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Abstract 

 

Recent epidemiological data suggest that diabetes is a risk factor for pulmonary arterial 

hypertension. The aim of the present study was to analyze the link between type 1 

diabetes and pulmonary arterial dysfunction in rats. Male Sprague-Dawley rats were 

randomly divided into a control (saline) and a diabetic group (70 mg/kg streptozotocin).  

After 6 weeks, diabetic animals showed a downregulation of the lung bone 

morphogenetic protein receptor type 2 (BMPR2), upregulation of 5-HT2A receptors and 

cyclooxygenase-2 proteins as measured by Western blot analysis and increased 

contractile responses to 5-HT in isolated intrapulmonary arteries. The 

hyperresponsiveness to 5-HT was endothelium-independent and unaffected by 

inhibition of NO synthase but prevented by indomethacin, the selective 

cyclooxygenase-2 inhibitor NS398, superoxide dismutase and the NADPH oxidase 

inhibitor apocynin or chronic treatment with insulin. However, diabetic rats at 6 weeks 

did not develop elevated right ventricular pressure or pulmonary artery muscularization 

while a longer exposure (4 months) to diabetes induced a modest but significant 

increase in right ventricular systolic pressure. In conclusion, type 1 diabetes mellitus in 

rats induces a number of changes in lung protein expression and pulmonary vascular 

reactivity characteristic of clinical and experimental pulmonary arterial hypertension but 

insufficient to elevate pulmonary pressure. Our results further strengthen the link 

between diabetes and pulmonary arterial hypertension.  
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Introduction 

 

Despite the fact that type 1 and type 2 diabetes are strongly associated with systemic 

cardiovascular diseases (Rutter et al., 2005) the relationship with pulmonary vascular 

disease has been almost disregarded (Fouty, 2008). However, recent epidemiological 

studies suggest a link between diabetes and pulmonary arterial hypertension (PAH) 

(Movahed et al., 2005; Makarevich et al., 2007; Zamanian et al., 2009). In addition, 

maternal diabetes is an independent risk factor for persistent pulmonary hypertension of 

the newborn (Hernandez-Diaz et al., 2007).  There is also some experimental evidence 

linking type 2 diabetes with PAH. Thus, male apoE-/- mice on a high-fat diet, an animal 

model associated to insulin resistance, develop PAH which was prevented by the 

antidiabetic drug rosiglitazone (Hansmann et al., 2007).  

 

PAH exhibits a complex pathophysiology, unlikely to be explained by a single factor 

(Chan and Loscalzo, 2008; Rabinovitch, 2008). Mutations in the bone morphogenetic 

protein receptor type 2 (BMPR2) underlie many heritable and sporadic cases of PAH 

(Lane et al., 2000) and downregulation of its expression is a common feature of several 

forms of PAH (Atkinson et al., 2002). Inactivation, downregulation or gene 

polymorphisms of voltage-gated potassium channels (KV) have also been implicated in 

PAH (Yuan et al., 1998). Several lines of evidence also indicate that serotonin (5-

hydroxytryptamine [5-HT]) plays a central role in the pathogenesis of this entity. Thus, 

5-HT stimulates pulmonary artery (PA) contraction and smooth muscle cell 

proliferation and blocks KV channels (MacLean et al., 2000; Cogolludo et al., 2006b). 

Hyperresponsiveness to 5-HT in large and small pulmonary arteries (PA) is a common 

feature of PAH (Le Cras et al., 2000; Sato et al., 2000; Keegan et al., 2001; Thomas and 
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Wanstall, 2003; Rodat et al., 2007). Elevated plasma levels of 5-HT and overexpression 

or polymorphisms in the genes encoding 5-HT receptors or the 5-HT transporter are 

associated with the disease (MacLean et al., 2000). It has also been suggested that local 

endothelium-derived 5-HT acting in a paracrine manner may be involved in PAH 

(Eddahibi et al., 2006). Furthermore, pharmacological inhibition or genetic deletion of 

5-HT receptors or the 5-HT transporter attenuates PAH and prolongs survival (MacLean 

et al., 2000). Loss of NO bioavailability is an additional component of the endothelial 

dysfunction and vascular pathology found in PAH (Coggins and Bloch, 2007). 

