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Abstract  

 

The commonly prescribed antiepileptic drug phenytoin has a narrow therapeutic range and wide 

inter-individual variability in clearance explained partially by CYP2C9 and CYP2C19 coding 

variants.  After finding a paradoxically low urinary phenytoin metabolite (S)/(R) ratio in subjects 

on phenytoin maintenance therapy with a CYP2C9*1/*1 & CYP2C19*1/*2 genotype, we 

hypothesized that CYP2C9 regulatory polymorphisms (rPMs), G-3089A and -2663delTG, in 

linkage disequilibrium with CYP2C19*2 were responsible.  These rPMs explained as much as 

10% of the variation in phenytoin maintenance dose in epileptic patients, but were not correlated 

with other patients’ warfarin dose requirements or with phenytoin metabolite ratio in human liver 

microsomes. We hypothesized the rPMs affected CYP2C9 induction by phenytoin, a PXR and 

CAR activator. Transfection studies showed CYP2C9 reporters with wild-type versus variant 

alleles had similar basal activity but significantly greater PHT induction by co-transfected PXR, 

CAR and Nrf2 and less YY1 repression. Phenytoin induction of CYP2C9 was greater in human 

hepatocytes with the CYP2C9 wild-type vs. variant haplotype. Therefore, CYP2C9 rPMs affect 

phenytoin-dependent induction of CYP2C9 and phenytoin metabolism in humans, with an effect 

size comparable to that for CYP2C9*2 and 2C9*3.  These findings may also be relevant to the 

clinical use of other PXR, CAR and Nrf2 activators. 
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Introduction 

Phenytoin (PHT, 5,5-diphenylhydantoin) is among the most frequently prescribed 

antiepileptic drugs (AEDs). Among the older AEDs, the prevalence of use in the United 

States is: PHT>valproic acid>carbamazepine>phenobarbital (52%, 19%, 11% and 7%, 

respectively).  The use of phenytoin is highest among the elderly population, those most 

likely to be taking other medications metabolized by CYP2C9. For example, it is estimated 

that 10.5% of nursing home residents had one or more AED orders, a prevalence 10 times 

greater than that found in the community (Garrard  et al., 2007; Leppik, 2007). Although 

newer AEDs that may have fewer side effects have come on the market, PHT continues to 

occupy an important role in the pharmacological treatment of epilepsy, particularly for 

patients on long standing PHT-containing regimens that may have required months to years 

of modification of drug regimens and doses to achieve optimal control of their disease.  

Phenytoin demonstrates a large inter-individual variation in metabolism and has a 

narrow therapeutic index, and hence is difficult to administer effectively. Previous studies 

have consistently demonstrated reduced in vivo PHT metabolism and reduced clinical dose 

requirements for PHT in patients carrying protein sequence-altering genetic variants of the 

enzymes CYP2C9 and CYP2C19. These enzymes metabolize PHT to a mixture of (R) and (S) 

stereoisomers of the inactive metabolite 5-(4’-hydroxyphenyl)-5-phenylhydantoin (p-HPPH). 

The most commonly occurring CYP2C9 variant alleles are CYP2C9*2, a C430T leading to 

Arg144Cys, and CYP2C9*3 A1075T leading to Ile359Leu (Bhasker et al., 1997; Stubbins et 

al., 1996; Sullivan-Klose et al., 1996). An in vitro kinetic study in insect cells showed that 

recombinant CYP2C9*2 and CYP2C9*3 exhibited a 1.5-fold and 20-fold decrease in catalytic 

efficiency, respectively, relative to CYP2C9*1, in formation of (S)-pHPPH (Rettie et al., 

1999). The CYP2C19*2 variant allele, a G681A transition in exon 5, creates a cryptic splice 
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site and forms a truncated defective protein. It is the major genetic defect accounting for 75 to 

85% of CYP2C19 poor metabolizers (de Morais et al., 1994).  

 Because of its narrow therapeutic range, genotyping of CYP2C19 in addition to 

CYP2C9 could theoretically be used to optimize the dosage of phenytoin. The CYP2C9*2, 

CYP2C9*3 and CYP2C19*2 alleles have all been shown to affect PHT plasma concentration 

and toxicity (Desta et al., 2002; Aynacioglu et al., 1999; Tate et al., 2005). For example, the 

mean 12 h concentration of PHT in serum after a 300 mg dose to healthy Turkish volunteers 

was significantly higher (26-37%) in patients with even one CYP2C9*2 or CYP2C9*3 allele 

compared to WT subjects (Aynacioglu et al., 1999). In European epileptic patients on PHT, 

the CYP2C9*3 allele showed a significant association with maximum PHT dose (Tate et al., 

2005).  

Although PHT is metabolized to p-HPPH by both CYP2C9 (90%) and CYP2C19, 

CYP2C9 demonstrates high prochiral stereoselectivity yielding an S/R ratio of 43-44.  In 

contrast, CYP2C19 has low prochiral selectivity, yielding a S/R ratio of 1.2-1.3 (Fig 1A) 

(Kupfer and Preisig, 1984; Browne and Leduc, 2002; Bajpai et al., 1996). Although it was 

hypothesized (Ieiri et al., 1997; Argikar et al., 2006) that the (S)/(R) p-HPPH ratio could be 

used as a phenotypic measure of CYP2C9 activity, the results from two in vivo studies testing 

this idea have been paradoxical. For example, twelve and twenty-four hour urine samples 

from 45 epilepsy patients taking PHT under steady-state conditions analyzed for mean 

urinary p-HPPH (S)/(R) ratios in subjects homozygous for CYP2C19*1/*1 was 24.2±3.1. 

Heterozygotes for the defective CYP2C9*2 and CYP2C9*3 alleles demonstrated lower values 

of 11.1±3.3 and 2.7±0.6, respectively. However, unexpectedly, normal homozygotes for 

CYP2C9*1/*1 but heterozygous for CYP2C19*2 had a mean (S)/(R) ratio as low as 12.9±1.7 

instead of the expected range of 30-40 (Argikar et al., 2006). A high (S)/(R) ratio was 

expected in these subjects because CYP2C9-mediated metabolism would be expected to 
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predominate in CYP2C19*2 poor metabolizers. We hypothesized that some undetected 

CYP2C9 variation, in LD with CYP2C19*2, was affecting PHT elimination.  

