Systems pharmacological analysis of paclitaxel-mediated tumor priming that enhances nano-carrier deposition and efficacy

Sihem Ait-Oudhia, Robert M. Straubinger, and Donald E. Mager

Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York
Running title: Model-based analysis of paclitaxel tumor priming

Corresponding Author: Sihem Ait-Oudhia.
Mailing address: Department of Pharmaceutical Sciences, 456 Kapoor Hall, University at Buffalo, State University of New York, Buffalo, NY 14214.
Phone: (716) 645-4809
FAX: (716) 829-6569
E-mail: sihema@buffalo.edu

Number of text pages: 37
Number of tables: 2
Number of figures: 4
Number of references: 42
Number of words in abstract: 246
Number of words in introduction: 698
Number of words in discussion: 1258
Number of words in manuscript: 4944

Abbreviations

PAC, paclitaxel; DXR, doxorubicin, Cre-pac, Taxol®; SSL-DXR, Doxil®; CreEL, Cremophor® EL; CMDD, Carrier-mediated drug disposition; TMDD, Target-mediated drug disposition; PK, pharmacokinetics; PD, pharmacodynamics; PBPK, physiologically-based pharmacokinetics, Kp, partition coefficient; k_{rel}, first-order release rate constant of free DXR from liposomes; k_{off}, first-order dissociation rate constant of PAC from Cre-pac; K_g, first-order tumor growth rate constant; \tau_d, mean transit-time to cell death for cancer cells; R_{ss}, maximum % change from initial tumor size.
Abstract

Paclitaxel (PAC)-mediated apoptosis decompresses and primes tumors for enhanced deposition of nanoparticulate agents such as pegylated liposomal doxorubicin (SSL-DXR). A quantitative pharmacokinetic/pharmacodynamic (PK/PD) approach was developed to analyze efficacy and identify optima for PAC combined with SSL-DXR. Using data extracted from diverse literature sources, Taxol® (Cre-pac) PK was described by a carrier-mediated dispositional model and SSL-DXR PK was described by a two-compartment model with first-order drug release. A hybrid-physiological, well-stirred model with partition-coefficients (Kp) captured intratumor concentrations. Apoptotic responses driving tumor priming were modeled using nonlinear, time-dependent transduction functions. The tumor growth model employed net first-order growth- and death rate constants, two transit compartments that captured the temporal displacement of tumor exposure vs. effect, and apoptotic signals from each agent were used to drive cytotoxic effects of the combination. The final model captured plasma and intratumor PK data, apoptosis induction profiles, and tumor growth for all treatments/sequences. A feedback loop representing PAC-induced apoptosis effects on Kp_DXR enabled the model to capture tumor-priming effects. Simulations to explore time- and sequence-dependent effects of priming indicated that PAC priming increased Kp_DXR 3-fold. The intratumor concentrations producing maximal- (E_max) and half-maximal effects were 18 and 7.2 μg/mL for PAC, and 17.6 and 14.3 µg/mL for SSL-DXR. The duration of drug-induced apoptosis was 27.4h for PAC and 15.8h for SSL-DXR. Simulations suggested that PAC administered 24h prior to peak priming could increase efficacy 2.5-fold over experimentally-reported results. The quantitative approach developed here is applicable for evaluating tumor-priming strategies employing diverse agents.
Introduction

Inadequate delivery of anti-cancer drugs to solid tumors remains a major challenge in oncology (Jang et al., 2001). The processes controlling tumor drug delivery and therefore treatment efficacy include tumor perfusion, extravasation of drug into the tumor tissue, and transport within the interstitium (Jain, 1987; Jain, 1989). These processes are influenced by the physicochemical properties of drugs, such as molecular weight, diffusion coefficient, and receptor affinity. Tumor physiological properties also affect deposition. Tumor stroma and cellular density impede drug diffusion and constrict microvasculature. High tumor interstitial fluid pressure (IFP) opposes diffusion into the tumor, and permeability of the tumor microvasculature governs both influx and efflux of drug (Jang et al., 2001).

Numerous strategies have been explored to enhance drug deposition and distribution within solid tumors (Jang et al., 2003). These include approaches that employ tumor-priming agents that alter tumor vascular perfusion/permeability, interstitial pressure, or stromal properties in order to enhance deposition and efficacy of subsequently administered agents. Effectors of tumor-priming include cytotoxic drugs (Griffon-Etienne et al., 1999; Lu et al., 2007), physical modulation of the tumor stromal matrix with enzymes such as collagenase or hyaluronidase (Eikenes et al., 2004; Eikenes et al., 2005; Provenzano et al., 2012), inhibitors of select signaling pathways (Tong et al., 2004; Olive et al., 2009), hyperthermia (Kong et al., 2000; Xu et al., 2007; Choe et al., 2011; Sen et al., 2011), and drug delivery vehicles (Zhou et al., 2002; Arnold et al., 2005; Baker et al., 2008; Cho and Kwon, 2011).

Paclitaxel (PAC) treatment decompresses tumors, increasing vascular perfusion (Griffon-Etienne et al., 1999) and enhancing delivery and efficacy of nanoparticulates such as Doxil®, a sterically-stabilized liposome (SSL) formulation containing doxorubicin (DXR) (Lu et al., 2007).
The mechanism proposed for paclitaxel-mediated tumor-priming suggests that a wave of drug-induced apoptosis reduces tumor cell density, thereby increasing tumor perfusion and reducing IFP. The elevation of tumor permeability and perfusion, and reduction in outward convective fluid flow, result in enhanced tumor deposition and retention of subsequently administered chemo/adjuvant agents such as SSL-DXR or nanoparticulate siRNA vehicles (Millenbaugh et al., 1998; Griffon-Etienne et al., 1999; Lu et al., 2007).

To date, the dose-, time-, and sequence-dependence of priming combination therapies have been established empirically. However, a quantitative, system-based pharmacological model that captures both the PK and antitumor pharmacodynamics of the combined agents could identify determinants of tumor drug delivery in priming strategies, and simulations based upon accurate models could identify strategies for optimizing deposition and efficacy of tumor-priming drug combinations. The primary goal of the present work was to develop a PK and PD analysis approach based on available experimental data that would capture data for both PK and therapeutic outcomes of Taxol® (Cre-pac) sequenced with a nanoparticulate drug formulation (SSL-DXR). The integrated, mechanism-based mathematical model developed identifies key factors influencing the drug deposition and tumor response observed with this combination (Lu et al., 2007), and enables simulations to explore the optimal temporal sequence for administration of this tumor-priming agent and the subsequent cytotoxic nanoparticulate.