 

In rats treated with streptozotocin, a widely used model of type 1 diabetes, we have 

recently found pulmonary endothelial dysfunction associated to increased superoxide 

production and upregulation of the NADPH oxidase subunit p47phox (Lopez-Lopez et 

al., 2008). Right ventricular hypertrophy has also been found in this model (Al-Shafei et 

al., 2002). We hypothesized that type 1 diabetes could lead to the development of PAH. 

Therefore, the present study was designed to analyze the effects of streptozotocin on 

pulmonary markers of PAH including the pulmonary expression of key proteins of the 

disease, KV currents, PA pressure and right ventricular hypertrophy. We also further 

analyzed the mechanisms contributing to the vascular hyperreactivity of PA to 5-HT. 

 

 

Methods 

 

Animals and treatments 

The investigation conforms with the Guide for the Care and Use of Laboratory Animals 

(National Institutes of Health Publication No. 85-23, revised 1996), and the procedures 
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were approved by our institutional review board. Male Sprague-Dawley rats were 

randomly divided into a control and a diabetic group. Diabetes was induced by a single 

intraperitoneal injection of 70 mg/kg streptozotocin (controls were injected with saline) 

and followed for 6 weeks (except a group which was followed for 4 months). In a 

further experimental series, streptozotocin treated rats were randomly co-treated with 

insulin glargine (5 units/Kg, once daily) or saline. Blood glucose was analyzed using a 

clinical glucometer.  

 

Pressure measurements  

Systolic and diastolic systemic arterial pressures (SAP) were analyzed with a pressure 

transducer via a catheter located in the right carotid artery in anesthetized 

(pentobarbitone 30-50 mg/kg i.p.) rats ventilated with room air. Right ventricular 

systolic pressure (RVSP) was then measured in open chest rats with a pressure 

transducer via a catheter advanced through the right jugular vein and placed into the 

right ventricle.  

 

Lung histology 

The right lung was inflated in situ with formol (via a column of 25 cm of height through 

the trachea) and embedded in paraffin. Lung sections were stained by hematoxylin/eosin 

and Masson trichrome techniques and examined by light microscopy. Elastin was 

visualized by its green autofluorescence. Small arteries were analyzed in a blinded 

fashion and categorized as muscular, partially muscular, or nonmuscular.  

 

Vascular reactivity 
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Intrapulmonary artery rings (2-3 mm long, internal diameter ~0.5-0.8 mm) were 

dissected and mounted in Krebs solution under 0.75 g of resting tension in organ 

chambers as previously described (Cogolludo et al., 2006b). In some experiments, the 

endothelium was removed by gently rubbing the intimal surface of the rings with a 

metal rod. The endothelium removal procedure was verified by the inability of 

acetylcholine (10-6 M) to relax arteries precontracted with 10-6 M phenylephrine. After 

equilibration, rings were precontracted by 80 mM KCl, and, once a stable contraction 

was reached, were washed with Krebs solution for 30 minutes and concentration-

response curves to 5-HT (10-8-10-4M) were performed by cumulative addition in the 

absence or presence of drugs.  

 

KV current recordings 

PA smooth muscle cells were enzymatically isolated and membrane currents were 

recorded using the whole-cell configuration of the patch clamp technique as previously 

described (Cogolludo et al., 2006b). 

 

Western blot analysis 

Pulmonary artery or whole lung homogenates were run on a SDS-PAGE, and Western 

blot was performed as described (Moreno et al., 2004) using primary monoclonal mouse 

anti-α- or anti-β-actin (Sigma), anti-BMPR2 (BD Transduction), anti-5HT2A 

(Pharmingen), anti-COX-2 (Cayman) or anti-KV1.5 (Alomone) antibodies.  