Here we describe two genetic variants in the extended promoter of CYP2C9, -

3089G>A and -2663delTG, in strong linkage disequilibrium with CYP2C19*2, and 

demonstrate that these variants explain the paradoxically low (S)/(R) ratio in CYP2C19*2 

carriers.  We show that these polymorphisms are strongly associated with phenytoin dose 

requirements in patients with epilepsy on PHT maintenance therapy, and that these variants 

are causal for reduced PHT metabolism through their effects on PHT-sensitive autoinduction 

of CYP2C9. These findings may have direct relevance to the clinical use of PHT and 

potentially other CYP2C9 inducers.  
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Methods 

 

Materials. QuikChange II XL site-directed mutagenesis kit was obtained from Stratagene 

(La Jolla, CA). TRIzol and Superscript reverse transcription-polymerase chain reaction 

(PCR) system were from Invitrogen (Carlsbad, CA). The luciferase assay system, β-

galactosidase assay system, TNT quick coupled transcription/translation system, and PCR 

master mix were purchased from Promega (Madison, WI). High-purity plasmid purification 

kits and DNeasy tissue kit were supplied by QIAGEN (Valencia, CA). Trypsin, penicillin, 

streptomycin, cell culture minimal essential media were purchased from Gibco (Carlsbad, 

CA). Fetal bovine serum was purchased form HyClone (Logan, UT). DMSO and PHT were 

purchased from Sigma-Aldrich (St. Louis, MO). The transfection reagent Turbofectin 8, YY1 

expression and Nrf2 expression plasmids were procured from Origene (Rockville, MD). γ-

32P-ATP and 35S-methionine were supplied by PerkinElmer (Waltham, MA).  Exonuclease 1 

and shrimp alkaline phosphatase were from USB Corp. (Cleveland, OH). FirstChoice® RLM-

RACE Kit was purchased from Ambion/Applied Biosystems (Chicago, IL). Custom 

oligonucleotide synthesis and DNA sequencing was done by the Hartwell Center for 

Bioinformatics & Biotechnology at St. Jude Children’s Research Hospital,  Memphis, TN. 

 

In silico analysis of the CYP2C9 and CYP2C19 genes. Databases screened for potential 

candidate SNPs in CYP2C9 which are in LD with CYP2C19*2: HapMap, 

http://www.hapmap.org/ and Perlegen, http://genome.perlegen.com/).  Web-based 

bioinformatic tools Nubiscan (http://www.nubiscan.unibas.ch) and Transfac (http://hc-

transfac/cgi-bin/biobase/transfac/11.4/bin/start.cgi) were used to identify whether 

polymorphisms altered transcription factor binding sites. 
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Procurement of liver tissue. Human liver studies were approved by the St Jude Children’s 

Research Hospital and University of Pittsburgh Institutional Review Boards.  Human liver 

tissue (n=28) was processed through the St Jude Liver Resource at St. Jude Children’s 

Research Hospital and was provided by the Liver Tissue Procurement and Distribution 

System (NIH Contract #N01-DK-9-2310) and by the Cooperative Human Tissue Network. 

RNA from donor livers was used to analyze the expression of CYP2C9 as well as to prepare 

cDNA to study the polymorphic splicing events by amplifying full length cDNA. DNA from 

donor livers was used to genotype for CYP2C9*2, CYP2C9*3, CYP2C9 -3089G>A, 

CYP2C9-2663delTG and CYP2C19*2. 

 

mRNA quantification. Total RNA was isolated from liver or human hepatocytes with 

TRIzol. First-strand cDNA was prepared using oligo (dT) primers [Invitrogen, Superscript 

reverse transcription-polymerase chain reaction (PCR) system]. Real-time PCR quantitation 

of CYP2C18 like Ex1/ 2C9 Ex2 chimera, CYP2C9, CYP2C19, CYP3A4 mRNA and the 

housekeeping control glyceraldehyde-3- phosphate dehydrogenase was carried out using the 

QuantiTect SYBR Green PCR kit (Qiagen, Valencia, CA) according to the manufacturer’s 

instructions. cDNA was analyzed in duplicate by quantitative real-time PCR on an ABI 

PRISM 7900HT Sequence Detection System (PE Applied Biosystems, Foster City, CA). 

Primers used for real-time quantification are provided in Supplemental Table 1. Specificity of 

amplification was confirmed in each case by performing melt curve analysis and agarose gel 

electrophoresis. The averaged Ct values were analyzed by the comparative Ct method to 

obtain relative mRNA expression levels. 

 

Genotyping of CYP2C9 and CYP2C19 alleles. DNA from human livers was isolated using a 

DNeasy tissue kit. PCR was performed using 50 ng of genomic DNA template and 1 μM of 
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each primer in a 25 μL reaction volume using PCR master mix from Promega. Genotyping 

for CYP2C9*2, CYP2C9*3, CYP2C9 -3089G>A, CYP2C9-2663delTG and CYP2C19*2 was 

performed by direct DNA sequencing of the specific PCR amplified fragments. The primers 

were used for PCR amplification and DNA sequencing and are listed in Supplemental Table 

1. 

 

Epilepsy Study Population. The patient population included adult individuals of primarily 

European ancestry enrolled in a retrospective observational study of adult and pediatric 

chronic epilepsy patients followed by epileptologists at Duke University Medical Center 

(DUMC) (n=79), and the National Hospital for Neurology and Neurosurgery, University 

College London Hospital (UCLH) (n = 94).  Studies were performed under protocols 

approved by the appropriate local Institutional Review Boards.  Informed consent was either 

obtained from each patient or from the patients’ parent or caregiver when it was not possible 

to obtain consent from the patient directly.  A DNA sample was obtained from each patient, 

and medical records were reviewed retrospectively.  Selected clinical data including a 

comprehensive past medical history and demographic information, epilepsy diagnosis, 

seizure type and frequency, drug initiation and stop dates, and adverse effects from AEDs 

were recorded in a relational database (InForm).  We tested whether concomitant anti-

epileptic medications, or any individual AED in particular, was associated with PHT 

maintenance dose, however, these variables did not significantly predict PHT dose 

requirements.  Thus, we treated all individuals achieving the maintenance dose definition as a 

group, and ignored the potential influence of concomitant medications as a practical measure 

in our analysis.  Genotyping for CYP2C9*2, CYP2C9*3 and CYP2C9 -3089G>A was 

performed using Taqman MGB genotyping assays (Applied Biosystems, Inc., Foster City, 

CA, USA). 
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Phenotyping/Phenotype Definitions. Maintenance dose was defined as any prescribed dose 

that remained unchanged for two consecutive clinic visits, not including the initial (referral) 

visit.  If this definition was met more than once for the same drug and patient, the dose that 

was maintained for the longest period of time was selected as the maintenance dose.  It was 

anticipated that the maintenance dose would tend to reflect, in a quantitative manner, the 

liability toward seizure control by a given drug for a particular patient, whereas the maximum 

dose will tend to be limited by the tolerability of the drug, although both maintenance dose 

and maximum are likely to be influenced by both efficacy and tolerability.   

 

Chinese patients on warfarin. This study received human subject approval from the 

Chinese University of Hong Kong-New Territories East Cluster Clinical Research Ethics 

Committee. After informed consent was obtained, a cohort of Chinese patients who had 

warfarin therapy initiated for indications of moderate intensity anticoagulation (target INR=2-

3) were recruited at the anticoagulation clinic of the Prince of Wales Hospital in Hong Kong. 

