Title Page

Omeprazole Attenuates Hyperoxic Lung Injury in Mice via Aryl hydrocarbon Receptor Activation, and is Associated with Increased Expression of Cytochrome P4501A Enzymes

Authors: Binoy Shivanna, Weiwu Jiang, Lihua Wang, Xanthi I. Couroucli, and Bhagavatula Moorthy

Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas 77030, United States (B.S., W.J., L.W., X.I.C., B.M.)
Running title page

a. **Running title**: Omeprazole Decreases Oxidant Lung Injury

b. **Corresponding author**: Bhagavatula Moorthy, Division of Neonatal-Perinatal Medicine, Texas Children’s Hospital, Baylor College of Medicine, 1102 Bates Avenue, MC: FC530.01, Houston, Texas 77030. Phone: 832-824-3266. Fax: 832-825-3204. E-mail: bmoorthy@bcm.tmc.edu

c. **The number of**:

 1. **Text pages**: 17
 2. **Figures**: 7
 3. **Tables**: 1
 4. **References**: 40
 5. **Words in the Abstract**: 237
 6. **Words in the Introduction**: 689
 7. **Words in the Discussion**: 1405

d. **List of nonstandard abbreviations**:

 1. AhR aryl hydrocarbon receptor
 2. AhRd mice aryl hydrocarbon receptor dysfunctional mice
3. ARDS acute respiratory distress syndrome

4. BNF Beta-napthoflavone

5. BPD bronchopulmonary dysplasia

6. CYP cytochrome P450

7. EROD ethoxyresorufin-o-deethylase

8. 3-MC 3- methylcholanthrene

9. MROD methoxyresorufin-o-demethylase

10. MCP-1 monocyte chemoattractant protein-1

11. ROS reactive oxygen species

e. **Recommended section assignment:** Gastrointestinal, Hepatic, Pulmonary, and Renal
Abstract

Hyperoxia contributes to lung injury in experimental animals and bronchopulmonary dysplasia (BPD) in preterm infants. Cytochrome P450 (CYP) 1A enzymes, which are regulated by the aryl hydrocarbon receptor (AhR), have been shown to attenuate hyperoxic lung injury in rodents. Omeprazole, a proton pump inhibitor, used in humans to treat gastric acid related disorders, induces hepatic CYP1A in vitro. However, the mechanism by which omeprazole induces CYP1A and its impact on CYP1A expression in vivo and hyperoxic lung injury are unknown. Therefore, we tested the hypothesis that omeprazole attenuates hyperoxic lung injury in adult wild type C57BL/6J (WT) mice by an AhR-mediated induction of pulmonary and hepatic CYP1A enzymes. Accordingly, we determined the effects of omeprazole on pulmonary and hepatic CYP1A expression, and hyperoxic lung injury in adult WT and AhR dysfunctional (AhRd) mice. We found that omeprazole attenuated lung injury in WT mice. Attenuation of lung injury by omeprazole paralleled enhanced pulmonary CYP1A1 and hepatic CYP1A2 expression in the omeprazole-treated mice. On the contrary, omeprazole failed to enhance pulmonary CYP1A1 and hepatic CYP1A2 expression, and protect against hyperoxic lung injury in AhRd mice. In conclusion, our results suggest that omeprazole attenuates hyperoxic lung injury in mice by AhR-mediated mechanisms, and this phenomenon is associated with induction of CYP1A enzymes. These studies have important implications for the prevention and/or treatment of hyperoxia-induced disorders like BPD in infants and acute respiratory distress syndrome (ARDS) in older children and adults.
Introduction

Bronchopulmonary dysplasia (BPD) is the most common and extensively studied complication of prematurity (Baraldi and Filippone, 2007). Affected infants are more likely to have long-term pulmonary problems, increased re-hospitalizations during the first year of life, and delayed neurodevelopment (Short et al., 2003; Fanaroff et al., 2007). The etiology of BPD is probably multifactorial and hyperoxia induced generation of reactive oxygen species (ROS) is thought to contribute to the lung injury via oxidation of biologically important cellular macromolecules (Freeman and Crapo, 1981). It is also known that exposure of experimental animals like rodents to hyperoxia causes lung damage (Clark and Lambertsen, 1971), which makes them an ideal model to investigate the mechanisms and rational therapeutic interventions for BPD.

The Cytochrome P450 (CYP) enzymes belong to a superfamily of hemeproteins that are involved in the metabolism of exogenous and endogenous chemicals (Guengerich, 1990). The CYP1A enzymes are of particular interest to oxygen toxicity. The CYP1A subfamily has 2 isoforms, CYP1A1 and 1A2. CYP1A1 is essentially an extrahepatic enzyme that is predominantly present in rodent and human lungs, intestines, placenta and kidneys. On the other hand, CYP1A2 is expressed mainly in the rodent and human liver, and is not or is weakly expressed in extrahepatic tissues. Hyperoxia for 48 hours induces CYP1A1/1A2 in liver and CYP1A1 in lung of adult rats. Interestingly, the induction of CYP1A enzymes in liver and lung declines after continuation of hyperoxia for 60 hours (Moorhy et al., 1997; Couroucli et al., 2002), the time period that coincides with expression of overt respiratory distress in these animals, suggesting that CYP1A induction may protect against hyperoxic lung injury. The protection against hyperoxic lung injury of adult rodents pretreated with beta-naphthoflavone
(BNF) (Sinha et al., 2005) or 3-methylcholanthrene (3-MC) (Mansour et al., 1988) has been attributed to the aryl hydrocarbon receptor (AhR) mediated induction of CYP1A1, an enzyme with high peroxidase activity. It has also been shown that the CYP1A inhibitor 1-aminobenzotriazole potentiates hyperoxic lung injury in rats (Moorthy et al., 2000). Although direct evidence is lacking, CYP1A1 has been implicated in the metabolism of F2-isoprostanes (Tong et al., 2003).

