The Posterior Ventral Tegmental Area Mediates Alcohol-Seeking Behavior in the Alcohol Preferring P Rats

Sheketha R. Hauser, Zheng-Ming Ding, Bruk Getachew, Jamie E. Toalston, Scott M. Oster, William J. McBride, Zachary A. Rodd

Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine (SRH, Z-MD, BG, WJM, ZAR) & Department of Psychology, Purdue School of Science (JET, SMO), IUPUI, Indianapolis, IN 46202
A. Running Title: Posterior Ventral Tegmental Area Mediates Alcohol-Seeking Behavior

B. *Corresponding author and reprint request

Dr. Sheketha R. Hauser,
Indiana University School of Medicine
Institute of Psychiatric Research
791 Union Drive
Indianapolis, IN 46202-4887
Phone: 317-274-0105
Fax: 317-274-1365
E-mail: shhauser@iupui.edu

C.

Number of Text pages: 25
Number of tables: 0
Number of Figures: 7
Number of references: 53
Number of words in Abstract: 244
Number of words in Introduction: 748
Number of words in Discussion: 1237

D. List of Non Standard Abbreviations:

EtOH: Ethanol
p-VTA: Posterior Ventral Tegmental Area
a-VTA: Anterior Ventral Tegmental Area
Quin: Quinpirole
PSR: Pavlovian Spontaneous Recovery
DA: Dopamine
aCSF: Artificial Cerebrospinal Fluid
SACC: Saccharin

E. Section Assignment: Neuropharmacology and Other
ABSTRACT

The mesolimbic dopamine system is involved in the rewarding process of drugs of abuse and is activated during the anticipation of drug availability. However, the neurocircuitry that regulates ethanol (EtOH)-seeking has not been adequately investigated. The objectives of the present study were to determine (1) if the posterior ventral tegmental area (p-VTA) mediates EtOH-seeking, (2) if microinjections of EtOH into the p-VTA could stimulate EtOH-seeking, and (3) the involvement of p-VTA dopamine (DA) neurons in EtOH-seeking. Method: Alcohol-Preferring (P) rats were trained to self-administer 15% ethanol (EtOH) and water. After 10 weeks, rats underwent extinction training, followed by a 2 week homecage period. During the homecage period, rats were then bilaterally implanted with guide cannulae aimed at the p-VTA or anterior VTA (a-VTA). EtOH-seeking was assessed by the Pavlovian Spontaneous Recovery (PSR) model. Separate experiments examined the effects of; 1) microinjection of quinpirole into the p-VTA, 2) EtOH microinjected into the p-VTA, 3) co-administration of EtOH and quinpirole into the p-VTA, 4) microinjection of quinpirole into the anterior VTA (a-VTA), and 5) microinjection of EtOH into the a-VTA. Quinpirole microinjected into the p-VTA reduced EtOH-seeking. Microinjections of EtOH into the p-VTA increased EtOH-seeking. Pretreatment with both quinpirole and EtOH into the p-VTA reduced EtOH-seeking. Microinjections of quinpirole or EtOH into the a-VTA did not alter EtOH-seeking. Overall, the results suggest that the p-VTA is a neuroanatomical substrate mediating alcohol-seeking behavior and that activation of local DA neurons is involved.
INTRODUCTION

Alcohol addiction is a complex disorder characterized by high rates of relapse to alcohol seeking and alcohol taking behaviors. Given that relapse is a major obstacle in the treatment of alcohol addiction, attention has been focused on animal models to further our understanding of alcohol relapse and craving (Koob 2000; Spanagel 2003; Rodd et al. 2004a).

There are animal models of drug-seeking that have elucidated the neural systems and mechanisms that underlie drug-seeking behavior. The cue-induced model provided evidence that EtOH-seeking behavior is associated with increased c-fos expression in the nucleus accumbens and medial prefrontal cortex (Dayas et al. 2007), whereas the stress-induced model of EtOH-seeking behavior showed increased c-fos expression in the nucleus accumbens shell and core (Funk et al. 2006). Taken together, the latter two studies suggest that neural substrates in the mesocorticolimbic system may be activated during EtOH-seeking behavior.

Pharmacological studies have provided further support that the dopamine (DA) system may play a role in EtOH-seeking behavior. Cue-induced EtOH seeking studies have shown that systemic administration of D1, D2, or D3 receptor antagonists, or a D3 partial agonist can dose dependently decrease EtOH-seeking behavior (Liu and Weiss 2002; Vengeliene et al. 2006). Antagonism of the D2 receptors in the nucleus accumbens reduced EtOH-seeking behavior in the appetitive/consummatory model (Samson and Chappell 2004). Recent studies using the model of context-induced drug-seeking indicated that the D1 receptors in the nucleus accumbens may also be involved in mediating EtOH-seeking behavior (Chaudhri et al. 2009).

The activation of DA neurons in the VTA has been indicated to be involved in mediating EtOH intake and the reinforcing properties of EtOH. For instance, the reduced activity of DA neurons in the VTA with a D2 receptor agonist via local application or systemic administrations
can reduce EtOH intake (Hodge et al. 1993; Nowak et al. 2000). Intracranial self-administration studies, which elucidate specific neuroanatomical sites that support drug self-administration, have provided evidence that the VTA is also involved in the reinforcing effects of EtOH (Gatto et al. 1994; Rodd et al. 2004b, c). Previous studies from our laboratory have shown that the posterior VTA (p-VTA), but not the anterior VTA (a-VTA), is a neuroanatomical site mediating the reinforcing actions of EtOH (Rodd-Henricks et al. 2000). Moreover, the reinforcing effects of p-VTA require the activation of dopaminergic neurons (Rodd et al. 2004c; Rodd et al. 2005c).