 

Statistical analysis 

Results are expressed as means ± SEM of measurements. Statistical analysis was 

performed by an unpaired Student’s t-test and for multiple comparisons by one-way 
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ANOVA followed by a Newman Keuls’s test. P<0.05 was considered statistically 

significant. Individual cumulative concentration-response curves were fitted to a logistic 

equation. The maximal drug effect (Emax) and the drug concentration producing 50% of 

the Emax (EC50) expressed as negative log molar value (pD2) were calculated from the 

fitted curves for each ring. Apparent pKB were calculated according to the equation pKB 

= log (DR-1) - log[B], where DR is the ratio of the mean EC50 values of the agonist in 

the presence and in the absence of a given concentration ([B]) of the antagonist. 

 

Results 

 

Right ventricular systolic pressure and right ventricular weight 

After 6 weeks of streptozotocin treatment, animals developed the expected increase in 

blood glucose (488 ± 39 mg/dL, P < 0.01 vs 134 ± 13 mg/dL in control animals) and 

decrease in body weight (196 ± 13 g, P < 0.01 vs 367 ± 10 g in control animals). We 

found no significant changes in RVSP or in the ratios of the free wall of the right 

ventricle (RV) to body weight (BW), free wall of the left ventricle (LV) plus septum (S) 

to BW or RV/(LV+S) as compared with controls (Figure 1A). Moreover, diabetes did 

not modify the percentage of muscular, partially muscular or non muscular arteries 

(Figure 1B). However, in the group treated for four months with streptozotocin (blood 

glucose 473 ± 31 mg/dL, P < 0.01 vs 125 ± 5 mg/dL in control animals) there was a 

significant increase in RVSP compared to parallel controls (22.4 ± 1.9, n = 6 vs 16.7 ± 

0.7 mm Hg, n= 4, respectively, P <0.05). 

 

Lung BMPR2 but not KV1.5 expression is downregulated in diabetes 
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Since BMPR2 and KV1.5 are key proteins involved in PAH we examined its expression 

in diabetic lungs. Diabetes induced a clear downregulation of lung BMPR2 expression 

(Figure 2A). In contrast, the expression of KV1.5 channel protein was not significantly 

modified in these diabetic animals (Figure 2B). In isolated PA smooth muscle cells, 

membrane capacitance, an estimate of membrane surface, was similar in both groups 

(14 ± 2  pF and 14 ± 1 pF in control and diabetic, respectively, not significant). We also 

observed a non significant decrease in the amplitude of the KV currents in diabetic 

animals (Figure 2C).  

 

PA from diabetic rats show endothelium-independent hyperresponsiveness to 5-

HT 

5-HT induced a concentration-dependent contractile response which was higher in 

diabetic compared to control rats (Figure 3A). The analysis of the concentration-

response curve indicated that diabetes induced an increase in the maximal contractile 

response (Emax, Figure 3C) without significant changes in the concentration of 5-HT 

required for half-maximal contraction (pD2, Figure 3C). Because this increased response 

could be attributed to a reduced NO bioavalability (Lopez-Lopez et al., 2008) similar 

experiments were carried out in the presence of the NOS inhibitor L-NAME. This drug 

increased the maximal response to 5-HT in both diabetic and control animals (p < 0.05) 

but the difference between both groups remained highly significant (P < 0.01, Figure 3B 

and 3C). Similarly, in endothelium-denuded arteries the response to 5-HT was higher (P 

< 0.01) than in intact ones but again diabetic denuded vessels were strongly 

hyperresponsive (P < 0.01, Figure 3C and 4A). In endothelium-denuded arteries from 

rats co-treated with streptozotocin plus insulin (blood glucose = 178 ± 5 mg/dL) the 
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Emax of 5-HT was reduced (115 ± 17%, P < 0.05) when compared to the parallel group 

of streptozotocin-treated rats (glucose = 440 ±26, Emax = 201 ± 17%). 