Data were extracted from diverse literature sources to develop PK models for Cre-pac and SSL-DXR, alone and in combination. The PK analysis allowed characterization of plasma and tumor concentration-time relationships for both drugs, including total- and free (i.e., released from carrier) concentrations (Gabizon et al., 1989; Xiong et al., 2005; Desai et al., 2006; Lu et al., 2007). In order to capture Cre-pac data accurately, the model integrated the PK behavior of
the Cremophor® EL vehicle (CreEL), which circulates as a microemulsion and therefore behaves as a pharmacokinetic ‘compartment’ (Sparreboom et al., 1996b). Available pharmacodynamic data included the time-course and magnitude of apoptotic responses mediated by Cre-pac and SSL-DXR, both \textit{in vivo} and \textit{in vitro} (Milas et al., 1995; Sparreboom et al., 1996a; Xiong et al., 2005; Desai et al., 2006; Lu et al., 2007; Aroui et al., 2009), as well as the effects of Cre-pac and SSL-DXR on tumor progression as single agents, and in priming- and non-priming sequences (Lu et al., 2007). Simulations with the model yielded non-intuitive relationships between antitumor efficacy and the temporal sequencing of the priming and nanoparticulate agent, and support the hypothesis that efficacy of this tumor-priming strategy may be highly dependent upon the inter-dose interval.
Material and Methods:

Drugs:

Data for the tumor-priming sequence of paclitaxel combined with SSL-DXR were extracted from (Lu et al., 2007). The paclitaxel formulation was Cre-pac (Taxol®, Bristol-Myers Squibb, Princeton, N.J.), which consists of paclitaxel solubilized in a 1:1 (vol:vol) mixture of polyethoxylated castor oil (Cremophor® EL) and ethanol. The SSL-DXR formulation was Doxil® (Azla, Palo Alto, CA), which consists of doxorubicin (DXR) encapsulated at high concentration and efficiency by remote loading (Mayer et al., 1986; Lasic et al., 1992) into the core of 65-80 nm liposomes composed of hydrogenated soy phosphatidylcholine, cholesterol, and polyethylene glycol-bearing phosphatidylethanolamine.

Sources of preclinical data:

Relevant preclinical data (Table 1) included six studies in which Cre-pac and/or SSL-DXR were administered intravenously to mice at varying doses (Milas et al., 1995; Sparreboom et al., 1996a; Xiong et al., 2005; Desai et al., 2006; Lu et al., 2007) or cells were treated in vitro with free DXR (Aroui et al., 2009). Where necessary, data were extracted by digitization. For all studies, Cre-pac and SSL-DXR concentrations were available only as mean data. The PK of the Cremophor® EL carrier was obtained from (Sparreboom et al., 1996b), and the dose of CreEL administered in the tumor-priming study of (Lu et al., 2007) was calculated from the paclitaxel dose administered and the paclitaxel:CreEL ratio for Taxol® stated by the manufacturer. A study that reported plasma concentrations of total- and SSL-encapsulated DXR following administration of both SSL-DXR and an equivalent dose of unencapsulated (free) DXR (Gabizon et al., 1989) was excluded from analysis during model building and then used as an independent validation data set for the final parameters that were obtained by modeling.
Structural pharmacokinetic models:

The pharmacokinetic model for Cre-pac is shown within Fig. 1. All corresponding differential equations are reported in *Supplementary Information* and describe the plasma concentrations for Cre-pac (Eqs. S1 and S2) and free paclitaxel (Eqs. S3-S5). The base model was developed for the analysis of paclitaxel release rates from diverse formulations, and additional details are published (Ait-Oudhia et al., 2012). The model accounts for key characteristics of the CreEL-based paclitaxel formulation, including circulation time of the carrier, rate of drug release or equilibration, and the biodistribution of both the carrier (CreEL) and the released, unbound drug. Because CreEL exists as a microemulsion that can exchange drug with plasma, CreEL in blood behaves as a circulating compartment and affects paclitaxel PK. Therefore, conceptual elements of a target mediated drug disposition (TMDD) model (Mager and Jusko, 2001) were employed to accommodate ‘carrier-mediated drug disposition’ (CMDD) effects upon the biodisposition of Cre-pac. The PK of CreEL (Fig. 1) was captured by a one-compartment model (A_{cre}) having a volume of distribution V_{cre} and a linear first-order elimination rate (CL_{cre}). A second-order rate process (k_{on}) described the partitioning of free paclitaxel into CreEL, and drug dissociation from CreEL followed a first-order process (k_{off}).

A three-compartment model described the PK of released paclitaxel. It includes a central compartment (A_c), having a volume of distribution (V_c), from which free, unbound paclitaxel was cleared linearly, with a clearance CL_{pac}. Two peripheral compartments (A₁ and A₂), having volumes V₁ and V₂ and inter-compartment clearances CLD₁ and CLD₂, serve as distribution sites for free paclitaxel released from the carrier (Bulitta et al., 2009).

A simplified pharmacokinetic model for SSL-DXR is also shown as a component of Fig. 1. The injected dose of SSL-DXR produces the initial concentration of encapsulated drug (A_L) in
the central compartment. Drug is released from liposomes according to a first-order rate constant \(k_{rel} \). The PK model for released drug consists of central- (\(A_{DXR}, V_{DXR} \)) and peripheral (\(A_{p,DXR}, V_{p,DXR} \)) compartments having an inter-compartment distribution rate (CL\(_D\)) and linear clearance from central compartment (CL\(_{DXR}\)). \textit{Supplementary Information} provides the set of differential equations describing SSL-DXR PK (Eqs. S8-S10).

\textit{Hybrid-PBPK model of drug concentrations in tumor}

A hybrid physiologically-based PK (PBPK) model (Fig. 1) was developed based on data for tumor- and unbound plasma concentrations of PAC and DXR after \(iv \) administration of Cre-pac and SSL-DXR. Intratumor concentrations of both drugs (\(C_{T:pac} \) and \(C_{T:DXR} \)) were described using a semi-physiological, well-stirred model with estimated partition coefficients (\(Kp_{\text{PAC}} \) and \(Kp_{\text{DXR}} \)) and tumor blood flow (\(Q_T \)):

\[
\frac{dC_{T,d}}{dt} = \frac{Q_T}{V_T} \left(CU - d - \frac{C_{T,d}}{K_{p-d}} \right)
\]

where the subscript ‘\(d \)’ represents the individual drug (PAC or DXR), \(CU \) is the concentration of unbound drug, \(V_T \) is the tumor volume, calculated from a growth function \(g(R) = \frac{V_0 - V_T}{V_0} \cdot 100 \), where \(V_0 \) is the baseline tumor volume of 600 mm\(^3\) (Lu et al., 2007), and \(g(R) \) is the % change in tumor volume with time (Equation 5).