Exclusion criteria included concurrent use of drugs known to interfere with warfarin 

metabolism, impaired hepatic function (>1.5 times upper normal limit of serum 

aminotransferases) or renal function (serum creatinine >120 μmol/L), and patients who had 

received warfarin for less than three months. A 5 mL blood sample was drawn for genotyping 

during a regularly scheduled clinic visit.  Complete warfarin dosing information was 

retrieved from medical records to determine stable warfarin dose, defined as three INR 

measurements within target range, at the same mean daily dose, following consecutive clinic 

visits.    
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Human liver microsomes. Human liver microsomes were prepared from CYP2C19*2 and 

CYP2C9 -3089G>A genotyped samples (n=14) and analyzed for the formation of (S) and (R) 

p-HPPH.  Microsomal incubations consisted of 100 μL protein (1.25 mg protein/mL), 100 μL 

25 mM MgCl2, 100 µL 250 mM TRIS buffer (pH 7.4 at 37 ˚C), and 100 µL 50 µM PHT (10 

µM final concentration). The above mixture was preincubated at 37 °C for 2 min in a shaking 

water bath set at 30 rpm, and 100 µL 5 mM NADPH were added to initiate the reaction. The 

reaction was stopped after 45 min by adding 100 µL 20% TCA. Production of p-HPPH under 

these conditions was linear with respect to time and protein concentration. The samples were 

next placed on ice for 30 min to complete precipitation of the protein, followed by 

centrifugation at 13,000 x g for 10 min. An aliquot of the supernatant (500 µL) was then 

subjected to solid phase extraction on Phenomenex Strata-X (30 mg) columns. Low speed (50 

x g) centrifugation for 30 sec was used to elute the solutions and samples through the 

cartridge in a Forma Scientific (Model # 5681) swinging bucket centrifuge. The columns 

were activated with 1 mL methanol, followed by conditioning with 1 mL 10 mM ammonium 

formate buffer (pH 3). The sample was next added to the column and allowed to stand for 2 

min prior to centrifugation. The cartridges were then washed with 1 mL 2% methanol in 

buffer, followed by two washes of 1 mL buffer solution. The cartridges were allowed to stand 

for 3 min before centrifugation.  Sample elution was carried out with two 1 mL washes of 

acetonitrile. The final centrifugation was carried out at 75 x g for 1 min. All eluants were 

collected and dried under nitrogen at 40 °C, followed by reconstitution in 100 μL 50% 

acetonitrile and 50% ammonium acetate buffer (10 mM). The reconstituted samples were 

centrifuged at 10,000 x g for 10 min in a Beckman microcentrifuge, and 30 μL sample was 

injected into the LC-MS for analysis. Separation of R- and S-p-HPPPH was accomplished 

with a Nucleodex beta-OH chiral column (200 mm x 4.6 mm) (Macherey-Nagel, Easton, PA) 

with 1 mL/min of 75% ammonium formate (10 mM, pH 3) and 25% acetonitrile as mobile 
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phase. The retention times for the (R) and (S) p-HPPH isomers were 15 and 17 min, 

respectively. Peak areas were directly measured and an S/R p-HPPH ratio was determined. 

Detection was by atmospheric pressure chemical ionization-mass spectrometry (APCI-MS) in 

the negative ion mode at an m/z of 266 on a Shimadzu 2010 LC-MS instrument. The APCI 

probe was maintained at 400 °C, the heater block at 200 °C and the desolvation line at 200 

°C. The detector voltage was 1.6 kV, the microscan set to 0.3 amu, a scan time of 0.5 sec, and 

nitrogen gas flow rate 2.5 L/min. 

 

CYP2C9 Reporter plasmids. Cloning of the -5470/+25 CYP2C9 promoter luciferase 

reporter plasmid in the pGL3-basic vector (Promega, Madison, WI) has been previously 

described (Al-Dosari et al., 2006). The plasmid, generously supplied by Dr. Dexi Liu, Univ. 

Pittsburgh, was resequenced to genotype for the CYP2C9 -3089G>A and -2663delTG and 

found to be WT at these two positions. Site-directed mutagenesis (SDM) was employed to 

create the VAR CYP2C9 -3089A plasmid using primers in Supplemental Table 1. The 

CYP2C9 -2663delTG was generated commercially by GenScript Corp. The CYP2C9*1B 

haplotype was made by a performing SDM on the CYP2C9-2663delTG plasmid.  All 

nucleotide variations were confirmed by DNA sequencing.  

 

Cell culture and transient transfection assays. HepG2 human hepatoma cells were cultured 

in minimal essential media (MEM alpha) supplemented with 10% fetal bovine serum, 1% 

penicillin, and 1% streptomycin, and maintained in a humidified incubator at 37 °C in an 

atmosphere of 5% CO2. For transfection studies, 3 x 105 cells per well were seeded into 24 

well culture dishes. After 24 h cells were transfected with 400 ng CYP2C9 promoter 

luciferase reporter plasmid + 40 ng of HNF-1α and HNF-4α luciferase expression plasmids 

+/- 40 ng each of either pcDNA3-hPXR, pcDNA3-hCAR,  pCMV6 Entry-YY1, or pCMV6 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on October 23, 2009 as DOI: 10.1124/jpet.109.161026

 at A
SPE

T
 Journals on A

pril 9, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


  JPET #161026 

 13

Entry-Nrf2  + pcDNA3-MafK. Each tube contained the appropriate amounts of pcDNA3 

stuffer DNA to ensure equivalent amounts of total transfected plasmid and 50 ng pSV40 -

LacZ to normalize LUC activity. HNF-1α and HNF-4α were always cotransfected because 

earlier observations demonstrated that these are required for optimal CYP2C9 promoter 

activity (Kramer et al., 2008). 24 h later, transfection medium was replaced with normal 

growth medium, and cells were incubated for an additional 24 h. For induction experiments, 

transfection medium was replaced with medium supplemented with 50 μM PHT or DMSO. 

After 24 h cell lysates were prepared and luciferase assays were performed according to the 

manufacturer’s instructions. Luciferase activities were normalized with respect to β-

galactosidase activity to correct for transfection efficiency and expressed as fold change with 

respect to vector control. Data are reported as mean ± S.D. of three determinations and were 

representative of multiple experiments. Statistical differences between groups was 

determined using the Student’s t-test. 

 

Electrophoretic Mobility Shift Assay (EMSA). hPXR, hCAR, hRXR, hYY1, hNrf2 and 

Maf K proteins were generated by TNT in vitro transcription and translation per 

manufacturers instructions. Proteins were incubated at 4°C for 1.5 h with 32P-labeled double 

stranded oligonucleotides  (6,00,000 cpm/reaction) in the presence or absence of 100-500 –

fold excess of unlabeled double-stranded oligonucleotide in a DNA binding buffer (10 mM 

Tris pH 8.0, 40 mM KCl, 0.05% NP40, 6% glycerol, 0.2 μg poly dI/dC, 200 μM ZnCl, 1 mM 

dithiothreitol). Complexes were resolved by electrophoresis on a nondenaturing 6% 

polyacrylamide gel and analyzed using a PhosphorImager Model 860 Storm (Molecular 

Dynamics, Sunnyvale, CA). Specific oligonucleotides sequences used are listed in 

Supplemental Table 1.  
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PHT treatment of primary human hepatocytes. Studies in primary hepatocytes isolated 

from human liver were approved by the University of Pittsburgh Institutional Review Board. 

Livers were procured from donor organs and were flushed, in situ, and maintained with 

Belzar’s UW solution (Barr Laboratories, Pomona, NY). Hepatocytes were isolated as 

previously described and were plated on collagen-coated six-well plates maintained in 

modified Williams’ E medium for 48 h and then treated with PHT for 48 h. Media were then 

aspirated and TRIzol solution (Invitrogen) was added for RNA isolation. DNA was extracted 

from an aliquot of donor liver for CYP2C9 genotyping. 