Spontaneous recovery is a learning phenomenon in which reintroduction to an environment previously paired with drug self-administration reinstates response-contingent behaviors for a previously obtainable reinforcer after extinction and a period of rest (Macintosh 1977). Spontaneous recovery has been utilized to examine seeking behaviors for both cocaine and heroin, but the learning phenomenon has been coined the ‘incubation model’ (Grimm et al., 2001; Lu et al., 2009). Pavlovian Spontaneous Recovery (PSR) is a unique phenomenon in that it is time dependent, and the behavior appears to be dependent on the re-exposure of the organism to all the cues in the behavioral environment previously associated with the reinforcer. The expression of a PSR is directly correlated to reward saliency (Robbins 1990), contextual cues associated with first-learned signals, and the amount of first- and second-learned associations (Brooks, 2000). The PSR phenomenon has been asserted to be the result of an intrinsic shift away from the recent extinction (second-) learning to the initial reinforced learning responses, which reflects a motivation to obtain the previously administered reward (Bouton 2002, 2004; Rescorla 2001). Therefore, the PSR model may represent a unique paradigm to study EtOH-seeking behaviors.
Research assessing EtOH-seeking behavior through the expression of PSR paradigm has been conducted in alcohol-preferring (P) rats (Rodd-Henricks et al. 2002a, b). P rats will readily express a PSR (EtOH-seeking) for EtOH (Rodd-Henricks et al. 2002a, b; Rodd et al. 2006) and this expression of EtOH PSR can be enhanced by exposure to EtOH odor or EtOH priming (Rodd-Henricks et al. 2002a, b).

The p-VTA is a neuroanatomical site mediating the reinforcing effects of EtOH and DA neuronal activity is involved (Rodd et al. 2000; Rodd et al. 2004 b, c; 2005c). Sensitivity of the p-VTA to the reinforcing effects of EtOH increases with alcohol drinking and this enhanced sensitivity persists in the absence of alcohol for several weeks (Rodd et al. 2005a, b). These latter results suggest that long-term neuroadaptations occurred in the p-VTA; these neuroadaptations may increase EtOH-seeking and contribute to vulnerability to relapse. The objective of the present study was to test the hypothesis that p-VTA is a neuroanatomical site mediating EtOH-seeking behavior.

METHODS

Animals

Adult EtOH naïve female P rats from the 62nd generations weighing 250-325 g at the start of the experiment were used. Female rats were used in the present study because female rats maintain their body and head size better than male rats for more accurate and reliable stereotaxic placements. Previous research indicated that EtOH intake of female P rats was not affected by the estrus cycle (reviewed in McKinzie et al. 1998). Rats were maintained on a 12-h reversed light dark cycle (lights off at 0900 h). Food and water were available in the home cage ad libitum throughout the experiment. All research protocols were approved by the institutional animal care and use committee and are in accordance with the guidelines of the Institutional Care and Use
Committee of the National Institute on Drug Abuse, National Institutes of Health, and the Guide for the Care and Use of Laboratory Animals (Institute of Laboratory Animal Resources, Commission on Life Sciences, National Research Council 1996).

**Chemical Agents and Vehicle**

Ethyl alcohol (190 proof; McCormick Distilling Co., Weston, MO) was diluted to 15% with distilled water for operant oral self-administration sessions or diluted with artificial cerebrospinal fluid (aCSF) solution to 50 and 100 mg % EtOH for microinfusions. Quinpirole (Sigma, St. Louis, MO) was dissolved in the aCSF solution and the pH adjusted to 7.4 ± 0.1 for microinjections. The aCSF consisted of: 120.0 mM NaCl, 4.8 mM KCl, 1.2 mM KH$_2$PO$_4$, 1.2 mM Mg SO$_4$, 25.0 mM NaHCO$_3$, 2.5 mM CaCl$_2$, and 10.0 mM D-glucose.

**Operant Apparatus**

EtOH self-administration procedures were conducted in standard two-lever experimental chambers (Coulbourn Instruments) contained within ventilated, sound-attenuated enclosures. Two operant levers, located on the same wall, were 15 cm above a grid floor and 13 cm apart. A trough was directly beneath each lever, from which a dipper cup could raise to present fluid. Upon a reinforced response on the respective lever, a small light cue was illuminated in the drinking trough and 4 seconds of dipper cup (0.1 ml) access was presented. A personal computer controlled all operant chamber functions while recording lever responses and dipper presentations.

**Operant Training**

Naïve P rats were placed into the operant chamber, without prior training. Operant sessions were 60 min in duration and occurred daily for 10 weeks (Rodd et al. 2006). The EtOH concentration used for operant administration was 15% (vol/vol). During the initial 4 weeks of
daily operant access, both solutions (water and EtOH) were reinforced on an FR-1 schedule. At the end of this time, the response requirement for EtOH was increased to an FR-3 schedule for 3 weeks, and then to FR-5 schedule for 3 weeks. After the P rats had established stable levels of responding on the FR5 schedule for EtOH and FR1 for water, they underwent 7 days of extinction (60 min/day), when neither water nor EtOH was available (Rodd et al. 2006). Water was not available during the extinction procedure since water is a primary reinforcer and has been shown to influence responding during extinction testing, i.e., superstitious behaviors (Macintosh 1977). With the exception of no fluid being presented, the delivery system operated exactly as the preceding EtOH self-administration sessions.