\textit{Pharmacodynamic model for apoptosis and tumor growth:}

PK profiles of the drugs in tumor were used to drive tumor cell apoptotic responses, which were modeled using nonlinear, time-dependent signal transduction functions consisting of parameters \(E_{max} \) (the maximum effect signal), and \(EC_{50} \) (concentration of free drug mediating half-maximal effect) for each drug (\(d \)):

\[
\frac{dAPO_{d-1}}{dt} = \frac{1}{\tau_{APO,d}} \left(\frac{E_{max-d} \cdot C_{T,d}^{\gamma}}{C_{50-d}^{\gamma} + C_{T,d}^{\gamma}} - APO_{d-1} \right)
\]
The tumor growth model (Fig. 1) employed two transit compartments to accommodate the delay between drug exposure and apoptotic effects, and first-order rate constants described net tumor cell growth- and death rates. The apoptotic signal arising from the cytotoxicity of each individual agent was integrated into the model via linear interaction functions having concentration-dependent slopes for paclitaxel and doxorubicin:

\[
\frac{dR_1}{dt} = g(R) - \left(\frac{1}{\tau_d}\right) \cdot \left(1 + \alpha \cdot APO_{pacl-3}\right) \cdot \left(1 + \beta \cdot APO_{DXR-3}\right) \cdot R_1
\]

\[
\frac{dR_2}{dt} = \left(\frac{1}{\tau_d}\right) \cdot (R_1 - R_2)
\]

where \(g(R) = K_g \cdot R \cdot \left(1 - \frac{R}{R_{ss}}\right) \) is the logistic growth function of cycling cells \((R_1)\), \(K_g \) is the first-order net tumor growth rate mediated by cycling cells, \(R_{ss} \) is the maximum % change from initial tumor volume in untreated animals, \(R_2 \) represents the compartment of cells committed to death, \(\tau_d \) is the mean transit time for cell death, \(\alpha \) and \(\beta \) represent the slopes of the concentration-dependent paclitaxel and doxorubicin effects, and \(APO_{pacl-3} \) and \(APO_{DXR-3} \) are the transit compartments that account for the nonlinear time-dependence of paclitaxel and doxorubicin apoptotic effects. The total tumor volume is the sum of the two transit compartments \(V_T = R_1 + R_2 \) (Fig. 1).

Paclitaxel-induced priming was modeled as a time-dependent feedback loop, such that the apoptosis signal of paclitaxel enhanced the tumor deposition of SSL-DXR \((i.e., \text{increased } K_{p,DXR})\). The feedback loop was described with the following equation:

\[
K_{p,DXR}(t) = K_{p,DXR} \cdot \left(1 + \theta \cdot APO_{3-pac}\right)
\]
where θ is a proportionality coefficient. An analogous feedback loop, in which SSL-DXR affected Cre-pac deposition, was not required to fit the experimental data.

Data analysis:

Models describing the PK data of both drugs in plasma and tumor, and the PD data for tumor volume progression and apoptosis, were implemented in MATLAB R2011a (Mathworks Inc, Natick, MA). Parameter estimates were obtained after minimization of a likelihood-derived function using the Nelder-Mead Simplex algorithm as implemented in the `fminsearch` function (Lagarias J.C., 1998). Ordinary differential equations were solved using the `ode45` solver (Dormand, 1980). Residual variability in the PK- and PD-dependent variables was modeled with both proportional (Equation 8), and additive and proportional (Equation 9) models:

\[
V_{i,j} = \sigma_1^2 \cdot Y_{i,j}^2 \\
V_{i,j} = \sigma_1^2 \cdot Y_{i,j}^2 + \sigma_2^2
\]

where V_i and $V_{i,j}$ are the variance of the residual for the i^{th} observation data point and the variance of the residual for the i^{th} data point of j^{th} PD response. Y_i is the prediction for the i^{th} observation data point, and σ_1 and σ_2 are the variance parameters.

Model simulations:

Simulations were conducted with the PK and PD models to explore model- and system sensitivity to various parameters and conditions, including alternative priming sequences and their effect upon antitumor efficacy. Dosing schemes simulated included SSL-DXR administered 0, 6, 12, 18, 24, 28, 36, 48, 72, and 96h after paclitaxel administration. Endpoints simulated included the effect of inter-dose interval upon tumor drug exposure, progression, and tumor volume nadir after treatment.
Results

PBPK models for Cre-pac and SSL-DXR

Hybrid physiologically-based PK models (Fig. 1) were developed and evaluated to describe Cre-pac and SSL-DXR temporal profiles in mouse plasma and tumors. The best-fitting model for SSL-DXR consisted of a two-compartment systemic model. For Cre-pac, the superior model incorporated a ‘carrier-mediated drug disposition’ component, conceptually analogous to TMDD models (Mager and Jusko, 2001), in which the affinity of PAC for a circulating CreEL microemulsion compartment of continuously-changing amount affects PAC biodisposition (Ait-Oudhia et al., 2012). Unbound plasma drug concentrations were linked to a single blood flow-limited tumor compartment. The predicted plasma and tumor profiles for Cre-pac (Fig. 2A, 2C) and SSL-DXR (Fig. 2B, 2D) concentrations agreed well with observed values (Danesi et al., 2002; Desai et al., 2006; Lu et al., 2007), and the fitted parameters (Table 2) were estimated reliably with low coefficients of variation.

