Inhaled Insulin is Associated with Prolonged Enhancement of Glucose Disposal in Muscle and Liver in the Canine

Dale S. Edgerton, Alan D. Cherrington, Doss W. Neal, Melanie Scott, Margaret Lautz, Nancy Brown, Jeff Petro, Charles H. Hobbs, Chet Leach, Angelo Del Parigi, and Thomas R. Strack

Vanderbilt University Medical Center, Nashville, Tennessee (D.S.E., A.D.C., D.W.N., M.S., M.L., J.P., N.B); Lovelace Respiratory Research Institute, Albuquerque, New Mexico (C.H.H., C.L.); and Pfizer Inc, New York, New York (A.D.P., T.R.S.)
JPET #146985

RUNNING TITLE PAGE

Running title: INHALED INSULIN PROLONGS GLUCOSE UPTAKE

Address correspondence to:

Dale S. Edgerton, PhD

Molecular Physiology and Biophysics

Vanderbilt University Medical Center

710 Robinson Research Building, Nashville, TN 37232-0615

Tel: 615-322-7013/7014

Fax: 615-343-0490

E-mail: dale.edgerton@vanderbilt.edu

Text pages: 19 excluding tables and figures

Tables: 4

Figures: 4

References: 31

Abstract word count: 242

Introduction word count: 292

Discussion word count: 1042

Abbreviations: i.v., intravenous; IVC, inferior vena cava; BK, bradykinin; BK1–5, bradykinin 1–5; ATI, angiotensin I; ATII., angiotensin II; NHGB, net hepatic glucose balance; GIR, glucose infusion rate; AUC, area under the curve; peGIR, peripheral glucose infusion rate; non-HGU, non-hepatic glucose uptake; NO, nitric oxide.
ABSTRACT

Diabetic patients treated with inhaled insulin exhibit reduced fasting plasma glucose levels. In dogs insulin action in muscle is enhanced for as long as 3-h following insulin inhalation. This study was designed to determine if this effect lasts for a prolonged duration such that it could explain the effect observed in diabetic patients. Human insulin was administered via inhalation (Exubera; \(n = 9 \)) or infusion (Humulin R; \(n = 9 \)) in dogs using an infusion algorithm that yielded matched plasma insulin kinetics between the two groups. Somatostatin was infused to prevent insulin secretion, and glucagon was infused to replace basal plasma levels of the hormone. Glucose was infused into the portal vein at 4 mg/kg/min and into a peripheral vein to maintain the arterial plasma glucose level at 160 mg/dl. Arterial and hepatic sinusoidal insulin and glucose levels were virtually identical in the two groups. Notwithstanding, glucose utilization was greater when insulin was administered by inhalation. At its peak the peripheral glucose infusion rate was 4 mg/kg/min greater in the inhalation group, and a 50% difference between groups persisted over 8-h. Inhalation of insulin caused a greater increase in non-hepatic glucose uptake in the first 3-h following inhalation; thereafter net hepatic glucose uptake was greater. Inhalation of insulin was associated with greater than expected (based on insulin levels) glucose disposal. This may explain the reduced fasting glucose concentrations observed in humans after administration of certain inhaled insulin formulations compared with subcutaneous insulin.
INTRODUCTION

In clinical trials comparing inhaled (Exubera; [insulin human rDNA origin] inhalation powder)\(^1\) with s.c. administered (Humulin R; Eli Lilly and Company, Indianapolis, IN) insulin. Exubera reduced postprandial glucose levels at least as effectively as Humulin in the first 3-h, while maintaining lower glucose concentrations compared with Humulin during the fourth and fifth hour following meal consumption (Skyler et al., 2005). Remarkably, fasting plasma glucose levels also were reduced by as much as 40 mg/dl compared with s.c. insulin in patients administered insulin by inhalation, whether as dry powder (Skyler et al., 2005; Garg et al., 2006; Hollander et al., 2004; Quattrin et al., 2004) or liquid (Hermansen et al., 2004) formulations. Thus, insulin delivery to the lungs may help to reduce insulin needs for insulin-dependent patients, especially overnight. In addition, inhaled insulin is also associated with less weight gain compared with s.c. insulin, which may directly result from reduced nocturnal insulin requirements (Hollander et al., 2007).

We previously conducted a series of studies in dogs to investigate the specific gluco-metabolic effects of insulin delivered by inhalation compared with pharmacokinetically matched intravenous (i.v.) (Edgerton et al., 2005; Edgerton et al., 2006a) or s.c. administration (Cherrington et al., 2004; Edgerton et al., 2006b). While these experiments confirmed the association of enhanced glucose clearance with the inhalation of insulin, they were limited to 4-h duration, and plasma insulin levels were allowed to fall to near zero after 3-h.

The aim of the present study was to determine the 8-h time course of the increase in non-hepatic glucose uptake (non-HGU) associated with inhaled insulin when
compared with that observed with i.v. insulin. In addition, we explored a possible causal mechanism of this effect by measuring pulmonary angiotensin-converting enzyme (ACE) activity in response to insulin inhalation.