**Saccharin Operant Training**

The operant procedure for saccharin (SACC) self-administration was similar to the EtOH procedure but 2 weeks shorter. Operant sessions were 60 min in duration and occurred daily for 8 weeks. The SACC concentration used for operant administration was 0.025% (g/vol). During the initial 4 weeks of daily operant access, both solutions (water and SACC) were reinforced on an FR-1 schedule. At the end of this time, the response requirement for SACC was increased to an FR-3 schedule for 3 weeks, and then to FR-5 schedule for 1 week.

**Stereotaxic Surgeries**

After extinction training, all rats were maintained in the home cages for 14 days. Previous research has shown that two weeks of home cage produce a robust PSR (Rodd –Henricks et al. 2002a, b; Rodd et al. 2006). Stereotaxic implantation was performed after the animals had been in home cage for 7 days. While under isoflurane anesthesia, rats were prepared for bilateral stereotaxic implantation of 22-gauge guide cannula (Plastic One) into the p-VTA or a-VTA; the guide cannula was aimed 1.0 mm above the target region. Coordinates (Paxinos and Watson,
1998) for placements to target the p-VTA were -5.6 mm posterior to bregma, + 2.1 mm lateral to the midline, and -8.5 mm ventral from the surface of the skull at a 10° angle to the vertical. Coordinates (Paxinos and Watson, 1998) for placements to target a-VTA were -4.8 mm posterior to bregma, + 2.1 mm lateral to the midline, and -8.5 mm ventral from the surface of the skull at a 10° angle to the vertical. A 28-gauge stylet was placed into the guide cannula and extended 0.5 mm beyond the tip of the guide. After surgery, rats were individually housed and allowed to recover for 7 days in their home cage. Animals were handled for at least 5 min daily beginning on the fourth recovery day and were habituated for 2 consecutive days to the handling procedures necessary for microinjections.

For the SACC experiment, stereotaxic implantation into p-VTA was performed on the 1st day of the 9th week. On the day after surgery, rats were returned to the operant chambers. After 7 consecutive operant sessions post surgery, all rats were habituated to the handling procedures necessary for microinjections prior to placement in operant chambers.

**Pavlovian Spontaneous Recovery (PSR) test**

The PSR sessions were identical to the extinction protocol conditions. The FR5-FR1 schedule, lever contingencies and dipper functioning were maintained but EtOH and water were absent. Rats were given four consecutive PSR test sessions because previous studies have shown that adult P rats PSR start to return to baseline by the second session compared to periadolescence that show a more prolonged PSR (Rodd-Henricks et al. 2002a, b; Rodd et al. 2006).

**Experiment 1: Microinjection of Quinpirole into the Posterior VTA**

Rats (n=6-7/group) were microinjected bilaterally with vehicle (aCSF-control) or Quin (0.1 or 0.3 μg), as previously used by our lab (Nowak et al. 2000). In addition, bilateral
JPET # 168260

Microinjections of 1.0 µg Quin into the VTA did not alter sucrose responding (Hodge et al., 1993) or prevent the acquisition of the behaviors associated with conditioned fear (de Oliveira et al., 2009). The current series of experiments do not employ doses of Quin higher than 0.3 µg, therefore any effects cannot be assigned to suppression of behaviors. Quin was administered consecutively to both sides of p-VTA through 28-gauge injectors inserted bilaterally to a depth of 1 mm beyond the end of the guide cannulae connected to a Hamilton 10-µl syringe driven by a microinfusion syringe pump (Harvard Apparatus, MA, USA). A total volume of 0.5 µl was administered over a 30-sec period per side; the injector tip was left in place for an additional 30-sec per side. Quin was given 2 min prior to only the first 60 min PSR session.

Although diffusion is a concern in all microinjection studies, previous studies using the current microinfusion technique demonstrated that Quin micro-injections 2 mm dorsal to the VTA did not change either EtOH or saccharin drinking behavior, which suggested that the actions of Quin were the result of activating receptors within the VTA and not due to diffusion along the outside of the guide cannula (Nowak et al. 2000).

**Experiment 2: Microinjection of EtOH into the Posterior VTA**

Rats (n = 7-8/ group) were microinjected bilaterally with vehicle (aCSF) or EtOH (50 or 100 mg %). Doses of EtOH were selected based on previous research that shows P will self-administer 50-200 mg % EtOH into the p-VTA (Gatto et al. 1994; Rodd et al. 2004b). EtOH was administered using the electrolytic microinfusion transducer system (Rodd et al., 2004b). This procedure was used to administer EtOH because this technique was successfully used in self-infusion and microinjection experiments to determine behavioral and physiological responses of EtOH (Rodd et al. 2000; Rodd et al. 2004b, c; Ding et al. 2009). EtOH was administered consecutively to both sides of the p-VTA for 10 min/side using three 5-sec pulses/min; each 5-
sec pulses infuses 100 nl. The microinjections were given prior to only the first 60 min PSR session starting approximately 20 min before the session.

The use of the electrolytic microinfusion transducer system has been shown to give relatively good neuroanatomical specificity. Previous studies with GABA_A receptor antagonists or D_1/D_2 receptor agonists (Ikemoto et al. 1997a,b), cocaine (Rodd-Henricks et al. 2002a), and EtOH (Rodd-Henricks et al. 2000a) demonstrated that diffusion away from the injection site did not appear to contribute to the reinforcing effects attributed to the target site.