 

5’- rapid amplification of cDNA ends (RACE). 5’-RACE was carried out in control and 

PHT treated human hepatocytes extracts according to the manufacturer’s protocol. The 

5’RACE and CYP2C9 gene specific primers are listed in Supplemental Table 1. RACE 

products were analyzed using 1% agarose gel electrophoresis, cloned into a TOPO TA vector 

and sequenced using direct DNA sequencing. 

 

Statistical analysis. Relationship of different genotypes with CYP2C9 mRNA expression, 

pHPPH (S/R) ratio, and warfarin dose requirements was analyzed using the statistical 

program R: A Language and Environment for Statistical Analysis (http://www.Rproject.org).  

Group differences were analyzed nonparametrically using the Wilcoxon rank sum test to 

compare two genotype groups whereas the Kruskal-Wallis test was used to compare three 

groups of genotypes with the phenotypes. Box plots indicate 2nd and 3rd quartiles, with the 

bold line within the box representing the median value; the whiskers represent the range after 

excluding the outliers. The outliers are defined by the R package as data points that fall 

outside the 2nd and 3rd quartiles by more than 1.5 times the interquartile range, and circles 

falling outside the whiskers represent outliers. Genetic association testing in the chronic 
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epilepsy population was performed using multiple linear regression in StataIC10 (StataCorp 

LP, College Station, TX, USA). 
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  Results 

To test whether a previously unrecognized SNP in CYP2C9 might explain the paradoxically 

low CYP2C9 phenytoin metabolite ratios in CYP2C19*2 carriers, the CYP2C9 cDNA was 

PCR amplified and resequenced from 12 human livers with different CYP2C19*2 genotypes 

(CYP2C19*1/*1, n=8; CYP2C19*1/*2, n=3; and CYP2C19*2/*2, n=1). Results demonstrated 

neither unique coding changes in the CYP2C9 cDNA nor alternative CYP2C9 transcripts that 

might be related to polymorphisms (e.g., intronic SNPs) (not shown). 

 

CYP2C9 polymorphisms in LD with CYP2C19*2. To identify CYP2C9 polymorphisms in 

LD with CYP2C19*2 we screened available databases and literature and identified at least 

eight linked CYP2C9 polymorphisms: two intronic (intron 4 (470 bp downstream of Ex4/Int4 

junction) and intron 8 (147 bp downstream of Ex8/Int8 junction)), and six in the 5’ region (-

76kb, -59kb, -32kb, -16kb and -3089G>A and -2663delTG). The complete haplotype has 

previously been designated CYP2C9*1B (Veenstra et al., 2005). The -3089G>A and -

2663delTG polymorphisms were chosen for further study because they are in proximity to 

binding sites at -2898, -1839 and -1818 for other CYP2C9 transcriptional regulators (e.g., 

CAR, constitutive androstane receptor  and PXR, pregnane X receptor) that can be activated 

by PHT (Fig 1B).   

 

CYP2C9 promoter polymorphisms are associated with maintenance PHT dose and 

steady-state serum levels in patients with epilepsy.  Having discovered the CYP2C9*1B 

haplotype through its association with CYP2C19*2 and its paradoxical effect on urinary p-

HPPH (S)/(R) ratio, we then tested independently whether these promoter polymorphisms 

influenced PHT dose requirements and steady-state PHT serum levels in patients with 

epilepsy receiving chronic PHT therapy (n=173).  After correcting for the effects of 
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CYP2C9*2 and CYP2C9*3, gender and population structure, we found that the CYP2C9*1B 

haplotype was associated with a significant reduction in PHT dose requirements (Table 1). 

The effect of CYP2C9*1B on phenytoin dose was independent of CYP2C9*2 and CYP2C9*3 

genotype in the linear model (Table 1).  The magnitude of the effect of CYP2C9*1B was 

similar to that for the previously identified CYP2C9*2 and CYP2C9*3 alleles, with a beta 

coefficient of -42 (i.e. 42 mg lower dose requirement per minor allele carried) and 

significantly improved the overall predictive power of CYP2C9 genetic markers, from 

(adjusted) r2 = 0.186 in a model containing only CYP2C9*2 and CYP2C9*3 to (adjusted) r2 = 

0.23 in a model containing these markers plus CYP2C9*1B, giving an absolute difference of 

4.4% of the variation in phenytoin maintenance dose explained by CYP2C9*1B.  The 

independent effect of CYP2C9*1B is shown graphically in Figure 2 in n = 123 patients who 

do not carry a CYP2C9*2 or CYP2C9*3 allele. 

Because body weight is also a strong independent predictor of PHT dose 

requirements, we re-assessed the CYP2C9*1B effect on PHT maintenance dose in a subset of 

n=70 patients for whom total body weight at the time of PHT therapy was recorded.  After 

correcting for total body weight, addition of CYP2C9*1B to the linear model improved the fit 

from (adjusted) r2 = 0.371 to (adjusted) r2 = 0.471, with roughly 10% of the variability in 

PHT dose explained by this haplotype alone (Table 1).  We further inspected an overlapping 

subset of n=78 patients to determine whether the effect of CYP2C9*1B was reflected in 

higher PHT serum levels in these patients.  As expected, there was no relationship between 

the raw serum level and CYP2C9*1B haplotype, since the potential influence on serum level 

had already been corrected by the reduced maintenance dose (data not shown).  However, we 

observed a significant effect on the ratio of serum level to maintenance dose; addition of 

CYP2C9*1B to a model including CYP2C9*2, *3, gender and population structure led to 
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improved model fit (p = 0.072 without CYP2C9*1B vs. p = 0.033 in the model including 

CYP2C9*1B) (Table 2). 

 

 

Neither the CYP2C9 promoter polymorphisms nor the CYP2C19*2 allele were 

associated with warfarin dosing requirement in vivo, nor hepatic CYP2C9 expression or 

activity in vitro. We next determined the generalizability of the effect of the CYP2C19*2 

genotype (and associated CYP2C9 promoter polymorphisms) on CYP2C9 mediated drug 

clearance of another CYP2C9 substrate, warfarin. Because a higher percentage of Asians 

carry the CYP2C19*2 allele (18-23%) compared to Whites (2-5%), we turned to a Chinese 

population (n=67) with data on warfarin dose requirements necessary to achieve 

anticoagulation. The patients had not previously been genotyped for CYP2C19*2 or these 

CYP2C9 promoter rPMs (Zhao et al., 2004). In the Hong Kong Chinese cohort, the -

3089G>A and -2663delTG polymorphisms were in complete LD.  However, unlike Whites, 

although 89% of the Chinese CYP2C19*2 subjects also had the CYP2C9 regulatory 

polymorphisms, 10.7% of the Chinese CYP2C19*2 subjects did not. Therefore, we tested for 

the individual effects of each of the aforementioned genotypes on warfarin dosing after 

excluding those patients carrying the CYP2C9*2, *3 and VKORC1 variant alleles (leaving 

n=46 patients). Warfarin dosing was not correlated with either the CYP2C19*2 genotype (not 

shown) or the CYP2C9 promoter polymorphisms (Fig 3A).  