The tissue-specific upregulation of the CYP1A enzymes by classical inducers such as 2, 3, 7, 8-tetrachloro-dibenzo-p-dioxin (TCDD), 3-MC, and BNF occurs via the AhR-dependent mechanism (Sinal et al., 1999; Nebert et al., 2004). The classical inducers serve as ligands and bind to the AhR after entry into the cells. This results in translocation of AhR into the nucleus. In the nucleus, the AhR heterodimerizes with the AhR nuclear translocator (ARNT) and the heterodimer interacts with Ah-responsive elements (AhREs), located as multiple copies within CYP1A1 gene promoter, leading to enhanced transcription of the CYP1A1 gene.

Omeprazole, a substituted benzimidazole derivative, is a proton pump inhibitor that inhibits gastric acid secretion both in humans (Lind et al., 1983) and in animals (Larsson et al., 1983). Omeprazole is 97% bound to plasma proteins and is extensively metabolized in the liver via CYP2C19 and 3A4 to hydroxylated sulfanyl and sulfone derivatives, with little unchanged drug excreted in the urine. It has been widely used in the management of gastric acid related disorders in humans for about 15 years (Li et al., 2004). Previous studies have shown that omeprazole can induce CYP1A1/2 at mRNA, protein and enzyme levels in human and animal hepatocytes in vitro (Diaz et al., 1990; Krusekopf et al., 1997). However, the impact of omeprazole on pulmonary and hepatic CYP1A enzymes in vivo and its role in hyperoxic lung injury in mice are
unknown. Likewise, there is little information available on the precise role of AhR in induction of CYP1A by omeprazole. In the current study, we tested the hypothesis that omeprazole will induce pulmonary and hepatic CYP1A enzymes by AhR-dependent mechanisms and attenuate hyperoxic lung injury in mice. We hereby demonstrate a novel protective role of omeprazole against hyperoxic lung injury in mice by an AhR-mediated mechanism, and this phenomenon is associated with induction of CYP1A enzymes. Our findings indicate a potential role of omeprazole in the prevention and/or treatment of hyperoxia-induced lung disorders like BPD in human preterm infants and acute respiratory distress syndrome (ARDS) in older children and adults.
Methods

Animals: This study was conducted in accordance with the federal guidelines for the human care and use of laboratory animals, and was approved by the Institutional Animal Care and Use Committee of Baylor College of Medicine. The aryl hydrocarbon receptor dysfunctional (AhRd) B6.D2N-Ahrd/J strain mice were obtained from the Jackson laboratory. Dr. Daniel Nebert initially backcrossed Ahrd allele from DBA/2N onto C57BL/6N via a backcross-intercross breeding scheme and transferred this congenic to Dr Alan Poland at generation N13, who then backcrossed the Ahrd allele onto C57BL/6J, again via a backcross-intercross breeding scheme. The resulting homozygotes at or beyond generation N17 were maintained at the Jackson laboratory by sibling intercross. Eight-week old male C57BL/J6 wild type (WT) and AhRd mice maintained at Texas Children's Hospital animal facility were used for the study. They were fed standard mice food and water ad libitum. Animals were maintained in 12-h day/night cycles.

Chemicals: Omeprazole, calcium chloride, Tris, sucrose, NADPH, bovine serum albumin, ethoxyresorufin, glutathione reductase, glucose 6-phosphate, and glucose 6-phosphate dehydrogenase were purchased from Sigma-Aldrich (St. Louis, MO). Buffer components for electrophoresis and western blotting were obtained from Bio-Rad (Hercules, CA). The primary monoclonal antibody to CYP1A1, which cross-reacts with CYP1A2, was a generous gift from Dr. P. E. Thomas (Rutgers University, Piscataway, NJ). Goat anti-mouse IgG conjugated with horseradish peroxidase and anti-neutrophil antibody were from Bio-Rad. All real-time reverse transcriptase-polymerase chain reaction (RT-PCR) reagents were from Applied Biosystems (Foster City, CA).
Experiment design: Briefly, we used a total of 32 wild type mice and 32 AhRD mice in the study. The mice were injected intraperitoneally with either 50 mg/kg/day of omeprazole (dissolved in 100 microliters of corn oil, n=16/genotype) or 100 microliters of corn oil (controls, n=16/genotype) once daily for 5 days. The mice were then maintained in either room air (21% oxygen) or exposed to hyperoxic (95–100% oxygen) environment using pure O₂ at 5 l/min for 72 h in a sealed Plexiglass chamber, as reported previously (Gonder et al., 1985). After sealing, the oxygen concentration in the plexiglass chamber was checked frequently by an analyzer (Ventronics, Kenilworth, New Jersey). Purified tap water and food (Purina Rodent Lab Chow 5001 from Purina Mills, Inc., Richmond, IN) were available ad libitum. After 72h of hyperoxia exposure, the animals were anesthetized with 200 mg/kg of i.p. sodium pentobarbital and euthanized by exsanguination while under deep pentobarbital anesthesia. The lung and liver tissues were harvested for analysis of CYP1A induction and hyperoxic lung injury. Our preliminary dose-responsive studies in wild type mice after administration of 10 to 150 mg/kg/day of omeprazole i.p. for 3 days showed that only doses greater than 50 mg/kg/day increased CYP1A enzyme activities (data not shown). Therefore, we selected an omeprazole dose of 50 mg/kg/day for our studies in mice.