 

Role of 5-HT2A receptors  

We analyzed the contractile response of 5-HT in endothelium-intact and denuded PA in 

the presence of the competitive antagonist of 5-HT2A receptors ketanserin. This drug 

produced a rightward shift of the concentration-response to 5-HT (Figure 4A). The 

calculated pKB values of ketanserin from this shift, an indicator of the potency of the 

antagonist, were 8.2 in both intact and denuded arteries (Figure 4B). These pKB values 

are in agreement with the expected potency of the antagonist for 5-HT2A receptors (8.1-

9.7) (Alexander et al., 2008) indicating that these receptors appear to play a major role 

in 5-HT contraction as previously reported (MacLean et al., 1996). The potency of 

ketanserin was similar in control and diabetic animals in both intact and denuded 

vessels. To analyze the possible role of changes in 5-HT2A receptors, its expression was 

analyzed in lung homogenates by Western blot. The expression of the 5-HT2A receptors 

was increased ~ 2 fold in diabetic rats (Figure 4C). 

 

Role of cyclooxygenase-2 (COX-2) 

To analyze a possible role of COX, we tested the effects of the non selective COX 

inhibitor indomethacin in endothelium-intact vessels. This drug produced a weak 

rightward shift of the curve to 5-HT in PA from control rats (Figure 5A) leading to a 

significant decrease in the pD2 value (Figure 5C). Interestingly, indomethacin abolished 

the hyperresponsiveness to 5-HT in diabetic rats. In the presence of the selective COX-2 

inhibitor NS-398 (N-(2-cyclohexyloxy-4-nitrophenyl)methanesulfonamide) the 

responses to 5-HT in control rats were similar to those in its absence. However, in 
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diabetic rats, this drug prevented the enhanced response to 5-HT and also induced a 

weak rightward shift of the curve (Figure 5B) leading to a significant decrease in the 

pD2 value (Figure 5C). Consistent with a role for COX-2 in the vascular responses, the 

amount of this protein was strongly increased in PA from diabetic rats (Figure 5D). 

 

Role of superoxide 

As we have previously reported an increase in NADPH oxidase-derived superoxide in 

PA from diabetic rats (Lopez-Lopez et al., 2008), we analyzed the contractile response 

to 5-HT in endothelium-intact PA treated with superoxide dismutase (SOD) or the 

NADPH oxidase inhibitor apocynin. The contraction induced by 5-HT in control rats 

(Figures 6A and 6B) was similar to that observed in the absence of the drugs (Figure 

3A). However, both treatments prevented the enhanced response to 5-HT in diabetic 

rats.   

 

Effects of exogenous addition of superoxide and a thromboxane A2 (TXA2) analog  

The responses to 5-HT in PA from control rats were analyzed in the presence of the 

superoxide generating drug pyrogallol or the TXA2 analog U46619 ((Z)-7-[(1S,3S,4S)-

3-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxabicyclo[2.2.1]heptan-2-yl]hept-5-enoic acid). 

After washing the initial response to KCl,  pyrogalol or U46619 were added at 

concentrations titrated to produce 5-15% of the response to KCl (3x10-6M and 10-8M, 

respectively) and after 15 min the concentration-response to 5-HT was performed.  

Pyrogallol increased the Emax to 5-HT without changing the pD2 value and this effect 

was prevented by indomethacin (Figure 7A), mimicking the results in diabetic rats. On 

the other hand, U46619 produced a leftward shift of the curve to 5-HT (increase in pD2) 
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with a non significant increase in the Emax and this effect was not prevented by apocynin 

(Figure 7B).  

 

 

Discussion 

 

Despite the well known link between diabetes and systemic cardiovascular disease, the 

relationship with pulmonary vascular disease has been largely overlooked. In a previous 

study, insulin resistance in ApoE-/- mice was associated to PAH (Hansmann et al., 

2007). We previously found PA endothelial dysfunction, a characteristic feature of 

PAH, in rats with type 1 diabetes and right ventricular hypertrophy was also reported in 

streptozotocin treated rats (Al-Shafei et al., 2002; Lopez-Lopez et al., 2008). Herein, we 

show that rats treated with streptozotocin share a number of pulmonary vascular 

abnormalities with animal models and patients with PAH such as downregulation of 

BMPR2, COX-2 induction, upregulation of 5-HT2A receptors and vascular 

hyperresponsiveness to 5-HT in addition to those previously described such as 

endothelial dysfunction and pulmonary vascular oxidative stress. RVSP and 

RV/(LV+S) and PA muscularization were not significantly different in diabetic rats 

compared to non diabetic controls at 6 weeks while at 4 months we found a significant 

increase in RVSP. This increase was modest, much lower than classical models of PAH. 