**Experiment 3: Microinjection of Quinpirole and EtOH into the Posterior VTA**

Rats (n = 5-6/group) were microinjected bilaterally with Quin (0.01, 0.03, 0.1 or 0.3 μg) following the same procedure as described in experiment one. Immediately following Quin infusion, rats were microinjected bilaterally with EtOH (100 mg %), using the same procedure as described in experiment two. The microinjections were given prior to only the first 60 min PSR session, starting approximately 20 min before the session.

**Experiment 4: Microinjection of Quinpirole into the Anterior VTA**

The same procedure for experiment 1 was used for the microinjections of Quin into the a-VTA. Rats (n = 7/group) were microinjected bilaterally with vehicle (aCSF-control) or Quin (0.1 or 0.3 μg). The microinjections were given prior to only the first 60 min PSR session, starting approximately 2 min before the session.

**Experiment 5: Microinjection of EtOH into the Anterior VTA**

The same procedure for experiment 2 was used for the microinjection of EtOH into the a-VTA. Rats (n = 7/group) were microinjected bilaterally with vehicle (aCSF) or EtOH (100 mg %). The microinjections were given prior to only the first 60 min PSR session starting approximately 20 min before the session.
Experiment 6: Microinjection of Quinpirole into the Posterior VTA on Saccharin

Responding During Maintenance

The same procedure for experiment 1 was used for the microinjections of Quin into the p-VTA. Rats (n = 5-7/group) were microinjected bilaterally with vehicle (aCSF-control) or Quin (0.3 μg). On the 11th consecutive operant session post surgery, microinjections were given prior to only the first 60 min SACC maintenance test session, starting approximately 2 min before the session.

Histology

At the termination of the experiment, 1% bromophenol blue (0.5 μl) was injected into the infusion site. Subsequently, the animals were given a fatal dose of Nembutal and then decapitated. Brains were removed and immediately frozen at -70°C. Frozen brains were subsequently equilibrated at -15°C in a cryostat microtome and then sliced into 40-μm sections. Sections then were stained with cresyl violet and examined under a light microscope for verification of the injection site using the rat brain atlas of Paxinos and Watson (1998).

Statistical Analysis

Overall operant responding (60 min) data were analyzed with a mixed factorial ANOVA with a between subject factor of dose and a repeated measure of ‘session’. For the PSR experiments, the baseline measure for the factor of ‘session’ was the average number of responses on the EtOH lever for the last three extinction sessions. Post hoc Tukey’s b was performed to determine individual differences. All analyses that were $p \leq 0.05$ was considered significant.
RESULTS

Histology Placements

The p-VTA is defined as the VTA region at the level of the interpeduncular nucleus at 5.3–6.3 mm posterior to bregma (Rodd-Henricks et al. 2000). In the current study, only animals that had correct injector placements were used in data analysis. As seen in Fig-1, the a-VTA injector placements were at 4.8-5.2 mm posterior to bregma and the p-VTA injector placements were at 5.3-5.8 mm posterior to bregma. The success rate for correct a-VTA placements was 90% and for p-VTA placements the success rate was 80%. The incorrect injections sites were located in substantia nigra or red nucleus and these cannula placements that were found outside the VTA were excluded from analysis. Microinjections of EtOH into these areas did not have any effect on EtOH-seeking behavior, which is line with previous studies that show animals will not self-administer EtOH in these areas (Rodd-Henricks et al. 2000; Rodd et al. 2004).

Effects of Quinpirole Microinjection into the Posterior VTA on Responding in the PSR test.

Examining the number of responses on the lever previously associated with the delivery of EtOH (Fig-2A) indicated a significant effect of ‘session’ (F4,13 = 7.9; p = 0.002), ‘dose’ (F2,16 = 6.7; p = 0.008), and ‘session’ by ‘dose’ interaction (F8,28 = 3.4; p = 0.007). The interaction term was decomposed by holding ‘session’ constant. Therefore, individual ANOVAs were performed for each PSR session with the between group variable of ‘dose’. There was only a significant effect of ‘dose’ during the 1st PSR test session (F2,16 = 62.1; p < 0.0001). Post-hoc comparisons (Tukey’s b) indicated that during the 1st PSR session, aCSF treated rats responded more than the groups administered 0.1 or 0.3 µg Quin. Baseline level of responding was compared to responding during PSR testing within each group (t-tests).
In P rats treated with aCSF, there was a significant increase in responding on the EtOH lever during the initial PSR session compared to extinction baseline (p = 0.04). There was significant decrease in responding on the EtOH lever below extinction baseline levels in rats administered 0.1 or 0.3 µg Quin (p = 0.002). Responses on EtOH lever were very similar for all three groups during PSR sessions 2-4.

Baseline extinction responding on the lever previously associated with water was significantly higher in the aCSF group compared to extinction baseline values for the Quin groups (p = 0.026). In addition, there was a significant decrease in water responding for the initial PSR session for the aCSF compared to extinction baseline values (Fig-2B). The reduction that was observed for the aCSF group may due to the significantly higher extinction baseline for this group and may not be due to aCSF affecting water responding. There was a significant decrease in water responding for the initial PSR session for the 0.1 µg Quin groups compared to extinction baseline values (Fig-2B) however, there was no significant difference between extinction baseline and the initial PSR session for the higher dose Quin (0.3 µg) group (p > 0.69). Moreover, there were no significant differences on water lever responses between aCSF, 0.1 µg Quin, and 0.3 µg Quin groups during the initial PSR sessions (p values > 0.50). Responses on the water lever during sessions 2-4 were similar for all three groups.