Preparation of microsomes and enzyme assays: Lung and liver samples at the time of dissection were frozen immediately with liquid nitrogen and maintained at a temperature of –80°C until preparation of microsomes. Lung microsomes were prepared by differential centrifugation from individual animals, as reported previously (Couroucli et al., 2002). Liver microsomes were isolated by the calcium chloride precipitation method (Moorthy et al., 1997). Ethoxyresorufin O-deethylase (EROD) (CYP1A1) activities in lung and liver microsomes and
methoxyresorufin O-demethylase (MROD) (CYP1A2) activities in liver microsomes were assayed as described previously (Mooorthy et al., 1997).

Western blotting: Lung and liver microsomes (5 μg of protein) prepared from individual animals was subjected to SDS polyacrylamide gel electrophoresis in 7.5% acrylamide gels. The separated proteins on the gels were transferred to polyvinylidene difluoride membranes, followed by western blotting. For the western blot analysis, a monoclonal antibody to CYP1A1, which cross-reacts with CYP1A2 was used as a primary antibody. The primary antibody was detected by incubation with the horseradish peroxidase-conjugated goat anti-mouse IgG secondary antibody. The immuno-reactive bands were detected by chemiluminescence methods and the band density was analyzed by Kodak 1D 3.6 imaging software (Eastman Kodak Company, Rochester, NY).

Real-time RT-PCR assays: Total mRNA was isolated using a modification of the procedure from Chomczynski et al. (Chomczynski and Sacchi, 1987) and treated with RQ1 RNase-free DNase (Promega) to eliminate genomic DNA contamination. RNA (50 ng), isolated as above, was subjected to one step real time quantitative TaqMan® RT-PCR using 7900HT Fast Real-Time PCR System (Applied Biosystems, Foster City, CA). Gene-specific primers (CYP1a1-Mm00487218_m1; monocyte chemoattractant protein-1(MCP1)-Mm00441242_m1; 18S-Hs99999901_s1) in the presence of TaqMan® reverse transcription reagents and RT reaction mix (Applied Biosystems, Foster City, CA) were used to reverse transcribe RNA, and TaqMan® Gene Expression probes and TaqMan® Universal PCR Master Mix (Applied Biosystems, Foster City, CA) were used for PCR amplification. The 18S was used as the reference gene. Following an RT hold for 30 minutes at 48°C, the samples were denatured at 95°C for 10 minutes. The
thermal cycling step was for 40 cycles at 95°C for 15 s, and 40 cycles at 60°C for 1 minute. The \(\Delta \Delta C_t \) method was used to calculate the fold change in mRNA expression: \(\Delta C_t = C_t \) (target gene) - \(C_t \) (reference gene), \(\Delta \Delta C_t = \Delta C_t \) (treatment) - \(\Delta C_t \) (control), fold change = \(2^{(-\Delta \Delta C_t)} \) (Jiang et al., 2004).

Lung weight/body weight ratio: The mice were weighed immediately after being anesthetized, and the lungs were weighed after the sacrifice and harvesting. LW/BW ratios were determined to evaluate the severity of lung edema.

Preparation of tissues for histology and immunohistochemistry: Tracheotomy was performed on the anesthetized mice and the lung tissue was fixed by intratracheal instillation of 10% zinc formalin at constant pressure of 25 cm of H\(_2\)O (Couroucli et al., 2002). Samples were left in solution for 24 h in formaldehyde, and then transferred to 70% EtOH for long-term storage.

Lung histopathology: Routine histology was performed on lung tissues from individual animals following staining of the paraffin sections with hematoxylin and eosin.