To reduce the number of fitted parameters, values for \(f_b^{DXR}, B_p, B_{sat}, \text{ and } k_d\) were obtained from published reports (Danesi et al., 2002; Bulitta et al., 2009) and fixed in the final model. The remaining parameters were estimated by simultaneous fitting of available data for drug concentrations in plasma and tumor in parallel with PD analysis of tumor volume and the time course of apoptosis for 5 treatment groups that were compared in (Lu et al., 2007): no drug, both drugs alone, Cre-pac before SSL-DXR, SSL-DXR before Cre-pac. The final parameters are summarized in Table 2. The estimated values of \(CL_{p_{ac}}, V_{p_{ac}}, CL_{cre}, \text{ and } V_{cre}\) are comparable to those from non-compartmental analysis of Cre-pac PK (Sparreboom et al., 1996b). Furthermore, the parameters \(CL_{DXR}\) and \(V_{DXR}\) obtained here are similar to reported values (Xiong et al., 2005).
Drug release from the Cre-pac microemulsion or from SSL-DXR nanoparticles produces biologically-active free drug. The half-life of release was calculated using the formula \(t_{1/2} = \frac{0.693}{k_i} \), where \(k_i = k_{off} \) for Cre-pac was estimated for 10 min after administration, because of its comparatively rapid release rate, and \(k_i = k_{rel} \) for SSL-DXR was estimated for 15h after dosing. Few experimentally-determined estimates of paclitaxel release rates have been published for Cre-pac. By simultaneous analysis of published clinical data for Cre-pac and CreEL a \(t_{1/2} \) of 8 min was estimated for PAC release from Taxol\(^\text{®}\) (Ait-Oudhia et al., 2012). Data for CreEL- and free (unbound) PAC concentrations in plasma enabled the estimation of a paclitaxel binding constant for the circulating CreEL microemulsion (5.15 h×µg×mL\(^{-1}\)). The final model captured CreEL data well (Fig. 2E). The estimated \(t_{1/2} \) for doxorubicin release from SSL-DXR was 15h, which is consistent with several studies of drug release rates \textit{in vitro} and \textit{in vivo} for similar liposome formulations (Charrois and Allen, 2004; Xiong et al., 2005). Good agreement between predicted and observed DXR concentrations after administration of free DXR (Fig. 2F) adds confidence to the estimated release rate constant. Model-simulated SSL-DXR concentration-time profiles for total and encapsulated drug were also in excellent agreement with an external data set (\textit{Supplementary Information}, Fig. S1) that reported plasma concentration-time data for total- and SSL-encapsulated drug following \textit{iv} administration of a structurally-similar SSL-DXR formulation (Gabizon et al., 1989), thus contributing validity to the final SSL-DXR PK model.

Tumor blood flow was estimated as 3.38 mL/h, consistent with estimates of drug flow in tumor-bearing mice that range from 4.5 mL/h (Wang et al., 2009) to 6 mL/h (Baxter et al., 1994). The tumor:plasma partition coefficients estimated from experimental data for Cre-pac and SSL-DXR were low (<1), signifying low tumor deposition when administered as single agents.
Overall, the PK model predicts greater deposition of DXR than PAC for the two formulations, as shown by comparison of the K_p values ($K_{p_{DXR}} = 0.085$ vs. $K_{p_{PAC}} = 0.044$).

Simultaneous modeling of the entire PK and PD data sets also enables model prediction of the experimentally-observed increase in drug tumor deposition of the tumor-priming combination (Lu et al., 2007). By incorporating a PAC-mediated feedback loop that modulates SSL-DXR deposition (Fig. 1), the model correctly predicts the observed increase in tumor deposition of SSL-DXR with the priming regimen (Cre-pac followed by SSL-DXR) (Fig. 2D). This enhanced drug deposition is consistent with the greater tumor cell killing effect observed experimentally with PAC tumor priming sequences and estimated by pharmacodynamic analysis of tumor responses (below, Fig. 3C). Although experimental data for PAC deposition are not available, an analogous feedback loop, by which SSL-DXR pretreatment would modulate PAC tumor concentrations, was not required to predict the efficacy observed for the reverse, non-priming sequence (SSL-DXR followed by Cre-pac).

PD models for apoptosis induced by Cre-pac and SSL-DXR

The time course of doxorubicin- and paclitaxel-induced apoptosis was estimated from available ex vivo and in vitro data (Milas et al., 1995; Lu et al., 2007; Aroui et al., 2009). In the final model, drug effects were expressed as the fraction of apoptotic cells as a function of time after administration. A delay between drug exposure and onset of apoptosis was observed for both drugs (Fig. 3A, 3B), consistent with the temporal cascade of events that ensue in cells (Au et al., 1999). Therefore, a nonlinear, time-dependent signal transduction model for apoptosis was employed (Mager and Jusko, 2001) that included three transit compartments. The overall mean transit time (MTT_{Ap}) for propagation of the apoptotic signal, which describes the delay between drug exposure and apoptosis, was calculated as $MTT_{Ap} = N \cdot \tau_{Ap \cdot d}$, where N is the number of...
transit compartments and $\tau_{\text{Apo},d}$ represents the mean time of signal transduction between compartments. The estimated MTT_{Apo} for Cre-pac was nearly 2-fold greater than for SSL-DXR (27.4 vs. 15.8 h). After propagation though the transduction compartments, the drugs produce in compartment APO_{DXR} or APO_{PAC} (Fig. 1) the apoptotic signal that determines the time course and magnitude of apoptosis produced in the tumor. In the case of PAC-mediated priming sequences, the signal from APO_{PAC} feeds back to influence deposition of SSL-DXR (Fig. 1).

Noteworthy is that it was necessary to develop the model using data from different tumor cell types and tumor systems. Despite differences that may be intrinsic to each, the final model captured well the data for the time course and magnitude of apoptosis mediated by Cre-pac- (Fig. 3A; (Milas et al., 1995; Lu et al., 2007)) and SSL-DXR (Fig. 3B; (Aroui et al., 2009)).

Models for xenograft tumor growth and therapeutic effects of Cre-pac and SSL-DXR

A tumor growth model was developed to characterize the dynamic tumor therapeutic effects. The available data reported changes in tumor volume relative to the initial volume at the start of treatment (Lu et al., 2007). In the tumor growth model (Fig. 1), the drug signal mediating cytotoxicity was assumed to reflect the kinetic characteristics and magnitude of the apoptotic response observed for each individual drug. For simplicity, it was assumed that the tumor growth rate constant K_g and maximum %change in tumor size R_{ss} were constant across all treatment groups, and that the mechanism of killing for both drugs was transmitted through the apoptotic signaling cascade. All data (control- and treatment groups) were modeled simultaneously, and excellent fittings were obtained (Fig. 3C). The final analysis recapitulated with remarkable fidelity the greater efficacy of the priming sequence (Cre-pac followed by SSL-DXR) compared to the reverse, non-priming sequence. The enhanced cell-killing effect in the PAC-primed treatment group, captured by introducing a feedback loop into the model by which Cre-pac-
mediated apoptosis increased SSL-DXR tumor deposition, is quantitatively consistent with the tumor priming mechanisms hypothesized by (Lu et al., 2007).