 A human liver resource was used to determine the effect of the CYP2C9 promoter 

genotypes on CYP2C9 mRNA expression and phenytoin hydroxylation activity in vitro.  

Genotyping of 28 human livers from White donors confirmed that the CYP2C9 -3089G>A 

and -2663delTG were in complete LD to CYP2C19*2 in the White population (Fig 3B). 

Quantitative real-time PCR of CYP2C9 mRNA levels showed no significant effect of the 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on October 23, 2009 as DOI: 10.1124/jpet.109.161026

 at A
SPE

T
 Journals on A

pril 9, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


  JPET #161026 

 19

promoter polymorphisms on CYP2C9 basal mRNA expression. Next the (S)/(R)-p-HPPH 

ratios were determined in microsomes from these same livers. There was an insignificant 

difference in hepatic CYP2C9 activity between livers with different CYP2C19*2 genotypes 

(Fig 3C) although we observed an interesting trend in this in vitro phenotype that was 

opposite to what was seen in vivo. CYP2C19*2 heterozygote samples demonstrated a trend 

towards an increased S/R p-HPPH ratio which is actually what was originally expected in 

vivo (Argikar et al., 2006) because CYP2C9 is expected to contribute to PHT metabolism to 

a greater extent in CYP2C19*2 poor metabolizers (Fig 1A). 

 

To explain the in vivo/in vitro discrepancy we further hypothesized that the CYP2C9 

promoter rPMs differentially affected PHT induction of CYP2C9 transcription. PHT is 

a known activator of PXR and CAR and the subjects with the paradoxical phenotype were on 

maintenance PHT (induction) therapy. This suggested that the measurement of urinary 

phenytoin metabolites in vivo reflected induced CYP2C9 activity and the possibility of 

reduced PHT autoinduction when the two CYP2C9 regulatory variant alleles were present. 

The -2663delTG and -3089G>A are in the vicinity of known CAR/PXR binding sites (-2898, 

-1839 and -1818). In silico bioinformatic analysis using Transfac suggested that the -

3089G>A leads to the gain of a Ying Yang 1 (YY1) site and the -2663delTG leads to the loss 

of an Nrf2 site and Nubiscan suggested possible PXR/CAR binding sites in those same 

regions  (Fig 1B).  

 

Effect of individual promoter polymorphisms on constitutive and phenytoin-induced 

CYP2C9 promoter activity. Neither the -2663delTG nor the -3089G>A SNPs, when singly 

engineered into a -5470/+25-CYP2C9 luciferase reporter plasmid, decreased basal reporter 

activity (Fig 4A,B). Compared with the WT reference reporter, both the individual variants 
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decreased CAR and CAR + PHT induced CYP2C9 promoter activity (Fig 4A,B).  Since the -

3089G>A created a putative YY1 site, we compared the -3089G and -3089A reporter 

plasmids in cells in which YY1 was overexpressed with an expression plasmid. YY1 

overexpression decreased the -3089A variant promoter construct to a significantly greater 

extent than the WT promoter construct (p=0.04) (Fig 4A).  Since the -2663delTG destroyed a 

putative Nrf2 site, we compared the two reporter plasmids in cells where Nrf2 (always co-

transfected with the heterodimerization partner MafK) was overexpressed. Nrf2 

cotransfection significantly increased (p=0.02) the WT promoter construct’s luciferase 

activity compared to the -2663delTG reporter construct, although the variant reporter was 

induced by PHT/Nrf2 (Fig 4B).  

 

Effect of promoter haplotypes on constitutive and phenytoin-induced CYP2C9 

promoter activity. Luciferase activity in cells with the wild-type (WT-HAP) was induced to 

a significantly greater extent (80% increase) compared to the variant haplotype (VAR-HAP) 

in cells that were co-transfected with PXR and treated with 50 µM PHT (Fig 5A) (p=0.002). 

In contrast, co-transfection with CAR with and without PHT induced luciferase activity from 

the WT-HAP and VAR-HAP to similar extents (not shown). Conversely the VAR-HAP 

luciferase activity was 20% more repressed by YY1 overexpression alone vs. the WT-HAP 

cells (Fig 5B) and YY1 overexpression demonstrated a significantly greater (p=0.007) 

repression of luciferase activity in the VAR-HAP cells when cotransfected with PXR and 

treated with PHT.  

PHT treatment of Nrf2 cotransfected cells increased luciferase promoter activity of 

the WT-HAP 43% more than the VAR-HAP (p=0.02) (Fig 5B). Nrf2 and PXR cotransfection 

further increased the basal (p=0.04) and PHT induced (p=0.008) promoter activity of the WT-

HAP 37% more than the VAR-HAP.  
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 Next we compared the effect of co-transfection of PXR in combination with YY1 and 

Nrf2. YY1 repressed activation of the WT and VAR haplotypes by either PXR or Nrf2 co-

transfected plasmids, with or without PHT, although the VAR-HAP was repressed to a 

greater extent (up to 33%) compared to the WT-HAP (Fig 5C). In total, compared to the WT-

HAP, the luciferase activity in cells containing the VAR-HAP was more significantly 

repressed by YY1 and less induced by PHT. 

 

Electrophoretic mobility shift assay shows the -3089 variant allele creates a YY1 

binding element. EMSAs were performed to evaluate any differential binding of YY1, Nrf2, 

PXR or CAR to the WT and VAR alleles. The -3089G>A was predicted to create a YY1 

binding site.  Only the -3089A (VAR) oligonucleotide bound YY1 (lane 12 (VAR) vs. lane 4 

(WT)) and this binding was displaced by excess cold VAR oligonucleotide (Fig 6).  Neither 

the -3089G nor the -3089A allele bound CAR:RXR or PXR:RXR heterodimers. YY1 binding 

appeared to be somewhat diminished by co-incubation with either heterodimer. Thus, the 

EMSA analysis (Fig 6A) confirmed the in silico prediction that the -3089A VAR allele 

creates a YY1 binding site.  In contrast, although in silico bioinformatic analysis predicted 

that the -2663delTG destroyed an Nrf2 binding site, neither the -2663TG WT nor -

2663delTG oligonucleotides bound the Nrf2:MafK heterodimer, or CAR:RXR or PXR:RXR 

heterodimers (not shown).  

 

The variant CYP2C9 promoter haplotype alters CYP2C9 mRNA induction by 

phenytoin in primary human hepatocytes. Induction of CYP2C9 mRNA was compared in 

primary human hepatocytes from 12 donors (nine heterozygous for the VAR haplotype and 

three with a WT haplotype) treated with phenytoin.  Phenytoin treatment resulted in a 3.52-

fold induction of CYP2C9 mRNA in hepatocytes with the WT haplotype, but only a 2.07-
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fold induction in hepatocytes with the VAR haplotype (a 42% decrease relative to the WT 

haplotype) (Fig 7). If the single outlier in the VAR haplotype group is removed, the 

difference in phenytoin induction of CYP2C9 between the two haplotypes reaches statistical 

significance (p=0.02).  No difference in induction of CYP3A4 or CYP2C19 mRNAs were 

seen between hepatocytes with the different CYP2C9 promoter haplotypes (Fig 7).  