Lung immunohistochemistry for CYP1A1 protein expression, MCP-1 expression and neutrophil infiltration: 5 \(\mu \)M deparaffinized lung sections were immunostained with the following primary antibodies: CD5 monoclonal CYP1A1/2 antibody (Generous gift from Dr. Paul E. Thomas, Rutgers University, Piscataway, NJ, dilution 1:50) for CYP1A1/2; goat polyclonal MCP-1 antibody (Santa Cruz Biotechnologies, Santa Cruz, CA; sc-1785, dilution 1:50) for MCP-1; and rat anti-mouse neutrophil antibody (Serotec, Raleigh, NC; MCA771G, dilution 1:200) for neutrophils, followed by staining with appropriate biotinylated secondary antibodies (Vector Laboratories Burlingame, CA). To analyze the degree of pulmonary...
neutrophil infiltration, the positively stained cells were counted in 10 non-adjacent areas per mouse under 40x magnification. Dr. Roberto Barrios, a pulmonary pathologist, evaluated the histopathology and immunohistochemistry slides. Dr. Barrios was blinded to the treatment of mice with various regimens.

Analyses of data: The results were analyzed by computerized statistical package (SPSS version 19). Data are expressed as means ± SEM. Analysis of Variance technique was used to assess the effects of treatment, exposure and genotype, and the interactions among them. Tukey’s test was used for post hoc analysis. *P* values <0.05 were considered significant.
Results

In this investigation, we tested the hypothesis that omeprazole attenuates hyperoxic lung injury in adult wild type C57BL/6J (WT) mice by an AhR-mediated induction of pulmonary and hepatic CYP1A enzymes.

Hyperoxia attenuates pulmonary and hepatic CYP1A enzyme activities in WT mice

EROD and MROD activity, which are selective for CYP1A1 and CYP1A2 enzyme respectively, were analyzed to evaluate the effects of hyperoxia on pulmonary CYP1A1, and hepatic CYP1A1 and CYP1A2 enzyme activities. Exposure of WT animals to hyperoxia decreased pulmonary CYP1A1 (F(2,9) = 17.05, p < .01, Table 1) and hepatic CYP1A2 (F(2,9) = 23.99, p < .01, Table 1) enzyme activities in a time dependent manner. However, hepatic CYP1A1 (F(2,9) = 1.63, p = .249, Table 1) enzyme activities did not change significantly upon exposure to hyperoxia.

Omeprazole enhances pulmonary CYP1A1 and hepatic CYP1A2 enzyme activities in WT mice

Omeprazole – treated WT mice showed increased pulmonary EROD (F(7,24) = 119.88, p < 0.01, Fig 1A), but not hepatic EROD (F(7,24) = 2.16, p = .08, Fig 1B) activities, compared to corn oil group both in room air and hyperoxic conditions. Omeprazole also induced hepatic MROD activities both in room air and hyperoxic conditions in the WT mice (F(7,24) = 50.17, p < 0.01, Fig 1C). Hyperoxia for 72 h decreased CYP1A enzyme activities in WT mice treated with both corn oil and omeprazole. However, CYP1A enzyme activities were significantly
greater in hyperoxia exposed animals treated with omeprazole compared to room air breathing animals treated with corn oil.

Omeprazole enhances pulmonary CYP1A1 and hepatic CYP1A2 protein expression in WT mice

Next we determined the effect of omeprazole on pulmonary and hepatic CYP1A apoprotein expression. Western blot assay revealed that omeprazole increased pulmonary CYP1A1 (F(7,24) = 221.07, p < .01, Fig 2A,B) and hepatic CYP1A2 (F(7,24) = 56.26, p < .01, Fig 2C,D) apoprotein expression in the microsomes of WT mice exposed to room air as well as hyperoxia. Interestingly, hyperoxia by itself increased CYP1A apoprotein expression in both corn oil and omeprazole treated animals compared to their corresponding room air groups. To determine the expression of CYP1A1 protein in specific regions of the lung, we performed immunohistochemistry on fixed lung sections using CYP1A1 antibodies. Immunohistochemistry showed that omeprazole upregulated CYP1A1 expression, as evident by enhanced positive CYP1A1 staining, in both the bronchial (Fig 2E) and alveolar epithelium (data not shown) in WT mice exposed to room air as well as hyperoxia. These findings closely correlated with the lung western blot assay results.

Omeprazole enhances pulmonary CYP1A1 and hepatic CYP1A2 mRNA expression in WT mice

In order to determine if the enhancement of CYP1A enzyme activities and protein contents were preceded by an increase in its mRNA, we performed real time RT-PCR analysis from total RNA isolated from WT mice exposed to room air and hyperoxia. Quantification of mRNA levels
demonstrated that omeprazole significantly increased pulmonary CYP1A1 (F(7,24) = 102.52, p < 0.01, Fig 3A) and hepatic CYP1A2 (F(7,24) = 75.41, p < 0.01, Fig 3C) mRNA levels as compared to corn oil groups both in room air and hyperoxic conditions. These results were consistent with the effects of omeprazole on pulmonary CYP1A1 (EROD) and hepatic CYP1A2 (MROD) enzyme activities. Omeprazole failed to induce hepatic CYP1A1 expression at the enzyme (F(7,24) = 1.25, p = .317, Fig 1B) and mRNA (F(7,24) = 2.16, p = 0.08, Fig 3B) levels.