 

Both clinical and experimental forms of PAH are associated with a decrease in KV 

currents and diminished pulmonary expression of BMPR2 (Atkinson et al., 2002; 

Takahashi et al., 2006; Morty et al., 2007) and KV1.5, KV3.1 and KV2.1 channels (Yuan 

et al., 1998; Bonnet et al., 2006; Guignabert et al., 2006). In diabetic animals lung 
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BMPR2 protein was downregulated as it has been also reported in diabetic rat kidneys 

(Wang et al., 2001). Our data are consistent with the concept that BMPR2 mutation or 

downregulation is a predisposing factor but may not be sufficient for PAH 5-HT (Long 

et al., 2006). In contrast, in diabetic rats there was no significant change in KV currents 

and in KV1.5 expression. This is consistent with the small, if any, change in both 

parameters found in the fawn hooded rats, an animal model of genetic predisposition to 

PAH, at 20 weeks of age (pre-hypertensive) (Bonnet et al., 2006).  

 

Hyperresponsiveness to 5-HT in large and small PA rings is a common feature of 

animal models of PAH, including cardiopulmonary bypass-, chronic hypoxia-, 

intermittent hypoxia- or monocrotaline-induced PAH (Brown et al., 1998; Sato et al., 

2000; Keegan et al., 2001; Thomas and Wanstall, 2003; Rodat et al., 2007). We also 

found a marked increase in the response to 5-HT in intrapulmonary arteries from 

diabetic rats. Because PA from BMPR2+/– mice also exhibit increased contractile 

responses to 5-HT (Long et al., 2006) it seems likely that, in the diabetic rats, 

hyperresponsiveness to 5-HT is a consequence of the BMPR2 downregulation. 

Interestingly, PAH is not evident in BMPR2+/- mice but it does develop after chronic 5-

HT infusion, an effect that is exaggerated under hypoxic conditions (Long et al., 2006).  

 

The increased response to 5-HT was maintained in endothelium-denuded vessels or in 

the presence of L-NAME, indicating that a major component of this phenomenon is not 

related to acute release of endothelial vasoactive factors. However, differences tended to 

be smaller in endothelium denuded compared to intact vessels suggesting that 

endothelial dysfunction (Al-Shafei et al., 2002; Lopez-Lopez et al., 2008) might also 

play a role. Moreover, it seems to be secondary to the high blood glucose rather than a 
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direct effect of streptozotocin since it was reduced by co-treatment with insulin. On the 

other hand, the similar potency of ketanserin, a specific 5HT2A receptor competitive 

antagonist, on 5-HT contraction indicates that the responses to 5-HT are mainly 

mediated by 5HT2A receptors in both control and diabetic animals. However, a possible 

additional role for other receptors such as 5-HT1B cannot be ruled out (MacLean et al., 

2000). The overexpression of 5HT2A receptors in diabetic animals could be responsible 

for the higher contractile response of 5-HT. Nevertheless, this possibility does not 

explain the acute reversal by COX inhibitors or reactive oxygen species scavengers as 

discussed below. 

 

COX-2 protein levels are increased in lungs from rats with PAH induced by hypoxia 

(Chida and Voelkel, 1996) or by high pulmonary blood flow (Sato et al., 2000; Lam et 

al., 2005) and in hypoxic human PA smooth muscle cells (Yang et al., 2002). In 

addition, elevated TXA2 levels have been demonstrated in several forms of PAH 

(Christman et al., 1992). Accordingly, we found increased COX-2 expression in the PA 

from diabetic rats. Moreover, streptozotocin-induced diabetes led to an exaggerated 

lung production of PGE2, PGF2α and PGD2 from exogenous arachidonic acid (Watts et 

al., 1982). However, whether COX-2 is beneficial or detrimental in PAH is 

controversial. Thus, inhibition of COX-2 by celecoxib exhibited beneficial effects 

against the development of monocrotaline-induced PAH (Rakotoniaina et al., 2008). In 

contrast, hypoxia-induced PAH was exacerbated by the celecoxib derivative SC236 

(Pidgeon et al., 2004) and in COX-2 knockout animals (Fredenburgh et al., 2008) 