**Effects of Microinjecting EtOH into the Posterior VTA on Responding in the PSR test.**

Examining the number of responses on the lever previously associated with the delivery of EtOH (Fig-3A) indicated a significant effect of ‘session’ (F₄,₁₆ = 42.01; p < 0.001) and ‘session’ by ‘dose’ interaction (F₈,₃₄ = 4.68; p = 0.010). Decomposing the interaction term by holding ‘session’ constant allowed for ANOVAs to be performed on each session. During the 1st PSR session there was a significant effect of ‘dose’ (F₂,₁₉ = 7.91; p = 0.003). Post-hoc
comparisons indicated that P rats administered 50 or 100 mg% EtOH directly into the p-VTA responding more than P rats administered aCSF during the 1st PSR test session. Within group comparisons (t-tests) performed indicated that all groups of rats responded more on the EtOH lever during the 1st PSR test session compared to that observed during extinction responding. Responses on the EtOH lever during sessions 2-4 were similar for all three groups.

The analysis performed on the responses on the lever previously associated with the delivery of water indicated that responding on this lever was low (less than 15-30 responses per session) and did not differ from baseline (p values >0.40) across PSR test sessions. There were also no differences between ‘dose’ groups during the initial PSR sessions (p values > 0.70).

Effects of Co-administration of Quin and EtOH into the Posterior VTA on Lever Responses in the PSR test.

Examining the number of responses on the lever previously associated with the delivery of EtOH (Fig-4A) indicated a significant effect of ‘session’ (F4,14 = 25.19; p < 0.001) and ‘session’ by ‘treatment’ interaction (F12,48 = 2.24; p = 0.024). Individual ANOVAs performed for each session indicated a significant effect of ‘dose’ during the 1st PSR test session (F = 35.15; p < 0.0001). Post-hoc comparisons indicated that P rats administered 100 mg% EtOH and 0.01 or 0.03 µg Quin responded more than P rats administered 100 mg% EtOH and 0.1 and 0.3 µg Quin directly into the p-VTA. P rats administered 100 mg% EtOH and 0.01 or 0.03 µg Quin directly into the p-VTA responded more during the 1st PSR test session than during the last 3 sessions of extinction training (p values < 0.016). In contrast, administration of 100 mg% EtOH and 0.1 and 0.3 µg Quin directly into the p-VTA reduced the number of EtOH lever responses during the 1st PSR test session compared to extinction baseline (p values < 0.009).
Compared to extinction baseline values, responding on the lever previously associated with water was significantly decreased during the initial PSR testing for rats administered 0.01 μg Quin with 100 mg % EtOH (p = 0.038) and 0.1 μg Quin with 100 mg % EtOH (p = 0.018, see Fig-4B). However, there were no significant differences on water lever responding for 0.03 μg Quin with 100 mg % EtOH (p = 0.053) and 0.3 μg Quin with 100 mg % EtOH (p = 0.407), see Fig-4B). In addition, there were no significant differences between ‘dose’ groups during PSR session 1 (p values > 0.05).

**Effects of Quinpirole Microinjection into the Anterior VTA on Responding in the PSR test.**

Examining the number of responses on the lever previously associated with the delivery of EtOH (Fig-5A) indicated a significant effect of ‘session’ (F(4, 15) = 54.8.11; p = 0.000). However, the ‘session’ by ‘dose’ interaction was not significant (F(8, 28) = .289; p = 0.964). Baseline level of responding was compared to responding during PSR testing within each group (t-tests).

In P rats treated with aCSF, 0.1 μg, and 0.3 μg of Quin, there was a significant increase in responding on the EtOH lever during the initial PSR session compared to extinction baseline (p = 0.006, p = 0.002, p = 0.019, respectively). There were no significant differences on EtOH responding between the aCSF, 0.1 μg, and 0.3 μg of Quin during the initial PSR test session. Responses on the EtOH lever were also very similar for all three groups during PSR sessions 2-4.

Baseline extinction responding on the lever previously associated with water was not significantly different for any group (p > 0.26). In addition, there were no significant differences between ‘dose’ groups during the initial PSR sessions (p values = 0.24). Responses on the water lever during sessions 2–4 were similar for all three groups.
Effects of Microinjecting EtOH into the Anterior VTA on Responding in the PSR Test.

Examining the number of responses on the lever previously associated with the delivery of EtOH (Fig-6A) indicated a significant effect of ‘session’ ($F_{4,9} = 6.595; p < 0.009$). The ‘session’ by ‘dose’ interaction was not significant ($F_{4,9} = 1.226; p = 0.365$). Baseline level of responding was compared to responding during PSR testing within each group (t-tests). In P rats treated with aCSF and 100 mg% EtOH, there was a significant increase in responding on the EtOH lever during the initial PSR session compared to extinction baseline ($p = 0.014$, $p = .029$, respectively). There were no significant differences on EtOH responding between the aCSF and 100 mg% EtOH during the initial PSR ($p = 0.79$). Responses on EtOH lever were also very similar for all three groups during PSR sessions 2-4.

Compared to extinction baseline values, responding on the lever previously associated with water was significantly decreased during the initial PSR testing for rats administered 100 mg % EtOH ($p=0.025$; see Fig-6B). However, there were no significant differences between ‘dose’ groups during the initial PSR sessions ($p$ values > 0.05).

Effects of Quinpirole Microinjection into the Posterior VTA on Saccharin Responding During Maintenance.