In the final model, the variables estimated include the slopes of the concentration dependence of Cre-pac and SSL-DXR cytotoxic effects as single agents (α and β), the time-to-death for tumor cells (τd), and the proportionality coefficient by which Cre-pac priming increased Kp_DXR (θ). Table 2 provides final estimates of the model variables, and all parameters were determined with good precision. Kg for the tumor was 0.0057h⁻¹, θ was 0.27 (1/% baseline-apoptosis), and τd was 24h. The model predicted tumor growth accurately for each treatment arm (Fig. 3C), and as reported in the experimental data, the model-predicted tumor volume decrease was greater for the priming sequence (Cre-pac followed by SSL-DXR) than for the reverse, non-priming sequence or the drugs as the single agents.

Simulations and investigation of model sensitivity to specific parameters yielded insight into the interaction of PAC and DXR in priming and non-priming sequences. According to the model, Kp_DXR, the relative fraction of DXR undergoing tumor deposition, was 2-fold greater than Kp_PAC (Table 2). Furthermore, Emax-DXR (maximum apoptotic signal for SSL-DXR in compartment APODXR-3) was 4-fold greater than Emax-PAC (Fig. 3D). Conversely, α (slope of Cre-pac concentration-dependence of signaling) was 4-fold greater than β (slope of SSL-DXR concentration-dependence of signaling), consistent with the greater magnitude of paclitaxel-induced apoptosis reported experimentally (Lu et al., 2007). The net result of these interacting influences is the model output for the magnitude and time course of the apoptotic signal, which is the product (β×APODXR-3) for SSL-DXR or (α×APOPAC-3) for Cre-PAC. Fig. 3D shows that the apoptotic signal from Cre-pac priming exceeds that of the reverse sequence.
Optimal inter-dose interval for tumor priming by paclitaxel

With simultaneous fitting of all data for all treatment groups, the final hybrid-PBPK/PD model captured observed data well for tumor responses (Fig. 3C). Therefore, simulations were performed to investigate modifications of the priming regimen that might enhance tumor response. The model parameter identified as the most important determinant of efficacy was the inter-dose interval between Cre-pac priming and SSL-DXR administration. Fig. 4A shows simulated time courses of tumor volume response to identical doses of Cre-pac with different inter-dose intervals for administration of SSL-DXR. The observed data (Lu et al., 2007), which employed a 48h inter-dose interval, are overlaid on the results. Simulations predict that an inter-dose interval of 24h would increase tumor exposure (AUC) of SSL-DXR (Fig. 4B) and time to tumor progression (Fig. 4C) by 2.5-fold, and decrease the residual tumor volume at nadir to half the volume observed experimentally with a 48h inter-dose interval (Fig. 4D). Simulations also suggest that the kinetics by which SSL-DXR exposure in tumor (Fig. 4B) and antitumor efficacy (Fig. 4C) increase in the first 24h after Cre-pac dosing may be abrupt, and the enhancement resulting from priming may subside rapidly over the subsequent 24h.
Discussion

Combination chemotherapy is standard practice in clinical oncology but identification of optimal therapeutic combinations poses numerous challenges, including the selection of agents that may exert complementary mechanisms of action, and identifying the sequence and dose ranges of the agents. A variety of pharmacological approaches for modulating barriers to tumor drug delivery have emerged (Griffon-Etienne et al., 1999; Eikenes et al., 2005; Lu et al., 2007; Choe et al., 2011; Sen et al., 2011; Provenzano et al., 2012) and these suggest mechanistically rational candidates for combination therapy with cytotoxic agents. Paclitaxel has been reported to compromise barriers to delivery via tumor decompression and relief of interstitial tumor pressure (Griffon-Etienne et al., 1999). A preclinical study investigating paclitaxel-mediated tumor priming (Lu et al., 2007) demonstrated enhanced efficacy with an appropriately-timed sequence of Taxol® followed by Doxil®. The mechanism of tumor-priming was ascribed to changes in tumor permeability and intra-tumor diffusion mediated by a wave of paclitaxel-mediated apoptosis occurring within a 24-72h time window following Taxol® administration (Au et al., 1999; Jang et al., 2001; Lu et al., 2007). Compromise of tumor barrier properties enhanced the deposition and pharmacological activity of Doxil® within a defined temporal window, but the reverse sequence was less efficacious.

Combination therapies often are determined empirically. We sought to develop a quantitative framework that includes pharmacokinetic analysis of drug deposition and pharmacodynamic analysis of antitumor efficacy to evaluate tumor-priming approaches combined with nanoparticle delivery strategies. A PBPK/PD model was developed to capture underlying mechanisms of drug interaction in a quantitative and semi-mechanistic fashion. A
second objective was to utilize this model-based framework to explore by simulation the key factors that might control efficacy of a tumor priming strategy.

Development of linked hybrid PBPK/PD models for analyzing tumor-priming required data beyond those reported in the original study. Essential data included the PK of both drugs, and either direct or ancillary data that would permit estimation of unbound drug concentrations in plasma and tumor. Required PD data included the magnitude and time-course of drug-mediated cell death via apoptosis, and the dynamics of cell death and tumor growth following diverse treatment sequences of the drugs alone and in combination (Milas et al., 1995; Sparreboom et al., 1996b; Xiong et al., 2005; Desai et al., 2006; Lu et al., 2007; Aroui et al., 2009).

The final model (Fig. 1) links drug exposure in plasma and tumor with pharmacological effects such as the time-course and magnitude of apoptotic responses, as well as treatment effects upon tumor volume progression. It captures experimental data for the two drugs individually and in combination. Several unique features were incorporated into the final model. One is the inclusion of a CMDD component in order to describe the PK of Cre-pac, which is a conceptual adaptation of target-mediated dispositional effects (Mager and Jusko, 2001). CMDD and TMDD phenomena share several characteristics; the equilibrium association/dissociation (k_{off} and k_{on}) of paclitaxel with CreEL was modeled in a manner analogous to ligand-receptor binding, and captured the effect of the dynamically-changing ‘receptor’ abundance (CreEL concentration) on paclitaxel PK. Other novel components include the nonlinear signal transduction model describing the apoptosis-promoting activity of each agent, driven by intra-tumor drug exposures, as well as the model for tumor growth, in which a signal transduction cascade of two transit compartments links drug concentrations with the temporally-delayed apoptotic responses.
Finally, a feedback loop was developed to describe Cre-pac priming as a temporal apoptosis-driven phenomenon modulating tumor deposition of nanoparticulate SSL-DXR.