 

Phenytoin treatment does not lead to induction of unique alternative CYP2C9 mRNA 

transcripts.  We also considered the possibility that CYP2C9 5’ regulatory polymorphisms 

could lead to genesis of PHT inducible alternative CYP2C9 mRNAs.  CYP2C9 alternative 

mRNAs have been described including a chimeric transcript (CYP2C18 exon 1-like_CYP2C9 

chimera) that contains the CYP2C18 exon 1-like sequence spliced through a segment of the 

CYP2C9 5’ UTR that is spliced to CYP2C9 exons 2-9 (Fig 7), but does not lead to an open 

reading frame (Warner et al., 2001). The CYP2C18 exon 1-like sequence is located in the 

intergenic region between CYP2C9 and CYP2C19 genes and one of the SNPs in LD to the 

CYP2C19*2 allele was located at -32kb, 320 bp downstream of CYP2C18 like exon 1.  

Quantitation of this spliced transcript by Q-realtime PCR in the phenytoin treated primary 

human hepatocytes revealed no induction of the chimera in either haplotype (Fig 7). To 

further exclude the possibility that some 5’ regulatory SNP created a unique TF binding site 

(e.g., CAR or PXR) that led to use of an alternative promoter generating a unique phenytoin 

inducible CYP2C9 alternative mRNA, we performed 5’ RACE using cDNAs from vehicle 

versus phenytoin induced primary human hepatocytes.  No 5’ RACE product unique to the 

phenytoin treated hepatocytes was identified. Two transcripts of equal abundance in vehicle 

and PHT treated hepatocytes from both genotypes were identified by 5’-RACE.  The 

transcripts started 25 bp (more abundant transcript) and 62 bp upstream of the translation start 

site. Further, when we used 5’ and 3’ UTR primers to amplify the full length CYP2C9 cDNA 
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from control and PHT treated human hepatocytes there was no evidence by sizing of PCR 

products on agarose gels of any PHT inducible alternative CYP2C9 mRNAs in either 

genotypic group.   
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Discussion 

We undertook this study to determine why patients with CYP2C9*1 genotypes, but 

heterozygous for CYP2C19*2, who would be expected to produce p-HPPH(S)/(R) metabolite 

ratios of 30-40:1, unexpectedly produced ratios of only 12.9 (Argikar et al., 2006).  We 

hypothesized that an unrecognized SNP in CYP2C9, in LD with CYP2C19*2, could explain 

this surprising finding.  In Whites, we found CYP2C19*2 was in complete LD with 

CYP2C9*1B containing the -3089G>A and -2663delTG polymorphisms.  These 

polymorphisms decreased phenytoin-mediated induction of CYP2C9 transcription in vitro 

and resulted in a diminished capacity to induce CYP2C9 mRNA expression in primary 

human hepatocytes. We propose that this mechanism explains the clinically paradoxical 

finding of altered PHT clearance in CYP2C19*2 Caucasian (Argikar et al., 2006) and 

Japanese patients (Ieiri et al., 1997) who were homozygous for CYP2C9*1.   

In support of this, the current study demonstrates a strong effect of the CYP2C9*1B 

haplotype on PHT metabolism and dose requirements in patients with epilepsy on chronic 

PHT therapy. Among patients who did not carry the CYP2C9*2 or CYP2C9*3 alleles, the 

CYP2C9*1B haplotype was significantly associated with reduced PHT maintenance dose, 

consistent with reduced PHT induction of CYP2C9 metabolism in CYP2C9*1B carriers.   

Notably, the full effect of the CYP2C9*1B haplotype is not appreciated unless the 

independent effects of CYP2C9*2 and CYP2C9*3 are taken into account (and vice versa).  A 

multivariate model that includes all CYP2C9 genotype information in addition to gender, 

body weight, and genomic ancestry showed that nearly half of the variation in PHT 

maintenance dose can be explained by these predictors (Table 1), with up to 10% of the 

variation in dose attributable to CYP2C9*1B haplotype alone.  The magnitude of the effect of 

CYP2C9 alleles on PHT dose requirements appeared to be strongly dependent on the clinical 

setting; in an additional chronic epilepsy cohort managed with a less aggressive dosing 
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strategy, no effect of any of the functional CYP2C9 alleles was observed (C. Depondt, 

personal communication). 

 Given the magnitude of the effect of the promoter rPMs comprising the CYP2C9*1B 

haplotype on PHT maintenance dose observed here, it may be surprising that this allele has 

not previously been identified in candidate gene or genome-wide association studies such as 

those for warfarin, another CYP2C9 substrate.  However, several lines of evidence 

conclusively demonstrate that the promoter rPMs affecting the PHT induction phenotype do 

not decrease basal CYP2C9 expression:  neither hepatic CYP2C9 mRNA expression nor 

activity were affected by the CYP2C19*1B genotypes; and warfarin maintenance dose was 

not significantly affected by the -3089G>A and -2663delTG polymorphisms in Chinese 

patients (Fig 3A). Likewise, Veenstra et al. (2005) previously found no difference in warfarin 

sensitivity (basal CYP2C9 activity) in White patients with the CYP2C9*1B allele. 

 Although we identified the -3089G>A and -2663delTG CYP2C9 promoter rPMs by 

searching for SNPs in LD to CYP2C19*2, these rPMs were previously identified in the 

CYP2C9*1B promoter haplotype (allele frequency 17.45% Whites of European descent).  

Recently Kramer et al. (2008) identified common haplotypes in Hispanics and designated this 

same allele CYP2C9*1D (hereafter referred to as Kramer *1D when referencing results from 

that publication). Notably, in transient transfection studies the Kramer *1D haplotype, 

relative to the reference haplotype, exhibited no difference in constitutive promoter activity 

but showed a 50% decrease in PXR mediated promoter activity upon treatment with rifampin. 

This result is similar to the effect observed here, that the CYP2C9*1B promoter had 

diminished activation by phenytoin. The Kramer *1D haplotype also includes a -1188T>C 

SNP.  Although we did not include this SNP in our CYP2C9 variant reporters, Kramer et al. 

(2008) deduced that the -1188T>C transition was unlikely to be singly responsible for the 

differences in induction profiles because it was present in numerous other haplotypes that 
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behaved no differently from the reference allele with respect to either basal or rifampin- 

inducible activity. Further, a report by Sandberg et al. (2004) found no effect of the -

1188T>C variant on gene expression in vitro. Although we cannot exclude the possibility that 

the -1188T>C might contribute to our phenotype, it would not negate the contribution of -

3089G>A or -2663delTG, it would simply imply that these polymorphisms are not the only 

ones contributing to decreased phenytoin-mediated CYP2C9 induction.  

Phenytoin has been shown to activate both PXR and CAR (Wang et al., 2004; Yueh et 

al., 2005; Luo et al., 2002). Although Nubiscan predicted possible PXR or CAR binding 

elements around -3089 and -2663 (Fig 1), neither receptor bound to the -3089 or -2663 wild-

type or variant oligonucleotides and hence cannot explain the decreased induction response. 

