0.01, ***p < 0.001.

Fig. 6. Sigma-1 receptor (σ1R) antagonist, BD1063 (10μM), increased voltage-gated calcium current (I_{Ca}) in axotomized 5th (SNL L5) dorsal root ganglion (DRG) sensory neurons. After whole cell configuration, the I_{Ca} was measured with a square wave voltage command (holding potential at -100mV and step to 0mV for 20ms) using Ba^{2+} as charge carrier. Sample current traces (A and B) showed that BD1063 (10μM) did not affect I_{Ca} in Control and non-injured neighboring 4th (SNL L4) DRG neurons. (C) BD1063 administration increased the I_{Ca} in SNL L5 neurons. (D) Summary data demonstrated that application of BD1063 (10μM) was able to increase in SNL L5 but not Control and SNL L4 neurons. Mean±SEM; number in bars represents the sample size; **p < 0.01.
Table 1. Injury effect of sigma-1 receptor agonists on I_{Ca} kinetics

<table>
<thead>
<tr>
<th></th>
<th>PTZ</th>
<th>DTG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>SNL</td>
</tr>
<tr>
<td>G_{Max} (change, %)</td>
<td>-25.8±11.3</td>
<td>-30.7±5.3</td>
</tr>
<tr>
<td>Activation V_{1/2} (ΔmV)</td>
<td>-3.6±0.6</td>
<td>-4.3±1.4</td>
</tr>
<tr>
<td>Activation slope (Δ%)</td>
<td>-0.3±9.7</td>
<td>-4.3±14.5</td>
</tr>
<tr>
<td>S-S Inactivation V_{1/2} (ΔmV)</td>
<td>-9.6±1.6</td>
<td>-8.6±2.9</td>
</tr>
<tr>
<td>S-S Inactivation slope (Δ%)</td>
<td>0.2±3.0</td>
<td>1.0±4.0</td>
</tr>
<tr>
<td>Inactivation τ₁ (Δs)</td>
<td>-0.02±0.02</td>
<td>0.01±0.01</td>
</tr>
<tr>
<td>Inactivation τ₂ (Δs)</td>
<td>-0.92±0.22</td>
<td>-0.92±0.19</td>
</tr>
</tbody>
</table>

(+)-Pentazocine (PTZ); 1,3-Di-(2-tolyl)guanidine (DTG); voltage at half-maximal current (V_{1/2}); steady-state (S-S); inactivation kinetic constant (τ); difference between baseline and agonist treatment (Δ); sample size: n=6-8 for G_{max}, activation and inactivation, n=10-13 for inactivation kinetics; Mean±SEM; p<0.05.
Figure 1

A

B

C

D

This article has not been copyedited and formatted. The final version may differ from this version.
Figure 2

(A)

(B)
A Current-voltage relationship

B Voltage-dependent activation

C Steady-state inactivation

D Inactivation kinetics
Figure 5

A Current-voltage relationship

B Voltage-dependent activation

C Steady-state inactivation

D Inactivation kinetics
Figure 6

A Control
B SNL L4
C SNL L5

**