To reduce the complexity of the system, several key assumptions were made. One was that apoptosis is responsible for tumor cell death (Danesi et al., 2002; Bulitta et al., 2009). Although apoptosis is not the sole mechanism of cell killing by paclitaxel and doxorubicin, it plays a predominating role, as has been demonstrated experimentally (Lu et al., 2007; Aroui et al., 2009).

The minimal PD model developed to describe treatment effects upon tumor progression fitted all observed tumor response profiles reliably for all treatment groups, including responses to the drugs as single agents, as well as to the forward (priming) and reverse (non-priming) sequence combinations. Several tumor progression/drug effect models were compared during model development, including a cell distribution model (Simeoni et al., 2004; Magni et al., 2006) and a signal distribution model (Lobo and Balthasar, 2002); both failed to capture the sequential drug combination data in their published form. For the tumor progression model implemented here, two transit compartments were sufficient to characterize adequately the delay between dosing and effect. The final model is mechanistically realistic, in that the dynamics of apoptotic responses resulting from treatment with Cre-pac and SSL-DXR alone were sufficient as drivers for the observed therapeutic effects of the combinations.

The final hybrid-PBPK/PD model captured observed data for tumor responses to the single and combined agents well, which supported the feasibility of exploratory simulations to explore model sensitivity as well as strategies to optimize therapeutic outcome. The inter-dose interval between the priming agent and therapeutic agent was identified as the most influential factor in determining efficacy as predicted by the model. The inter-dose interval selected experimentally
(Lu et al., 2007) timed administration of SSL-DXR to coincide with the peak time of tumor vascular permeability (48h). Simulations here suggest that the optimal inter-dose interval may be approx. 24h after Cre-pac priming. A possible explanation as to why administration of the nanoparticle agent prior to the development of peak tumor-priming may mediate greater efficacy is that a greater fraction of the tumor AUC of SSL-DXR, which has a long mean residence time (42h; Table 2), may be centered temporally over the tumor-priming window, which develops and peaks over a 24-72h interval after PAC administration.

It is interesting to note that SSL-DXR also exerts tumor-priming effects and enhancement of its own tumor deposition (Arnold et al., 2005). However, the temporal relationships between SSL-DXR dosing and tumor-priming differ significantly from those of Cre-pac (Roy Chaudhuri et al., 2012p): in an intracranial brain tumor model, SSL-DXR treatment produced a transient decrease in tumor perfusion, permeability, and nanoparticle deposition in a 3-4 day window after dosing, followed by a gradual increase in tumor vascular permeability and nanoparticle deposition that peaked 7-10 days after dosing (Arnold et al., 2005). Thus the inter-dose interval employed in priming combinations must account for the temporal pharmacodynamics of the priming agent.

In conclusion, an integrated, hybrid-physiological PBPK/PD model was developed that captured pharmacokinetic and pharmacodynamic data for a tumor-priming agent in sequence with a nanoparticulate drug delivery vehicle. The final model is based upon the mechanisms of action and interaction of the two agents employed. Utilizing the available data, the model integrates quantitatively the plasma pharmacokinetics for single agents, the effects of intra-tumor drug exposure upon cellular responses such as apoptosis, and the ultimate effect of apoptosis on tumor growth when drugs were administered individually, combined in a priming-inducing
sequence, or combined in the reverse, non-priming sequence. Simulations yielded unanticipated predictions regarding the optimal inter-dose interval. Given the additional 2.5-fold increase in SSL-DXR deposition and therapeutic efficacy that simulations predict for alternative inter-dose intervals, the simulations yielded intriguing testable hypotheses for experimental investigation. An important characteristic of the model is its ability to capture and integrate the TP effect of Cre-pac into combination therapy, which was achieved by incorporation of a drug interaction feedback loop, such that the tumor apoptotic response elicited by Cre-pac drove enhanced deposition of SSL-DXR in the tumor. Although, further experiments are needed to test these predictions of the model, this PBPK/PD analysis approach has considerable potential for assessing the role of a broader range of tumor-priming treatments.

Acknowledgements

The authors acknowledge the authors of the published work from which data were extracted, which provided novel and significant advances in combination chemotherapy, and enabled this analysis to be performed.

Authorship Contributions

Participated in research design: Ait-Oudhia, Straubinger, and Mager

Performed data analysis: Ait-Oudhia, Straubinger, and Mager

Wrote or contributed to the writing of the manuscript: Ait-Oudhia, Straubinger, and Mager
References

Footnotes

a. This study was supported by unrestricted funds from the University at Buffalo-Pfizer Strategic Alliance and the National Institutes of Health [Grant 57980].
Figure Legends

Figure 1: Schematic of the PK/PD model for combination chemotherapy with Cre-pac and SSL-DXR in various combinations. Symbols, parameters, and corresponding equations are reported in *Materials and Methods*, Tables 1 and 2, and *Supplemental Information*. PK was captured using a CMDD model for Cre-pac (green) and a three-compartment model for SSL-DXR (yellow), incorporating linear release of drug from liposomes (Ait-Oudhia et al., 2012). Free plasma concentrations and blood flow (Q) were used to estimate partition coefficients of drugs from plasma to tumor (blue) ($K_{p_{\text{PAC}}}$ and $K_{p_{\text{DXR}}}$). Apoptotic signals (orange for Cre-pac and pink for SSL-DXR) elicited by each agent were driven by their observed intra-tumor concentrations in a delayed, nonlinear time-dependent manner. Tumor growth inhibition is modeled with the two transit compartments (gray) (R_1, dividing tumor cells and R_2, cells committed to death), with a first-order growth rate constant (K_g). The cytotoxic effects of each agent (α and β) determine the magnitude of tumor cell death (τ_d). Red dashed arrow: feedback loop capturing the priming effect of PAC-induced apoptosis that alters SSL-DXR deposition ($K_{p_{\text{DXR}}}$).