Omeprazole fails to enhance pulmonary and hepatic CYP1A expression in AhRd mice

To examine whether AhR regulates omeprazole mediated expression of pulmonary and hepatic CYP1A enzymes, we studied AhRd mice using the same experimental design. Interestingly, we found that omeprazole failed to enhance pulmonary and hepatic CYP1A expression at the enzyme (Fig 1), protein (Fig 2) and mRNA levels (Fig 3) in AhRd mice exposed to both room air and hyperoxia. These results indicate that AhR is a critical regulator of omeprazole-mediated expression of pulmonary and hepatic CYP1A enzymes in mice.

Omeprazole decreased lung edema, perivascular and alveolar damage in WT mice

To estimate the severity of lung injury, we initially analyzed LW/BW ratio to determine the degree of lung edema. The LW/BW ratio did not differ between omeprazole and corn oil groups in room air-breathing WT mice (Fig 7A). Hyperoxia caused an increase in LW/BW ratio in WT mice compared to the corresponding room air groups. However, omeprazole attenuated hyperoxia-induced increase in LW/BW (P<0.005) ratio in WT mice compared to corn oil group (F(7,24) = 107.93, p < .01, Fig 7A). Furthermore, histopathological examination of the lungs
exposed to hyperoxia revealed less perivascular edema, alveolar hemorrhage and infiltrates in WT mice treated with omeprazole compared to those treated with corn oil (Fig 4). In room air-breathing WT mice, the histopathological examination of the lungs did not show any evidence of tissue injury in both omeprazole and corn oil groups (Fig 4).

Omeprazole attenuates hyperoxia-induced lung inflammatory response in WT mice

We performed real time RT-PCR analysis of lung MCP-1 mRNA, and immunohistochemistry on fixed lung sections using anti-MCP-1 and antineutrophil antibodies to ascertain if omeprazole altered hyperoxia-induced lung inflammatory response. Real time RT-PCR analysis and immunohistochemistry studies revealed that hyperoxia increased both accumulation of neutrophils (Figures 5 and 7B) and MCP-1 expression (Figures 6 and 7C) in the lungs of WT mice. However, the lungs of omeprazole-treated WT mice had decreased accumulation of neutrophils ([F(7,24) = 22.31, p < 0.05]) and decreased MCP-1 expression ([F(7,24) = 181.99, p < 0.01]) compared to corn oil treated WT mice exposed to hyperoxia.

Omeprazole failed to decrease hyperoxia-induced lung edema, perivascular and alveolar damage and inflammation in AhRd mice

Omeprazole failed to decrease lung edema (Fig 7A), alveolar and perivascular damage (Fig 4), neutrophil infiltration (Figures 5 and 7B) and MCP-1 expression (Figures 6 and 7C) in AhRd mice exposed to hyperoxia. In room air-breathing AhRd mice, the histopathology (Fig 4), immunohistochemistry (Figures 5 and 6) and real time RT-PCR (Fig 7C) did not show any evidence of lung injury and inflammation in both omeprazole and corn oil groups.
Discussion

In this study, we have shown that omeprazole attenuates hyperoxic lung injury in mice by an AhR-mediated induction of pulmonary CYP1A1 and hepatic CYP1A2 enzymes. In WT mice, omeprazole-mediated protection against hyperoxic lung injury correlated with enhanced pulmonary CYP1A1 and hepatic CYP1A2 expression by omeprazole compared to control. Interestingly, in AhRd mice, lack of omeprazole-mediated protective effects against hyperoxic lung injury correlated with attenuated pulmonary CYP1A1 and hepatic CYP1A2 expression by omeprazole.

Omeprazole-mediated increase in pulmonary EROD and hepatic MROD activities in WT mice indicates induction of pulmonary CYP1A1 and hepatic CYP1A2 expression, as EROD and MROD activities are relatively specific for CYP1A1 and CYP1A2 enzymes respectively (Burke et al., 1994; Moorthy et al., 2000; Couroucli et al., 2002). Enhanced pulmonary CYP1A1 and hepatic CYP1A2 mRNA expression that is seen in parallel with corresponding increases in enzyme activities provides evidence that omeprazole induces pulmonary CYP1A1 and hepatic CYP1A2 expression by transcriptional activation of CYP1A1 and CYP1A2 gene expression in WT mice. Wei and colleagues (Wei et al., 2002) also observed that omeprazole induces pulmonary CYP1A1 in human lung samples using an explant culture system. Although, hyperoxia decreased pulmonary and hepatic CYP1A enzyme activities and mRNA expression compared to their corresponding room air groups, CYP1A activities and mRNA expression were higher in omeprazole-treated animals exposed to hyperoxia compared to room air-breathing corn oil treated animals. These findings suggest that in hyperoxic conditions, omeprazole increased CYP1A activities compared to the constitutional expression seen in room air conditions. In
contrast to CYP1A enzyme activities and mRNA expression, hyperoxia increased pulmonary and hepatic CYP1A apoprotein concentrations in both the corn oil and omeprazole groups, which indicate that omeprazole and hyperoxia may affect the CYP1A apoprotein concentrations independently. The discrepancies in our observations suggest post-translational mechanisms (e.g., protein stabilization), although the exact mechanisms are unknown at this time.