(Cathcart et al., 2008). Herein, we found that acute inhibition of COX-2 can prevent the 

hypercontractile response to 5-HT in diabetic rats as previously found in PAH induced 

by intermittent hypoxia (Thomas and Wanstall, 2003) or by high pulmonary blood flow 
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(Sato et al., 2000). These results suggest that a COX-2 derived metabolite is responsible 

for the enhanced maximal response to 5-HT. The fact that the TP receptor agonist 

U46619 reproduces at least partially the effect of diabetes, suggests that the COX-2 

metabolite might be acting on these receptors. Similarly, COX-2 dependent and 

endothelium-independent vascular hyperresponsiveness has also been reported in 

several systemic arteries from animal models of type 1 and type 2 diabetes (Jarajapu et 

al., 2008; Shi and Vanhoutte, 2008). Moreover, COX-2 inhibitors and ROS scavengers 

prevent the vascular hyperresponsiveness in endothelium denuded femoral arteries from 

streptozotocin-induced diabetic rats  (Shi & Vanhoutte, 2008), suggesting that COX 

metabolites and ROS are generated in the smooth muscle. In addition, the TP receptor 

antagonist terutroban also prevented the femoral vascular hyperresponsiveness to ROS 

in diabetic animals, suggesting that the COX metabolite is acting via TP receptors  (Shi 

& Vanhoutte, 2008).  

 

Type 1 and type 2 diabetes are associated with systemic oxidative stress (Keaney and 

Loscalzo, 1999; Meigs et al., 2007). In PA, diabetes induces an increase in superoxide 

and upregulation of p47phox, the regulatory subunit of the superoxide generating enzyme 

NADPH oxidase, which is involved in endothelial dysfunction (Lopez-Lopez et al., 

2008). The downregulation of BMPR2 in diabetic rat kidney was prevented by the 

antioxidant tiron (Yeh et al., 2009), suggesting that it was secondary to oxidative stress. 

In addition, oxidative stress is also involved in the exaggerated response to 

vasoconstrictors in systemic arteries from diabetic animals (Shi and Vanhoutte, 2008). 

Thus, we hypothesized that scavenging superoxide using SOD or inhibiting its main 

source using apocynin, a widely used yet non selective NADPH oxidase inhibitor, 

might also prevent 5-HT hyperresponsiveness. In fact, both approaches prevented the 
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exaggerated response to 5-HT in diabetic PA without affecting the controls. On the 

contrary, exogenous addition of a superoxide donating drug such as pyrogallol 

increased the maximal response to 5-HT in control PA, mimicking the effects of 

diabetes.  

 

The relationship of COX-2 and reactive oxygen species is complex because COX-2 can 

generate superoxide directly or indirectly via the release of TXA2 (Cogolludo et al., 

2006a; Shi and Vanhoutte, 2008) and conversely, COX-2 activity can be stimulated by 

reactive oxygen species (Garcia-Redondo et al., 2009). Thus, we questioned what was 

first in the signaling pathway in diabetic PA, COX-2 activity or increased oxidative 

stress. Our data fit better with the second possibility since indomethacin prevented the 

pyrogallol-induced hyperresponsiveness to 5-HT in control rats while apocynin had no 

effect on U46619-induced sensitization. Taken together, the present results suggest that 

NADPH oxidase-derived reactive oxygen species activate its downstream effector 

COX-2 leading to the enhanced response to 5-HT. This is further supported by the 

upregulation of the main proteins involved in this pathway, p47phox, COX-2 and 5-HT2A 

receptors observed in the diabetic lungs. 