Figure 2: Pharmacokinetics of Cre-pac, CreEL, and SSL-DXR in plasma and tumor. In all panels, symbols represent observed data (Lu et al., 2007) except where noted. Lines represent model predictions. (A) PAC plasma concentrations; (B) Total (i.e., free + bound) plasma concentrations of doxorubicin following SSL-DXR administration from data of (Danesi et al., 2002; Desai et al., 2006). (C) PAC tumor concentrations (Lu et al., 2007) following Cre-pac administration. (D) Total tumor doxorubicin concentrations after administration of SSL-DXR alone (open circles) or SSL-DXR administered 48h after dosing with Cre-pac (filled circles). (E) CreEL plasma concentrations from data of (Sparreboom et al., 1996b), in which varying doses of Cre-pac were administered: green/squares (2 mg/kg); blue/circles (10 mg/kg); red/triangles (20 mg/kg).
mg/kg). (F) Total plasma concentrations of DXR following administration of 5 mg/kg unencapsulated (free) drug. Data from (Xiong et al., 2005).

Figure 3: Temporal pharmacological effects of Cre-pac and SSL-DXR. Symbols: observed data; lines: model predictions. (A) % apoptotic cells in tumor after *in vivo* Cre-pac treatment. Filled circles/solid line: data from (Lu et al., 2007) using FaDu hypopharyngeal carcinoma; open circles/dashed line: data from (Milas et al., 1995) using MCA-4 murine breast carcinoma. (B) % apoptotic MDA-MB231 human carcinoma cells as a function of doxorubicin concentration after treatment *in vitro* (Aroui et al., 2009). DXR concentrations: circles/solid line, 0.1 µM; diamonds/dashed line, 0.5 µM; triangles/dotted line, 2.5 µM. (C) Treatment-mediated effects of Cre-pac and SSL-DXR upon FaDu tumor volume. Symbols: data from (Lu et al., 2007), expressed as % change from the pre-treatment tumor volume baseline for the drugs alone and in combination. Lines represent fitting of the model of Fig. 1 to the data. Blue/hexagons, saline-treated controls; red/triangles, Cre-pac alone administered at 40 mg/kg; green/diamonds, SSL-DXR administered at 20 mg/kg; purple/circles, SSL-DXR followed 48h later with Cre-pac (non-priming sequence); olive/squares Cre-pac followed 48h later with SSL-DXR (priming sequence). (D) Model-based simulation of apoptotic signals in tumor elicited by Cre-pac or SSL-DXR. Dashed lines: relative magnitude of apoptotic signal for Cre-pac (red) and SSL-DXR (blue) in the final signal transduction compartment, APO_{PAC-3} or APO_{DXR-3}. Solid lines: kinetics and magnitude of apoptotic signal emanating from transduction compartments APO_{PAC-3} (red) and APO_{DXR-3} (blue) for the doses employed in (C), calculated as (α × APO_{PAC-3}) for Cre-PAC and (β × APO_{DXR-3}) for SSL-DXR. Parameters α and β listed in Table 2.

Figure 4: Model-based simulations of the effect of inter-dose interval upon the efficacy of Cre-pac/SSL-DXR tumor priming sequence based on data for FaDu tumor model of (Lu et al., 2007).
(A) Predicted treatment-mediated change in tumor volume, expressed as % change from initial tumor volume mediated by 40 mg/kg Cre-pac and 20 mg/kg SSL-DXR administered simultaneously (), or with Cre-pac followed by SSL-DXR after 6h (), 12h (), 18h (), 24h (), 28h (), 36h (), 48h (, dashed line), 72h (), and 96h (). Symbols: experimental data of (Lu et al., 2007) in which SSL-DXR was administered 48h after Cre-pac; dashed line: model fit to experimental data. Horizontal line from ordinate represents one doubling of tumor volume from the baseline at initiation of treatment. (B) Drug exposure (AUC\textsubscript{0-inf}) as a function of inter-dose interval for Cre-pac and SSL-DXR; symbols represent model predictions at discrete time points; lines connect symbols. Vertical dashed red line represents inter-dose interval (48h) employed experimentally by (Lu et al., 2007). (C) Time to tumor progression to twice the baseline volume as a function of inter-dose interval for Cre-pac and SSL-DXR; symbols, lines same as in (B). (D) Maximum tumor cell killing response (i.e., nadir of tumor volume) as a function of inter-dose interval for Cre-pac and SSL-DXR; symbols, lines, same as in (B).
Tables

Table 1: Studies from which data were extracted for *in silico* PK/PD analysis of combination chemotherapy with Taxol® and Doxil®

<table>
<thead>
<tr>
<th>Drug formulation</th>
<th>Dose</th>
<th>Available experimental data (unit)</th>
<th>References‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cre-pac</td>
<td>20 mg/kg</td>
<td>PAC intratumor concentrations (µg/g)</td>
<td>(Desai et al., 2006)</td>
</tr>
<tr>
<td>Cre-pac</td>
<td>2, 10, 20 mg/kg</td>
<td>Plasma CreEL concentrations (µg/mL)</td>
<td>(Sparreboom et al., 1996b)</td>
</tr>
<tr>
<td>Cre-pac SSL-DXR</td>
<td>40 mg/kg 20 mg/kg</td>
<td>Total plasma and intratumor SSL-DXR and free plasma PAC concentrations (µg/mL)</td>
<td>(Lu et al., 2007)§</td>
</tr>
<tr>
<td>Cre-pac</td>
<td>60 mg/kg</td>
<td>Fraction of apoptotic cells (%)</td>
<td>(Milas et al., 1995)§</td>
</tr>
<tr>
<td>DXR</td>
<td>5 mg/kg</td>
<td>Free DXR concentration (µg/mL)</td>
<td>(Xiong et al., 2005)</td>
</tr>
<tr>
<td>DXR</td>
<td>0.1, 0.5, 2.5 nM</td>
<td>Fraction of apoptotic cells (%)</td>
<td>(Aroui et al., 2009)§</td>
</tr>
</tbody>
</table>

‡ A publication from (Gabizon et al., 1989) that contains time course data for total- and SSL-encapsulated plasma DXR as well as for an equivalent dose of free (unencapsulated) DXR was not employed in the analysis, but was used as an external data set for validation of the final model.