Our previous experiments in mice with the prototypical CYP1A inducers, 3-MC and BNF revealed that CYP1A1, but not CYP1A2, is induced in the mouse lungs (Moorthy, 2008). Therefore, we analyzed only the pulmonary CYP1A1 expression in the current study. We showed that hyperoxic pulmonary toxicity is increased in mice lacking cyp1a2 gene (Moorthy, 2008). Another group of investigators (Shertzer et al., 2004) also observed that ROS formation was increased in cyp1a2 (-/-) mice, which suggests that CYP1A2 may have antioxidant activity. These observations indicate that although CYP1A2 is mainly hepatic, it can have extrahepatic protective effects against hyperoxic lung injury. CYP1A2 is mainly a hepatic enzyme and is rarely expressed in extrahepatic tissues. Although, CYP1A1 enzymes are also expressed in the intestines and kidneys, the effects of intestinal and renal CYP1A1 on hyperoxic lung injury are unknown. Therefore, we analyzed the effects of omeprazole on hepatic CYP1A2 in addition to pulmonary CYP1A1 in the current study.

The mechanistic role of AhR in the induction of CYP1A by prototypical inducers, 3 MC and BNF has been extensively studied. However, the molecular mechanism(s) of induction of CYP1A by omeprazole remains obscure. Therefore, we conducted experiments with omeprazole in mice having a dysfunctional AhR to delineate the precise role of AhR in omeprazole-mediated induction of CYP1A enzymes. In AhRd mice, the failure of omeprazole to enhance pulmonary
EROD and hepatic MROD activities, and CYP1A apoprotein, protein and mRNA expression both in room air and hyperoxia supports the hypothesis that induction of pulmonary CYP1A1 and hepatic CYP1A2 by omeprazole is mediated by AhR-dependent mechanisms. Our observation that AhR is critical for the upregulation of CYP1A gene by omeprazole is consistent with other studies (Denison and Nagy, 2003; Yoshinari et al., 2008).

The dose of omeprazole used in this study was comparable to the dose used in previous studies in rodents (Larsson et al., 1988; Kashfi et al., 1995). Numerous studies have shown clear differences in the induction of CYP1A by omeprazole among the species examined (Shih et al., 1999). Omeprazole appears to be a more potent inducer of CYP1A in humans than in rodents, and is shown to induce CYP1A in humans with conventional doses used to treat gastric acid related disorders (Kashfi et al., 1995; Shih et al., 1999). Rodents require a considerably higher dose of omeprazole than humans to induce CYP1A. Differential mechanisms by which omeprazole enhance CYP1A gene transcription may be responsible for the differences observed among species (Tompkins and Wallace, 2007).

Our study demonstrates that omeprazole attenuates hyperoxia induced: (i) alveolar and perivascular damage (Fig 4) and (ii) inflammation (Figures 5, 6 and 7) in WT mice. Attenuation of lung injury in omeprazole-treated WT mice exposed to hyperoxia signifies the protective effects of omeprazole against hyperoxic lung injury. Our observation that omeprazole fails to protect against hyperoxic lung injury in AhRd mice suggests that AhR plays a crucial role in omeprazole-mediated protection against hyperoxic lung injury. Because the AhR regulates the induction of CYP1A enzymes that may detoxify reactive oxygen species (Tong et al., 2003; Sinha et al., 2005; Moorthy, 2008), it is possible that suppression of these enzymes may have
contributed to the failure of omeprazole to protect AhRd mice against hyperoxic lung injury. The protective effects of CYP1A enzymes against hyperoxic lung injury in rodents have been extensively documented, as evidenced by (i) attenuation of hyperoxic lung injury in rodents treated with CYP1A inducers, BNF or 3-MC (Mansour et al., 1988; Sinha et al., 2005; Moorthy, 2008); (ii) potentiation of hyperoxic lung injury in rats treated with CYP1A inhibitor, 1-aminobenzotriazole (Moorthy et al., 2000); and (iii) increased susceptibility of rodents deficient in the genes for AhR (Couroucli et al., 2002; Jiang et al., 2004) to hyperoxic lung injury. Since AhR also induces phase II enzymes such as NAD(P)H quinone reductase, glutathione S-transferase-α, and aldehyde dehydrogenase, the beneficial role of these enzymes against hyperoxic lung injury are not excluded. It is also possible that superoxide dismutase may also have contributed to some of the beneficial effects of the AhR, which may up-regulate superoxide dismutase through the AhREs (Park and Rho, 2002).

It has been recently postulated that the anti-ulcer and gastroprotective effects of omeprazole may also involve acid-unrelated mechanisms, which include inhibition of neutrophil infiltration and of oxidative tissue damage (Kobayashi et al., 2002; Pozzoli et al., 2007). To support this, several in vitro studies have revealed that omeprazole possesses a direct scavenging activity against oxygen free radicals and it inhibits neutrophil function (Wandall, 1992; Yoshida et al., 2000). Thus, it is plausible that the antioxidant properties of omeprazole may be beneficial in other pathologic conditions associated with oxidative damage (Halliwell et al., 2000; Hanauer, 2006). Omeprazole has also been shown to protect against necrotizing enterocolitis in newborn rats subjected to hypoxia/reoxygenation (Cadir et al., 2008). All of these data show that omeprazole has antioxidant and anti-inflammatory properties. However, the mechanisms of the antioxidant
and anti-inflammatory effects of omeprazole are not clear. In the current study, although we have not provided a direct link between omeprazole, CYP1A induction and hyperoxic lung injury, we have clearly shown that omeprazole-mediated attenuation of hyperoxic lung injury observed histopathologically was associated with enhanced pulmonary CYP1A1 and hepatic CYP1A2 expression in WT mice. On the contrary, omeprazole failed to protect against hyperoxic lung injury in AhRd mice and these mice were refractory to the induction of CYP1A enzymes by omeprazole. These results support the concept that omeprazole protects against hyperoxic lung injury via AhR-dependent mechanisms and is also associated with the induction of CYP1A enzymes by omeprazole. To our knowledge, this is the first study to report a novel finding that omeprazole protects against hyperoxic lung injury in mice.