 

In conclusion, consistent with data in humans and animal models of PAH, in diabetic 

rats BMPR2 expression was downregulated, 5-HT2A receptors, p47phox and COX-2 were 

upregulated and PA were hyperresponsive to 5-HT. This latter effect was independent 

of the endothelium and appears to be related to NADPH oxidase-induced superoxide 

production and COX-2 derived metabolites. All these changes were not sufficient to 

induce a consistent increase in PA pressure or PA muscularization. However, a 
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prolonged period of diabetes induced an increase in RVSP. Our results further 

strengthen the link between diabetes and PAH. 
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Legends for Figures 

 

Figure 1. Effects of diabetes on RVSP, right ventricular hypertrophy and PA 

muscularization. (A) Systolic and diastolic systemic arterial pressure (SAP), right 

ventricular systolic pressure (RVSP), right ventricular weight relative to body weight 

(RV/BW) and right ventricular weight relative to left ventricular plus septum weight 

[RV/(LV+S)] in control (open columns) and streptozotocin treated (solid columns) rats 

(n=5 and 8, respectively). (B) Percentage of muscular, partially muscular and non 

muscular arteries in control and diabetic rats (n=4). Each column represents the mean ± 

SEM. 

 

 

Figure 2. Diabetes downregulates BMPR2 but not Kv1.5 expression. Expression of 

(A) BMPR2 and (B) Kv1.5 in lungs from diabetic (d) and parallel control (c) rats 

measured by Western blot. (C) KV currents recorded in isolated PA smooth muscle 

cells. Current traces (left) are shown for depolarization pulses from -60 mV to +60 mV 

from a holding potential of -60 mV. Current-voltage relationships (right) measured at 

the end of the pulse (n=4-8). * indicates P<0.05 vs control. 

 

Figure 3. PA from diabetic rats are hyperresponsive to 5-HT. Vasoconstrictor 

responses induced by 5-HT in endothelium-intact (+E) PA from diabetic and control 

rats in the absence (A, n=17 and n=13, respectively) or in the presence (B, n=7 and n=5, 

respectively) of L-NAME (10-4M). (C)  Emax and pD2 values calculated from data on Fig 

3A, 3B and in endothelium denuded (-E, from Fig 4A). ** indicates P<0.01 vs control. 

# and ## indicate P < 0.05 and P < 0.01, respectively vs +E. 
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Figure 4. Role of 5-HT2A receptors. (A) Effects of the 5-HT2A receptor antagonist 

ketanserin (10-7M) on the vasoconstrictor responses to 5-HT in endothelium denuded 

PA (n=5-7). (B) Calculated pD2 and pKB values for both endothelium-intact (+E) and 

endothelium denuded (-E) PA. (C) Expression of 5-HT2A receptors in lungs from 

diabetic rats (d, n=8) and parallel controls (c, n=8). ** denotes P<0.01 vs control.  

 

Figure 5. Role of COX-2. Effects of (A) the nonselective COX inhibitor indomethacin 

(INDO, 10-5M) and (B) the COX-2 selective inhibitor NS-398 (10-5M) on the 

vasoconstrictor responses to 5-HT in endothelium-intact PA (n=6). (C) Emax and pD2 

values calculated from panels A and B and in the absence of drug (untreated, calculated 

from Fig 3). (D) Expression of COX-2 in PA from control and diabetic rats (n = 5 and 

6, respectively). *,** denote P<0.05 and P<0.01, respectively, diabetic vs control rats 

and † denotes P<0.05 indomethacin vs untreated. 

 

Figure 6. Role of superoxide. Effects of (A) the superoxide scavenger superoxide 

dismutase (SOD, 100 U/ml) and (B) the NADPH oxidase inhibitor apocynin (3x10-4M) 

on the vasoconstrictor responses to 5-HT in endothelium intact PA (n=6). 

 

Figure 7. Superoxide and a TXA2 analog enhance 5-HT contractile responses in PA 

from control rats. Effects of (A) the non enzymatic generator of superoxide pyrogallol 

(pyrog, 3x10-6M) in the absence or presence of indomethacin (indo, 10-5M) and (B) the 

TXA2 analog U46619 (10-8M) in the absence or presence of apocynin (apoc, 3x10-4M) 

on the vasoconstrictor responses to 5-HT in PA (n=4-8). ** denotes P < 0.01 vs control. 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on April 26, 2011 as DOI: 10.1124/jpet.111.179515

 at A
SPE

T
 Journals on A

pril 24, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


Fig. 1.