§ Cell types used for assessment of apoptosis induction by Cre-pac and SSL-DXR were, FaDu hypopharyngeal carcinoma cells (Lu et al., 2007), MCA-4 murine breast carcinoma cells (Milas et al., 1995), and MDA-MB231 human breast cancer cells (Aroui et al., 2009).
Table 2: Pharmacokinetic and pharmacodynamic parameters and coefficients of variations (%CV)

<table>
<thead>
<tr>
<th>Parameter (unit)</th>
<th>Definition</th>
<th>Estimate (%CV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmacokinetics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(CL_{pac} \left(10^{-1} \text{L/h} \right))</td>
<td>PAC linear clearance</td>
<td>0.85 (24.9)</td>
</tr>
<tr>
<td>(CL_1) (L/h)</td>
<td>PAC clearance for peripheral compartment 1</td>
<td>0.65 (21.8)</td>
</tr>
<tr>
<td>(CL_2) (L/h)</td>
<td>PAC clearance for peripheral compartment 2</td>
<td>0.24 (31.4)</td>
</tr>
<tr>
<td>(V_{pac}) (L)</td>
<td>PAC central volume of distribution</td>
<td>0.82 (5.15)</td>
</tr>
<tr>
<td>(V_{p1-pac}) (L)</td>
<td>PAC volume for peripheral compartment 1</td>
<td>1.21 (27.6)</td>
</tr>
<tr>
<td>(V_{p2-pac}) (L)</td>
<td>PAC volume for peripheral compartment 2</td>
<td>1.5 (17.4)</td>
</tr>
<tr>
<td>(CL_{cre} \left(10^{-2} \text{L/h} \right))</td>
<td>Cremophor® EL clearance</td>
<td>0.92 (6)</td>
</tr>
<tr>
<td>(V_{cre} \left(10^{-2} \text{L} \right))</td>
<td>Cremophor® EL volume of distribution</td>
<td>0.53 (2.41)</td>
</tr>
<tr>
<td>(k_{rel}) (h(^{-1}))</td>
<td>Release rate constant for SSL-DXR</td>
<td>0.046 (2.8)</td>
</tr>
<tr>
<td>(CL_{DXR} \left(10^{-1} \text{L/h} \right))</td>
<td>SSL-DXR linear clearance</td>
<td>0.42 (11.2)</td>
</tr>
<tr>
<td>(k_{on}) (h . µg/mL(^{-1}))</td>
<td>Second-order binding affinity constant for PAC</td>
<td>5.15 (25.3)</td>
</tr>
<tr>
<td>(k_{off}) (h(^{-1}))</td>
<td>First-order dissociation constant for PAC</td>
<td>4.09 (141)</td>
</tr>
<tr>
<td>(CL_{DXR}) (L/h)</td>
<td>SSL-DXR clearance for peripheral compartment</td>
<td>0.85 (39.8)</td>
</tr>
<tr>
<td>(V_{DXR}) (L)</td>
<td>SSL-DXR central volume of distribution</td>
<td>0.7 (39.8)</td>
</tr>
<tr>
<td>(V_{p_{DXR}}) (L)</td>
<td>SSL-DXR volume for peripheral compartment</td>
<td>1.06 (39.8)</td>
</tr>
<tr>
<td>(Q_T) (mL/h)</td>
<td>Tumor blood flow</td>
<td>3.38 (7.36)</td>
</tr>
<tr>
<td>(K_{p_{PAC}})</td>
<td>Partition coefficient for PAC</td>
<td>0.044 (24.8)</td>
</tr>
<tr>
<td>(K_{p_{DXR}})</td>
<td>Partition coefficient for SSL-DXR</td>
<td>0.085 (7.6)</td>
</tr>
<tr>
<td>(B_{p})</td>
<td>Linear binding of PAC to plasma proteins</td>
<td>21(^a)</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
<td>Value</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>B_{sat}</td>
<td>Saturable binding of PAC to plasma proteins</td>
<td>35a</td>
</tr>
<tr>
<td>k_d (µg/mL)</td>
<td>Dissociation constant from plasma proteins</td>
<td>4.38a</td>
</tr>
<tr>
<td>$f_{b,\text{DXR}}$ (%)</td>
<td>Fraction of doxorubicin bound to plasma proteins</td>
<td>85b</td>
</tr>
</tbody>
</table>

Pharmacodynamics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_{\text{max-PAC}}$ (% apoptosis)</td>
<td>Maximum effect for PAC apoptotic signal</td>
<td>18.04 (10.01)</td>
</tr>
<tr>
<td>EC_{50-PAC} (µg/mL)</td>
<td>Cre-pac concentration inducing 50% of $E_{\text{max-PAC}}$</td>
<td>7.217 (12.7)</td>
</tr>
<tr>
<td>γ</td>
<td>Hill coefficient for Cre-pac</td>
<td>2.22 (45.7)</td>
</tr>
<tr>
<td>$E_{\text{max-DXR}}$ (% apoptosis)</td>
<td>Maximum effect for SSL-DXR apoptotic signal</td>
<td>70.59 (3.08)</td>
</tr>
<tr>
<td>EC_{50-DXR} (nM)</td>
<td>SSL-DXR concentration inducing 50% of $E_{\text{max-DXR}}$</td>
<td>14.34 (5.24)</td>
</tr>
<tr>
<td>$\tau_{\text{Apo-PAC}}$ (h)</td>
<td>Single compartment mean transit time for PAC</td>
<td>9.14 (42.6)</td>
</tr>
<tr>
<td>$\tau_{\text{Apo-DXR}}$ (h)</td>
<td>Single compartment mean transit time for SSL-DXR</td>
<td>5.273 (4.45)</td>
</tr>
<tr>
<td>K_g (10^{-2}, h$^{-1}$)</td>
<td>Net growth rate constant</td>
<td>0.565 (2.55)</td>
</tr>
<tr>
<td>R_{ss} (% change)</td>
<td>Maximum unperturbed % change in tumor size</td>
<td>1857 (7.3)</td>
</tr>
<tr>
<td>τ_d (h)</td>
<td>Time to death</td>
<td>22.59 (13.7)</td>
</tr>
<tr>
<td>α (1/% apoptosis)</td>
<td>Slope of PAC concentration-dependence of apoptosis induction</td>
<td>4.31 (15.2)</td>
</tr>
<tr>
<td>β (1/% apoptosis)</td>
<td>Slope of SSL-DXR concentration-dependence of apoptosis induction</td>
<td>0.93 (21.5)</td>
</tr>
<tr>
<td>θ (1/% apoptosis)</td>
<td>Coefficient to $K_{p,\text{DXR}}$ after tumor priming</td>
<td>0.27 (38.4)</td>
</tr>
</tbody>
</table>

aB_P, B_{sat,P}, and k_d parameters were fixed from (Bulitta et al., 2009).

bf_b_{DXR} parameter was fixed from (Danesi et al., 2002)
The mean residence time (MRT) for SSL-DXR, calculated as \(\text{MRT} = \frac{V_{SS,DXR}}{CL_{DXR}} \) with \(V_{SS,DXR} = V_{DRX} + V_{p,DXR} \), was approx. 42h.