Nevertheless, the VAR-HAP demonstrated a significantly decreased PXR mediated PHT 

induction of promoter activity compared to the WT-HAP (Fig 5). It is also possible that CAR 

contributes to the differential activation of the CYP2C9 WT and VAR promoters by 

phenytoin because the CYP2C9 WT reporter was induced to a greater extent by co-

transfected CAR compared to reporters with single CYP2C9 promoter variations (Fig 4). 

Although it is unclear why the single variant reporters were more induced by CAR +/- PHT 

while the haplotype reporters were more induced by PXR +/- PHT, it does not negate the fact 

that the variant allele was consistently less inducible by PHT.  

There are Ying Yang (YY1) binding sites predicted in the CYP2C9 5’-flanking region 

and the -3089G>A polymorphism created an additional YY1 binding site. YY1 is a 

transcription factor that can either induce or repress expression, depending upon the target 

gene.  We found YY1 is a repressor of PHT inducible CYP2C9 transcription, but the 

magnitude of repression was always greater in the CYP2C9 variant reporter with the 

additional YY1 site. The results suggest that YY1 contributes to the diminished PHT 

inducibility of the *1B genotype. 
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Our data support the idea that PHT activation of Nrf2 could participate in CYP2C9 

induction. PHT-activated Nrf2 induces mRNA expression of protective enzymes by binding 

to antioxidant response elements (ARE) in the promoter of target genes.  Although Transfac 

predicted that the -2663delTG abrogated a putative Nrf2 binding site, EMSA failed to 

demonstrate Nrf2:MafK binding to oligonucleotides with the –2663TG or TGdeletion 

sequences. Nevertheless, it is still possible that Nrf2 contributes to PHT induction of 

CYP2C9 because (a) mice treated with PHT showed Keap1-Nrf2-dependent induction of 

genes that included Cyp2b10 and Cyp2c29 (Lu et al., 2008; Lu and Uetrecht, 2008); (b) 

Transfac analysis showed 21 high scoring putative ARE binding sites in the -5.3 kb CYP2C9 

5’ flanking sequence; and (c) co-transfection with Nrf2/MafK induced luciferase activity 

from the CYP2C9 reporter plasmids.  If PHT generates an antioxidant response signal it 

could be due to PHT metabolites activating the Keap1-Nrf2-ARE signaling pathway.  

 The low p-HPPH(S)/(R) ratio in CYP2C19*2 carriers appears to be due to the lower 

induction of the linked CYP2C9*1B allele, and resulting decreased metabolism of PHT to 

(S)-pHPPH, even in the face of the greatly diminished formation of (R)-p-HPPH by 

CYP2C19*2.  We could find no other polymorphism in the CYP2C9 cDNA of 

CYP2C19*2/2C9*1B carriers, nor generation of any novel PHT induced alternative CYP2C9 

transcripts in human hepatocytes with these genotypes that could explain the lower (S)-p-

HPPH or greater (R) metabolite formation. Likewise, 5’RACE of PHT-treated primary 

human hepatocytes failed to identify any differentially activated promoter/CYP2C9 

transcripts in CYP2C19*2 subjects.  Although we considered the possibility that PHT 

induction of other metabolic enzymes might contribute to the observed alteration in (S)/(R)-

p-HPPH ratios in CYP2C19*2 patients, the literature strongly supports that p-HPPH is 

formed almost exclusively by either CYP2C9 or CYP2C19, with negligible activity by 

expressed CYP1A2, 2A6, 2B6, 2C8, 2D6, 2E1 or 3A4 (Giancarlo et al., 2001; Komatsu et al., 
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2000). p-HPPH can undergo a second hydroxylation to form a catechol metabolite (Midha et 

al., 1977).  This can also be formed via the diol metabolite by dihydrodiol dehydrogenase. 

Catechol formation from p-HPPH appears to be mainly catalyzed by CYP2C19 with 

additional contribution from CYP3A4 and CYP2C9 (Cuttle et al., 2000). In vivo, the catechol 

and methylcatechol metabolites are minor accounting for <5% of the dose in the urine. 

Although the amounts of these other metabolites were not measured in our study,  the 

differential formation of these metabolites, even if they occurred, would appear insufficient to 

account for the altered p-HPPH ratios observed in CYP2C19*2 patients. 

The finding that the CYP2C9*1B allele has diminished PHT inducibility is clinically 

relevant because PHT has been reported to undergo auto-induction (Miller et al., 1989; 

Chetty et al., 1998; Dickinson et al., 1985). Miller et al. (1989) reported two patients who 

demonstrated an 11-20% increase in Vmax after 5 months-1 yr treatment with PHT. Others 

have reported modest induction of PHT clearance and a decrease in AUC after repeated doses 

of PHT (Chetty et al., 1998; Yuen et al., 1983). Dickinson et al. (1985) found that eight 

healthy individuals demonstrated a significant auto-induction of PHT metabolism and urinary 

excretion of p-HPPH increased with repeated administration of PHT.  While PHT auto-

induction is not as generally appreciated clinically as is the case for another antiepileptic 

drug, carbamazepine, this may potentially be explained by reduced CYP2C9 inducibility in 

patients carrying the CYP2C9*1B haplotype, which may obscure the PHT auto-induction in 

studies that have not accounted for this genetic effect. 

Our findings, combined with those of Kramer et al. (2008), suggest that the 

CYP2C9*1B allele will not only affect the magnitude of PHT autoinduction of clearance but 

also the magnitude of other CYP2C9 drug-drug interactions resulting from PXR/CAR 

activation.  CYP2C9 metabolizes approximately 16% of clinically important drugs, including 

some with narrow therapeutic indices: sulfonylureas such as tolbutamide, anticonvulsants 
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such as phenytoin and the anticoagulant warfarin.  Other substrates include the antiotensin II 

blocker losartan, the NSAIDs ibuprofen, naproxen, and flurbiprofen and drugs such as 

fluvastatin, fluoxetine and rosiglitazone. Thus, it is possible that the extent of drug 

interactions following co-treatment with known PXR/CAR activators and CYP2C9 inducers 

such as rifampin or phenytoin or barbiturates might differ between individuals with the 

CYP2C9*1B vs. other CYP2C9*1 genotypes.  Although CYP2C9 is not highly induced in 

human hepatocytes by phenytoin (Sahi et al., 2009) and (Fig 7), hepatic CYP2C9 is also 

induced by rifampin, phenobarbital  and avasimibe (Sahi et al., 2009; Chen et al., 2004).  

Moreover, CYP2C9 is among the three most highly induced CYPs in human duodenum in 

patients treated with clinical doses of oral rifampin (E. Schuetz, unpublished observation).  

Our results would suggest that the magnitude of drug interactions are likely to be different 

between the 17.4% of Whites and 6.6% of Hispanics (Kramer et al., 2008) with the 

CYP2C9*1B allele compared to those with other CYP2C9*1 alleles.  
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Legends for  Figures 

 

 

Figure 1.  A) PHT is metabolized to a mixture of (S) and (R)-pHPPH by CYP2C9 and 

CYP2C19. CYP2C9 has a major contribution to this enantioselective metabolism and 

preferentially forms (S)-pHPPH with a urinary (S)/(R)-pHPPH ratio of 40:1 compared to 

CYP2C19 that forms both enantiomers equally and gives a ratio of 1:1. B) Putative TF and 

nuclear receptor binding sites in or near the -2663delTG and -3089G>A are shown. YY1 and 

Nrf2 binding sites are underlined and bolded. A CYP2C9 promoter map indicates the location 

of these polymorphisms and known CAR/PXR binding sites (-2898, -1839 and -1818) (solid 

triangles). 