In summary, we provide evidence that omeprazole therapy attenuates hyperoxic injury in mice in vivo by inducing pulmonary CYP1A1 and hepatic CYP1A2 enzymes via an AhR-mediated mechanism. We propose that the protective effects of omeprazole may be due to pulmonary CYP1A1 and hepatic CYP1A2-mediated detoxification of lipid peroxides and hydroperoxides generated by reactive oxygen species. Our results suggest that omeprazole may be beneficial as an adjunctive therapeutic agent in the prevention and treatment of hyperoxia-induced disorders like BPD in premature infants and ARDS in older children and adults. Further studies are needed to investigate the safety and efficacy of omeprazole against hyperoxic lung injury in neonatal mice in vivo, and to evaluate the effects of omeprazole on human infant pulmonary cell lines exposed to hyperoxia in vitro. These studies may provide additional insight into the mechanisms of protection and the feasibility of the use of omeprazole for hyperoxic lung injury in human infants.
Acknowledgments

We thank Raul Gonzalez HT for his timely processing of histopathology and immunohistochemistry slides and Dr Roberto Barrios for his help in evaluating the histology and immunohistochemistry slides.
Authorship Contributions

Participated in research design: Shivanna, Jiang, Couroucli, and Moorthy

Conducted experiments: Shivanna, Jiang, and Wang

Performed data analysis: Shivanna, Jiang, and Moorthy

Wrote or contributed to the writing of the manuscript: Shivanna and Moorthy
References

Footnotes

a) This work was supported by grants from IKARIA to B.S.; and the National Institutes of Health [RO1HL-070921, RO1HL-087174, RO1ES-019689, and R01ES-009132 to B.M.].

b) The name and full address of person to receive reprint requests: Binoy Shivanna, Division of Neonatal-Perinatal Medicine, Texas Children’s Hospital, Baylor College of Medicine, 1102 Bates Avenue, MC: FC530.01, Houston, Texas 77030. Phone: 832-824-6474. Fax: 832-825-3204. E-mail: shivanna@bcm.edu
Legends for figures

Figure 1: Omeprazole induces pulmonary and hepatic cytochrome P450 (CYP) 1A enzyme activities via the aryl hydrocarbon receptor (AhR). WT and AhRd mice were pre-treated with corn oil or omeprazole, and exposed to room air or hyperoxia for 72 h, as described under Materials and Methods, following which the pulmonary (A) EROD (CYP1A1), hepatic (B) EROD, and hepatic (C) MROD (CYP1A2) activities were measured by fluorimetry. Values are means ± SEM from at least 4 individual animals in corn oil (open bar) and omeprazole (closed bar) groups. Significant differences between corn oil and omeprazole groups are indicated by **, p < 0.01. Significant differences between corresponding room air and hyperoxia groups are indicated by †, p < 0.05.

Figure 2: Omeprazole increases pulmonary and hepatic CYP1A protein expression by an AhR-dependent mechanism. Representative western blot assays showing pulmonary CYP1A1 (A) and hepatic CYP1A2 (C) apoprotein expression in microsomes isolated from WT and AhRd mice. Actin, tubulin or GAPDH were not used to determine protein loading since they are whole cell or cytoplasmic housekeeping proteins that might not accurately reflect equal protein loading in the microsomal fraction of the cells. B. Densitometric analysis of pulmonary CYP1A1 immunoblots. D. Densitometric analysis of hepatic CYP1A2 immunoblots. Open bar: corn oil group; closed bar: omeprazole group (n= atleast 4 mice per group). Significant differences between corn oil and omeprazole groups are indicated by **, p < 0.01. Significant differences between corresponding room air and hyperoxia groups are indicated by †, p < 0.05 and ††, p < 0.01. E. Effects of omeprazole on pulmonary CYP1A1 protein expression in WT and AhRd mice as determined by immunohistochemistry (n=5 mice per group). Arrows point to golden brown
staining of CYP1A1 positive epithelial cells lining the bronchioles in WT mice and lack of staining in AhRd mice. Scale bar = 10 mm.

Figure 3: Real-time RT-PCR analysis showing the effects of omeprazole on pulmonary CYP1A1 (A), and hepatic CYP1A1 (B) and CYP1A2 (C) mRNA expression in WT and AhRd mice. Values are means ± SEM from at least 4 individual animals in corn oil (open bar) and omeprazole (closed bar) groups. Significant differences between corn oil and omeprazole groups are indicated by *, p < 0.05 and **, p < 0.01. Significant differences between corresponding room air and hyperoxia groups are indicated by †, p < 0.05 and ††, p < 0.01.