R
V

S
P

  
(m

m
 H

g
) 

A
S

A
P

  
(m

m
 H

g
) 

100

150

50

0

20

10

R
V

/B
W

 
(m

g
/g

)

0

0.5

1
R

V
/(

LV
+S

)

0

0.5

0.25

Systolic Diastolic

Control Diabetic

0

B

Muscular Partially
Muscular

Non
Muscular

Control

Diabetic

0

10

20

30

40

50

60

70

80

A
rt

er
ie

s 
(%

)

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on April 26, 2011 as DOI: 10.1124/jpet.111.179515

 at A
SPE

T
 Journals on A

pril 24, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


BMPR2

β-actin

Control Diabetic

B
M

P
R

2 
P

ro
te

in
 

R
el

at
iv

e 
to

 a
ct

in
 (%

)

*

0

100

50

A

B

KV1.5

β-actin

Control Diabetic

K
V
1.

5 
P

ro
te

in
 

R
el

at
iv

e 
to

 a
ct

in
 (%

)

0

100

50

c     d    c     d    c    d    c    d  

Membrane potential (mV)

I (
p

A
/p

F
)

100

50

-60 -40 -20 0 20 40 60

C

Fig. 2.

c     d    c     d    c    d    c    d  

1 
n

A

50 ms

Control

Diabetic Control
Diabetic

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on April 26, 2011 as DOI: 10.1124/jpet.111.179515

 at A
SPE

T
 Journals on A

pril 24, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


Fig. 3.

-8 -7 -6 -5 -4
0

50

100

log [5-HT] (M)

C
o

n
tr

ac
ti

o
n

  (
%

 K
C

l)

+E

Control
Diabetic

A

0

50

100

-8 -7 -6 -5 -4

log [5-HT] (M)

C
o

n
tr

ac
ti

o
n

  (
%

 K
C

l)

Control
Diabetic

+E + L-NAME
B

C

+E

Emax (% KCl) pD2

0

50

100

2

4

6

8

-E +E -E

Control 
Diabetic

**
** **

#
# #

# # #

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on April 26, 2011 as DOI: 10.1124/jpet.111.179515

 at A
SPE

T
 Journals on A

pril 24, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


Fig. 4.

-8 -7 -6 -5 -4

0

50

100

log [5-HT] (M)

-3

Control

Control

+Ketanserin

Diabetic

Diabetic

+Ketanserin

C
o

n
tr

ac
ti

o
n

  (
%

 K
C

l)

A

5HT2A

C

c d

5H
T

2A
P

ro
te

in
 

R
el

at
iv

e 
to

 a
ct

in
 (%

) **

0

200

100

β-actin

p
D

2

2

4

6
+E -E

Untreated

Ketanserin

0
c    d c    d

pKB 8.2  8.2 8.2  8.1

c        d c        dB

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on April 26, 2011 as DOI: 10.1124/jpet.111.179515

 at A
SPE

T
 Journals on A

pril 24, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


Fig. 5.

A B

D
COX2

α-Actin

Control Diabetic

C
O

X
2 

P
ro

te
in

 
R

el
at

iv
e 

to
 a

ct
in

 (%
) **

0

200

400

600

Control DiabeticC

100

Emax (% KCl) pD2

0

50

**

2

4

6

0

*Control
Diabetic

0

50

100

-8 -7 -6 -5 -4

log [5-HT] (M)

Control
Diabetic

Indomethacin

C
o

n
tr

ac
ti

o
n

  (
%

 K
C

l)

NS-398

0

50

100

-8 -7 -6 -5 -4

log [5-HT] (M)

Control
Diabetic

C
o

n
tr

ac
ti

o
n

  (
%

 K
C

l)

††

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on April 26, 2011 as DOI: 10.1124/jpet.111.179515

 at A
SPE

T
 Journals on A

pril 24, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


Fig. 6.
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Fig. 7.
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