 

Figure 2.  CYP2C9*1B haplotype is associated with PHT maintenance dose in patients with 

epilepsy.   The box plot shows only those patients found to be non-carriers of the reduced-

function CYP2C9*2 and CYP2C9*3 alleles.  A linear trend of decreased PHT dose 

requirements with increasing number of CYP2C9*1B alleles was observed.  *p = 0.017 vs. 

CYP2C9*1/*1;  **p = 0.060 vs. CYP2C9*1/*1B. 

 

Figure 3.  A) Effect of -3089G>A on warfarin dosing in a cohort of 46 Chinese patients on 

warfarin therapy after excluding samples with CYP2C9*2 and *3 and VKORC1 variant 

alleles. B) CYP2C9 mRNA expression in 28 human livers analyzed by Q-real-time PCR. Y-

axis depicts mRNA expression each liver (normalized to its GAPDH and this value depicted 

relative to the normalized value obtained for one liver arbitrarily set at 100%). The x-axis 

represents visual genotyping results for each polymorphism. Light gray squares represent 

homozygous major, dark gray heterozygous and black homozygous minor allele. Box plot in 
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inset depicts the effect of -3089G>A on mRNA expression after excluding CYP2C9*2 and *3 

samples. C)  Effect of -3089G>A on the in vitro formation of (S) and (R)-pHPPH in fourteen 

human liver microsome samples after excluding samples with CYP2C9*2 and *3. Group 

differences were analyzed nonparametrically using the Wilcoxon rank sum test to compare 

two genotypes with the phenotype. Box plots indicate 2nd and 3rd quartiles. The bold line 

within the box represents median and whiskers represent the range after excluding the 

outliers.  

 

Figure 4.  Effect of individual CYP2C9 promoter polymorphisms on basal and PHT 

inducible promoter activity. HepG2 cells were transfected with CYP2C9 reporters (A) -

3089A and -3089G, and (B) -2663TG and  -2663delTG with or without co-transfected PXR, 

CAR, YY1 or NRF2 expression plasmids and luciferase expression measured after treatment 

with vehicle or PHT for 24 hrs.   Luciferase activities were normalized to β-galactosidase. 

The relative luciferase normalized activity in vehicle treated cells were each set as one, and 

the fold change in relative luciferase activity with respect to vector (w.r.t.) was graphed 

relative to this baseline. Values represent the mean ± S.D. measured in triplicate. P values 

indicate where there is a significant difference between the fold change in the variant allele 

compared with the corresponding wild-type allele for the identical condition, *p=0.05, 

**p=0.02, ***p=0.03, #p=0.007, ##p=0.0005, ###p=0.005. 

 

Figure 5. The CYP2C9 variant haplotype shows diminished responsiveness to PHT induction 

in vitro and in vivo.  A-C) HepG2 cells were transfected with CYP2C9 WT and VAR-HAP 

reporters +/ PXR, YY1 or Nrf2 expression plasmids, and luciferase expression measured after 

treatment with vehicle or PHT for 24 hrs. Results were analyzed and graphed as in Figure 4 

legend. P values indicate significant differences between the fold change in the VAR-HAP 
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compared with the corresponding WT-HAP for the identical condition, *p=0.04, **p=0.02, 

#p=0.007, ##p=0.005, ###p=0.002.  

 

Figure 6.  EMSA of transcription factor binding to the wild-type and polymorphic CYP2C9 

YY1 promoter elements. 32P-labeled oligonucleotides representing the -3089G and A were 

incubated with products from in vitro synthesis with the empty expression vector (pcDNA3),  

or synthesized PXR:RXR, CAR:RXR and YY1 proteins in the absence (no competitor) or 

presence of increasing amounts of unlabeled oligonucleotide cold competitor (CC). After 

electrophoresis, complex formation was assessed by a phosphoimager.  Lanes 17, 18 & 19 

represent binding of YY1, CAR and PXR to positive control (+ve  Ctrl)  oligonucleotides, 

respectively. Sequences for all oligonucleotides are provided in Supplemental Table 1.   

 

Figure 7.  Effect of CYP2C9 promoter genotypes on CYP expression in human hepatocytes 

treated with PHT. Primary human hepatocytes were treated with vehicle or PHT for 48 hrs, 

RNA extracted and analyzed by quantitative real-time PCR. CYP2C9 and CYP2C18 like 

Ex1/ 2C9 Ex2 chimeric transcripts were amplified from cDNA using specific primers as 

shown. The fold change of each mRNA after PHT treatment is depicted on the y axis and 

CYP2C9 -3089G>A genotypes on the x axis. Group differences were analyzed 

nonparametrically using the Wilcoxon rank sum test as described in Figure 3 legend. 
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Table 1.  Association of CYP2C9 variants with PHT maintenance dose  

 

Model Independent 

Variables 

Beta Coefficient 

 

Adjusted R2 F p-value 

1 CYP2C9*2 -44.6 0.113 3.44 0.004 

2 CYP2C9*3 -89.0 0.143 4.20 6.71 X 10-5 

3 CYP2C9*1B -21.7 0.080 2.66 0.121 

4 CYP2C9*2 + 

CYP2C9*3 

-45.2 

-89.6 

0.186 4.94 3.09 X 10-6 

5 CYP2C9*2 + 

CYP2C9*3 + 

CYP2C9*1B 

-105.4 

-52.6 

-42.2 

0.230 5.67 1.11 X 10-7 

6 TBW + 

CYP2C9*2 + 

CYP2C9*3 + 

2.52 

-47.9 

-93.2 

0.371 5.06 2.70 X 10-5 

7 TBW + 

CYP2C9*2 + 

CYP2C9*3 + 

CYP2C9*1B 

2.29 

-65.5 

-121 

-66.4 

0.471 6.59 5.4 X 10-7 

Effects of CYP2C9 alleles on PHT dose were estimated by linear regression in a 

multivariate model including gender and ancestry estimated according to a principal 

components method (EIGENSTRAT).  The test sample included n = 173 patients with 

epilepsy receiving maintenance PHT therapy, except for models 6 and 7 which included 

only a subset of n = 70 patients with known body weight at the time of PHT maintenance 

therapy. 
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Table 2.  Association of CYP2C9 variants with PHT serum levels normalized to PHT 

maintenance dose 

Model Independent 

Variables* 

Adjusted R2 p-value 

1 CYP2C9*2 0.081 0.084 

2 CYP2C9*3 -0.063 0.899 

3 CYP2C9*1B -0.071 0.936 

4 CYP2C9*2 + 

CYP2C9*3 

0.092 0.072 

5 CYP2C9*2 + 

CYP2C9*3+ 

CYP2C9*1B 

0.129 0.033 
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