Figure 4: Omeprazole decreases hyperoxia-induced lung edema, perivascular and alveolar injury by an AhR-dependent mechanism. Representative hematoxylin eosin stained images from the lungs of WT and AhRd mice (n=5 mice per group). a. Corn oil treated WT mice exposed to room air. b. Corn oil treated WT mice exposed to hyperoxia. c. Omeprazole treated WT mice exposed to room air. d. Omeprazole treated WT mice exposed to hyperoxia. e. Corn oil treated AhRd mice exposed to room air. f. Corn oil treated AhRd mice exposed to hyperoxia. g. Omeprazole treated AhRd mice exposed to room air. h. Omeprazole treated AhRd mice exposed to hyperoxia. Arrows and arrow heads point to perivascular and alveolar areas respectively. Scale bar = 10 mm.

Figure 5: Representative immunostained images for neutrophils in the lungs. Effects of omeprazole on hyperoxia-induced neutrophil recruitment into the lungs was determined by immunohistochemistry with anti-neutrophil antibodies in WT and AhRd mice (n=5 mice per group). a. Corn oil treated WT mice exposed to room air. b. Corn oil treated WT mice exposed to hyperoxia.
hyperoxia. c. Omeprazole treated WT mice exposed to room air. d. Omeprazole treated WT mice exposed to hyperoxia. e. Corn oil treated AhRd mice exposed to room air. f. Corn oil treated AhRd mice exposed to hyperoxia. g. Omeprazole treated AhRd mice exposed to room air. h. Omeprazole treated AhRd mice exposed to hyperoxia. Arrows point to brown staining neutrophils in the lungs. Scale bar = 10 mm.

Figure 6: Omeprazole decreases hyperoxia-induced expression of MCP-1 in the lungs of WT mice. Representative immunostained images for MCP-1 expression in the lungs of WT and AhRd mice (n=4 mice per group). a. Corn oil treated WT mice exposed to room air. b. Corn oil treated WT mice exposed to hyperoxia. c. Omeprazole treated WT mice exposed to room air. d. Omeprazole treated WT mice exposed to hyperoxia. e. Corn oil treated AhRd mice exposed to room air. f. Corn oil treated AhRd mice exposed to hyperoxia. g. Omeprazole treated AhRd mice exposed to room air. h. Omeprazole treated AhRd mice exposed to hyperoxia. Arrows point to the brown staining of MCP-1 positive epithelial cells lining the bronchioles. Scale bar = 10 mm.

Figure 7: Representative quantitative analysis of the effects of omeprazole on hyperoxia-induced lung injury and inflammation: A. Effects of omeprazole on Lung weight/body weight ratios of WT and AhRd mice. Values are means ± SEM from at least 4 individual animals in corn oil (open bar) and omeprazole (closed bar) groups. Significant differences between corn oil and omeprazole groups are indicated by **, p < 0.01. Significant differences between corresponding room air and hyperoxia groups are indicated by ††, p < 0.01. B. Neutrophil count analysis per high power field. Data represent means ± SEM from at least 4 individual animals in corn oil (open bar) and omeprazole (closed bar) groups. Significant differences between corn oil and omeprazole groups are indicated by *, p < 0.05. Significant differences between
corresponding room air and hyperoxia groups are indicated by ††, p < 0.01. C. Real-time RT-PCR analysis showing the effects of omeprazole on pulmonary MCP-1 mRNA expression in WT and AhRd mice. Values are means ± SEM from at least 4 individual animals in corn oil (open bar) and omeprazole (closed bar) groups. Significant differences between corn oil and omeprazole groups are indicated by **, p < 0.01. Significant differences between corresponding room air and hyperoxia groups are indicated by ††, p < 0.01.
Table 1

Quantitative effects of hyperoxia on pulmonary and hepatic CYP1A enzyme activities

Pulmonary CYP1A1 (EROD), hepatic CYP1A1 (EROD), and hepatic CYP1A2 (MROD) activities were measured by fluorimetry in WT mice exposed to room air or hyperoxia for up to 72 h. Data are expressed as means ± SEM from at least 4 individual animals. Significant differences between room air and hyperoxia groups are indicated by *, p < 0.05 and **, p < 0.01.

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Lung CYP1A1 activity (pmol/min/mg)</th>
<th>Liver CYP1A1 activity (pmol/min/mg)</th>
<th>Liver CYP1A2 activity (pmol/min/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Room air</td>
<td>4.16 ±.25</td>
<td>16.3±.76</td>
<td>35.05±2.6</td>
</tr>
<tr>
<td>48 h Hyperoxia</td>
<td>3.4±.06*</td>
<td>14.9±.95</td>
<td>26.7±1.48*</td>
</tr>
<tr>
<td>72 h Hyperoxia</td>
<td>2.9±.07**</td>
<td>14.17±.83</td>
<td>17.35±.88**</td>
</tr>
</tbody>
</table>
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7