As a control we examine the effects of Quin microinjected into the p-VTA on SACC responding. Examining the number of responses on the lever associated with the delivery of SACC (Fig-7) indicated that there was no significant effect of ‘session’ ($F_{5,6} = 1.80; p = 0.251$) and there was no significant ‘session’ by ‘dose’ interaction ($F_{5,6} = 0.754; p = 0.613$). Baseline level of responding was compared to responding during maintenance testing within each group (t-tests). In P rats treated with aCSF or 0.3 μg of Quin, there was no significant difference in responding on the SACC lever during the initial maintenance test session compared to baseline
(p = 0.948, p = 0.891, respectively). Responses on the SACC lever were also very similar for all groups during maintenance test sessions 2-5.

Baseline responding on the lever associated with water was not significantly different for any group compared to water lever responding during maintenance testing (p ≥ 0.113, data not shown). The average number of responses on the water lever was ≤ 15.

**DISCUSSION**

The major findings of this study are that local EtOH microinfusions into the p-VTA, and not the a-VTA, increased responding on the EtOH lever during the PSR test (Fig. 3A), whereas local infusions of Quin into the same site reduced responding on the EtOH lever (Fig. 2A), suggesting that the p-VTA is a neuroanatomical site mediating EtOH-seeking behavior and that the activation of local DA neurons may be involved.

Electrophysiological studies have shown that local application of a D2 receptor agonist can decrease firing rates of the VTA by activating D2 cell body autoreceptors, whereas D2 receptor antagonists will increase the firing rates of DA neurons in the VTA (Wang 1981; White and Wang 1984; Robertson et al. 1991). In addition, local applications of a D2 receptor agonist can reduce extracellular concentrations of DA in the VTA and the nucleus accumbens (Kalivas and Duffy 1991), whereas the infusion of a D2 receptor antagonist into the VTA can enhanced the release of DA in the nucleus accumbens (Westerink et al. 1996). The co-infusion of a D2 receptor agonist with EtOH can prevent the acquisition and extinguish the maintenance of EtOH self-infusion into the p-VTA (Rodd et al. 2004c, Rodd et al. 2005c), whereas, sulpiride a D2 receptor antagonist reinstated EtOH self-administration into p-VTA (Rodd et al. 2004c). The
results of these studies, together with the present findings (Figs. 2 and 3), suggest that VTA DA neuronal activity is needed for the expression of EtOH-seeking behavior.

In the present study, the PSR paradigm was used, which measures the relative strength of reinforcer-seeking behavior (i.e., possibly reflecting ‘alcohol craving’) to assess EtOH-seeking behavior. The present findings showed that microinfusion of Quin into the p-VTA can inhibit responding on the EtOH lever in the PSR test (Fig. 2A) and also inhibit the local EtOH-stimulated responding in the PSR test (Fig. 4A). In contrast, microinfusion of Quin into the a-VTA did not have any effect on responding on the EtOH lever in the PSR test (Fig. 5A). The doses of Quin administered in the current study were similar to doses used by Hodge et al. (1993), who reported that even the highest dose of Quin (10μg/0.5μl) infused into the VTA did not impair motor activity. Previous research from our lab demonstrated that microinjections of 2-4μg of Quin into p-VTA or 2-6μg of Quin into a-VTA did not alter motor activity in female P rats (Nowak et al. 2000). The results of the present study also indicated that Quin did not reduce motor activity when infused into the p-VTA or a-VTA because the highest dose of Quin did not alter responding on the water lever, and responses on the water lever following Quin infusions were similar to aCSF infusions (Fig. 2B, Fig 5B, respectively). As a control we examine the effects of Quin on SACC maintenance. The results revealed that the highest dose of Quin (0.3 μg) did not alter responses on SACC lever (Fig. 7). This is in line with Hodge et al., 1993, who reported that bilaterally microinjection of Quin as high 1.0 μg into the VTA did not significantly reduce sucrose self-administration. Collectively, these results indicate that Quin’s effects in p-VTA on EtOH responding are not due to a non-specific inhibition on lever pressing.

The results of microinfusing EtOH alone into the p-VTA also provides support that the activation of local DA neurons are involved in mediating expression of EtOH-seeking behavior.
There is evidence suggesting that EtOH can activate VTA DA neurons. Gessa et al. (1985), using single cell recordings, demonstrated that EtOH can enhance the dopaminergic neurotransmission by increasing the firing rate of DA neurons in vivo. EtOH excitation of DA neurons was also observed in vitro for both extracellular and intracellular single unit studies in brain slices (Brodie et al. 1990; Brodie and Appel 1998). Moreover, Brodie et al. (1999) provided evidence, using an acutely dissociated cell model, that the dopaminergic VTA neurons can be directly excited by EtOH. A recent study (Ding et al. 2009) indicated that direct microinjections of EtOH into the p-VTA increases DA release in the nucleus accumbens shell. Overall, these results support the idea that EtOH can stimulate VTA DA neurons.

Compared to the vehicle group, a single micro-infusion of 50 or 100 mg % of EtOH significantly increased responding on the EtOH lever during the initial PSR session (1.6- and 2.0-fold higher, respectively). These results are in agreement with previous studies that demonstrated oral EtOH priming significantly enhanced responding on the EtOH lever compared to control responding in the PSR test (Rodd- Henricks et al. 2002a, b). The EtOH concentrations administered in the present study were in range with previous EtOH self-infusions into the p-VTA (Gatto et al. 1994; Rodd et al. 2004b). Similarly, blood EtOH levels attained under free-choice drinking conditions have been reported to be 50 to 200 mg% for P rats (Murphy et al. 1986). Therefore, the doses of EtOH used in the present study were within relevant pharmacological concentrations. Moreover, the enhanced EtOH responses did not appear to be a result solely of general locomotor activity because the animals were able to discriminate between the EtOH and the water levers.

Intracranial self-administration studies have indicated that the p-VTA is involved in mediating reinforcing properties of EtOH by activation of the dopaminergic systems (Rodd et al.
The neuroadaptations that occur after chronic drinking and repeated alcohol deprivations seem to produce further increases in the reinforcing effects and the sensitivity of EtOH within the p-VTA (Rodd et al. 2005a, b). Furthermore, it is thought that drugs of abuse can prime responding by activating the mesolimbic DA system, which has become sensitized upon repeated drug use in a long lasting manner (Robinson and Berridge 1993). Thus, our findings seem to suggest that local EtOH activation produces a priming effect in the p-VTA, but not the a-VTA, that promotes EtOH-seeking behavior (Fig-3A, Fig-6A) by activating the DA neurons. It is noteworthy that studies have observed selective abnormalities in the P rats DA system projecting from the VTA to the nucleus accumbens (McBride et al. 1993) and increased VTA DA burst firing rates (Mozoratti 1998), suggesting that abnormalities underlying the high EtOH drinking behavior of the P line may reside within the VTA (Mozoratti 1998). Hence, further alterations of this system after chronic drinking and abstinence may also contribute to the enhancement of EtOH-seeking behavior observed in these animals.

Interestingly, there are several neuroanatomical differences between the p-VTA and a-VTA. For example, there are more DA neurons in the p-VTA than a-VTA projecting to the nucleus accumbens (Olson et al., 2005), a higher proportion of DA to GABA neurons in the p-VTA than a-VTA (Olson et al., 2005), and p-VTA has higher 5-HT innervations (Herve´ et al., 1987). Lastly, the VTA containing DA neurons with topographical afferent and efferent projections may also differ between the anterior and posterior sites (Kalen et al., 1988; Brog et al., 1993; Tan et al., 1995). Collectively, these studies provide evidence that DA activity may be greater in the p-VTA than in a-VTA.
In conclusion, these findings suggest that the p-VTA may be a neuroanatomical site mediating EtOH-seeking behavior in P rats and that activation of DA neurons is involved in this process. Therefore, the development of pharmacotherapeutics to reduce alcohol-craving should include a profile that regulates the activity of p-VTA DA neurons.
ACKNOWLEDGMENTS

We thank Tylene Pommer and Victoria McQueen for their technical assistance.
AUTHORSHIP CONTRIBUTIONS

Participated in research design: Hauser, Ding, McBride, Rodd

Conducted experiments: Hauser, Ding, Getachew, Toalston, Oster, Rodd

Contributed new reagents or analytic tools:

Performed data analysis: Hauser, Rodd

Wrote or contributed to the writing of the manuscript: Hauser, McBride

Other: McBride and Rodd acquired funding for the research
REFERENCES


Brodie MS, Shefner SA, Dunwiddie TV (1990) Ethanol increases the firing rate of dopamine neurons of the rat ventral tegmental area in vitro. *Brain Res* 508:65-69


Gessa GL, Muntoni F, Collu M, Vargiu L, Mereu G (1985) Low doses of ethanol activate dopaminergic neurons in the ventral tegmental area. *Brain Res* **348**:201-203


Rodd ZA, Bell RL, McQueen VK, Davids MR, Hsu CC, Murphy JM, Li TK, Lumeng L, McBride WJ (2005a) Prolonged increase in the sensitivity of the posterior ventral tegmental area to the reinforcing effects of ethanol following repeated exposure to cycles of ethanol access and deprivation. *J. Pharmacol Exp Ther* **315**:648-657


Rodd ZA, Bell RL, Sable HJ, Murphy JM, McBride WJ (2004a) Recent advances in animal models of alcohol craving and relapse. *Pharmacol Biochem Behav* **79**:439-450


Rodd ZA, Melendez RI, Bell RL, Kuc KA, Zhang Y, Murphy JM, McBride WJ (2004c) Intracranial self-administration of ethanol within the ventral tegmental area of male Wistar rats: evidence for involvement of dopamine neurons. *J Neurosci* **24**:1050-1057


FOOTNOTES

A. Grant Support

This work was supported in part by National Institute of Alcohol Abuse and Alcoholism [grants AA07462], [grants AA07611], [grants AA10721], and [grants AA12262].

B. Previously Presented

The preliminary findings of this manuscript were presented at the Research Society of Alcoholism 2008 Annual Meeting in Washington, DC.


C. Reprint Request

Dr. Sheketha R. Hauser
Indiana University School of Medicine
Institute of Psychiatric Research
791 Union Drive
Indianapolis, IN 46202-4887
Phone: 317-274-0105
Fax: 317-274-1365
E-mail: shhauser@iupui.edu

D. Superscript numbers for Authors:

1Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine
2Department of Psychology, Purdue School of Science, IUPUI
LEGENDS FOR FIGURES

Fig-1. Representative placements for the micro-infusions of aCSF, EtOH or Quin into the a-VTA or p-VTA of adult female P rats are shown. Black circles represent placements of injection sites within the a-VTA (defined as -4.8 to -5.2 mm bregma) and grey squares represent placements of injection sites within the p-VTA (defined as -5.3 to -5.8 mm bregma).

Fig-2. (A) Mean (±S.E.M.) responses per session on the lever previously associated with the delivery of EtOH in P rats (n = 6-7/group) microinjected with aCSF or 0.1 μg or 0.3 μg/0.5 μl of Quin into the p-VTA prior to only the first PSR session. Asterisk (*) indicates that rats administered aCSF responded significantly (p < 0.05) more on the EtOH lever during the first PSR session compared to extinction baseline levels, whereas rats administered 0.1 μg or 0.3 μg/0.5 μl of Quin responded significantly less than extinction baseline. Pound (#) indicates that both doses of Quin reduced EtOH responding during the first PSR session compared to the aCSF group (p<0.05). (B) Mean (±S.E.M.) responses per session on the lever previously associated with the delivery of water in P rats (n = 6-7/group) microinjected with aCSF, 0.1 μg or 0.3 μg/0.5 μl of Quin into the p-VTA prior to only the first PSR sessions. Asterisk (*) indicates that rats administered aCSF or 0.1 μg /0.5 μl of Quin responded significantly less on the water lever during the first PSR session compared to extinction baseline. There were no significant differences among the 3 groups with regard to responses on the water lever during PSR1.

Fig-3. (A) Mean (±S.E.M.) responses per session on the lever previously associated with the delivery of EtOH in P rats (n = 7–8/group) microinjected with aCSF, or 50 or 100 mg % EtOH into the p-VTA prior to only the first PSR session. Asterisk (*) indicates that rats administered aCSF, or 50 or 100 mg % EtOH responded significantly (p < 0.05) more on the EtOH lever during the first PSR session compared to extinction baseline levels. Pound (#) indicates that rats...
administered 50 or 100 mg % EtOH responded significantly more during the first PSR session than rats administered aCSF (p<0.05). (B) Mean (±S.E.M.) responses per session on the lever previously associated with the delivery of water in P rats (n = 7–8/group) microinjected with aCSF, or 50 or 100 mg % EtOH into the p-VTA prior to only the first PSR sessions. There were no significant differences.

**Fig-4.** (A) Mean (±S.E.M.) responses per session on the lever previously associated with the delivery of EtOH in P rats (n = 5/group) microinjected with 0.01, 0.03, 0.1 or 0.3 μg/0.5 μl of Quin plus 100 mg% EtOH into the p-VTA prior to only the first PSR session. Asterisk (*) indicates that rats administered 0.01 or 0.03 μg/0.5μl plus 100 mg % responded significantly (p < 0.05) more on the EtOH lever during the first PSR session compared to extinction baseline levels, whereas rats administered 0.1 or 0.3 μg/0.5μl Quin plus 100 mg % EtOH responded significantly less than extinction baseline. Pound (#) indicates that rats administered 0.1 or 0.3 μg/0.5 μl of Quin plus 100 mg % EtOH responded significantly less during the first PSR session than rats administered 0.01 or 0.03 μg/0.5 μl of Quin plus EtOH (p < 0.05). (B) Mean (±S.E.M.) responses per session on the lever previously associated with the delivery of water in P rats (n = 5/ group) microinjected with 0.01, 0.03, 0.1 or 0.3 μg/5 μl Quin plus 100 mg% EtOH into the p-VTA prior to only the first PSR sessions. Asterisk (*) indicates that rats administered 0.01 or 0.1 μg/0.5μl of Quin plus 100 mg% EtOH responded significantly less than the water lever during the first PSR session compared to extinction baseline. There were no significant differences among any of the groups in the 1st PSR session with regard to responses on the water lever.

**Fig-5.** (A) Mean (±S.E.M.) responses per session on the lever previously associated with the delivery of EtOH in P rats (n = 7/group) microinjected with aCSF or 0.1 μg or 0.3 μg/0.5 μl of
Quin into the a-VTA prior to only the first PSR session. Asterisk (*) indicates that rats administered aCSF, 0.1 μg and 0.3 μg/0.5 μl of Quin responded significantly (p < 0.05) more on the EtOH lever during the first PSR session compared to extinction baseline levels. (B) Mean (±S.E.M.) responses per session on the lever previously associated with the delivery of water in P rats (n = 7/group) microinjected with aCSF, 0.1 μg or 0.3 μg/0.5 μl of Quin into the a-VTA prior to only the first PSR sessions. There were no significant differences.

**Fig-6.** (A) Mean (±S.E.M.) responses per session on the lever previously associated with the delivery of EtOH in P rats (n = 7/group) microinjected with aCSF or 100 mg % EtOH into the a-VTA prior to only the first PSR session. Asterisk (*) indicates that rats administered aCSF and 100 mg% EtOH responded significantly (p < 0.05) more on the EtOH lever during the first PSR session compared to extinction baseline levels. (B) Mean (±S.E.M.) responses per session on the lever previously associated with the delivery of water in P rats (n = 7/group) microinjected with aCSF or 100 mg % EtOH into the a-VTA prior to only the first PSR sessions. There were no significant differences.

**Fig-7.** Mean (±S.E.M.) responses per session on the lever associated with the delivery of SACC in P rats (n = 5-7/group) microinjected with aCSF or 0.3 μg/0.5 μl of Quin into the p-VTA prior to only the first maintenance test session. There were no significant differences.
Fig-5

(A) EtOH Responses

- ● aCSF
- ○ 0.1 µg Quin
- ▼ 0.3 µg Quin

Sessions

Ext Base PSR1 PSR2 PSR3 PSR4

(B) Water Responses

- ● aCSF
- ○ 0.1 µg Quin
- ▼ 0.3 µg Quin

Sessions

Ext Base PSR1 PSR2 PSR3 PSR4
Fig-7

- Saccharin Responses
- Maintenance Sessions
- aCSF
- 0.3 μg Quin