METHODS

Experiments were conducted at the Lovelace Respiratory Research Institute (Albuquerque, NM) on 18-healthy, conscious, 18-h fasted female beagle dogs (8–13 kg). Prior to the study, the dogs were fed a standard chow diet (Teklad 25% Mini Lab Dog Diet (W) 8759, Harlan Teklad, Madison, WI) once a day (~945 kcal), and water was provided ad libitum. Between 3:00 PM and 4:00 PM the night before the scheduled experiment, each dog was fed one 418-g can of Hills Prescription Diet – Canine p/d (Hills Pet Nutrition, Topeka, KS) (591 kcal). No food was given after this time. The surgical facility met the standards of the American Association for the Accreditation of Laboratory Animal Care, and the protocols were approved by the Lovelace Respiratory Research Institute Institutional Animal Care and Use Committee prior to the start of the study. All dogs underwent a laparotomy 3 weeks before the experiment to implant infusion catheters into the inferior vena cava (IVC) and jejunal and splenic veins, and sampling catheters were implanted into the hepatic portal vein, hepatic vein, and left femoral artery. Ultrasonic flow probes (Transonic Systems Inc., Ithaca, NY) were placed around the portal and hepatic veins as described elsewhere (Edgerton et al., 2001). Intraportal catheters (splenic and jejunal) were used for the infusion of glucose (50% Dextrose, Baxter Healthcare Corporation, Deerfield, IL). Each animal was used only once.
On the day of exposure, all dogs were anesthetized. The dogs were given 0.2 ml of acepromazine s.c.; approximately 15 min later, 5% isofluorane was administered by inhalation using a mask until palpebral and pedal reflexes disappeared. The dogs were then intubated with an endotracheal tube and anesthesia was maintained with 1–2% isofluorane in oxygen. Three i.v. catheters (Terumo Medical Corporation, Somerset, NJ) were placed into the cephalic and/or saphenous veins to allow infusion of insulin, somatostatin, and glucagon. Insulin was then administered either by inhalation or i.v. infusion.

Exubera is a dry powder human insulin of recombinant origin specially formulated for intrapulmonary administration. This insulin is packaged in a foil blister pack, with each blister containing 1.0 mg of human insulin. Humulin R, which is a recombinant human insulin, was used for i.v. infusion. It is assumed that the biological activity of insulin in both preparations was identical.

In the inhalation (INH) group, at baseline \((t = 0 \text{ min})\) dogs inhaled the content of one blister of insulin using a modified P2.3 device (Nektar Therapeutics), as previously described (Edgerton et al., 2005). No adverse clinical signs related to the inhalation of insulin were observed during the study. To prevent insulin deficiency following the washout of inhaled insulin, i.v. insulin was infused in the INH group between 95 and 485 min (Table 1). In the i.v. group (IV), after sham inhalation exposure, Humulin R diluted in normal saline (0.9% NaCl, Baxter Healthcare Corporation) with added plasma (3:100 ml) was infused into the IVC, using an algorithm designed to match the arterial plasma insulin kinetic profile of the INH group (Table 2). Thus, during the first several hours of the study, insulin infusion was used in the IV group to match the insulin kinetics of the
INH group, after which the same i.v. infusion rate was used in both groups to maintain the plasma insulin levels at ~18 µU/ml for the duration of the study.

Each dog in the INH group received 1 mg of insulin via inhalation of Exubera. The amount of aerosolized powder actually delivered to the dogs ranged from 50 to 70% of starting amount. With the method of administration used, it is reasonable to assume that all of this material was delivered to the respiratory tract and, based on the size of the aerosolized insulin particles and the method of exposure used, that about half of this amount was delivered to the alveolar region, where most absorption of deposited aerosols occurs (Patton et al., 2004). Therefore, it is estimated that each dog in the INH group received 0.50–0.70 mg (~15 U) of insulin in the total respiratory tract and 0.25–0.35 mg (~7.5 U) in the alveolar region.

Somatostatin (0.8 µg/kg/min), which inhibits endogenous insulin and glucagon secretion, and glucagon (0.5 ng/kg/min), to replace basal levels of endogenous glucagon, were infused from 5 to 485 min. Intraportal glucose infusion (50% dextrose) was administered at a rate of 4 mg/kg/min from 5 to 485 min. Peripheral i.v. glucose infusion was also administered, as needed, to maintain the plasma glucose concentration near 160 mg/dl.

Blood sampling and analytical procedures. Blood samples were collected from the femoral artery and the hepatic portal and hepatic veins. Hematocrit, plasma glucose, glucagon, insulin, C-peptide, and cortisol concentrations were collected as previously described (Edgerton et al., 2001). The Vanderbilt Hormone Assay Core (Vanderbilt University Medical Center, Nashville, TN) assessed plasma insulin, glucagon, and C-
peptide, using immunoassay procedures. Blood for measurement of bradykinin (BK) and bradykinin 1–5 (BK1–5) was drawn into cold anhydrous ethanol. BK was assayed using a BK ELISA kit (S-1135; Bachem, San Carlos, CA), and BK1–5 was determined using a dual-isotope dilution mass spectrometric assay as described previously (Murphey et al., 2001). Blood for measuring angiotensin I (ATI) and angiotensin II (ATII) was added to a chilled EDTA tube with 100 µl of angiotensin inhibitor (Wake Forest University, Winston-Salem, NC) and determined by radioimmunoassay at the Hypertension and Vascular Disease Center (Wake Forest University School of Medicine, Winston-Salem, NC). All samples were stored at –70°C.

Blood flow measurement. Blood flow in the hepatic artery and portal vein and mean arterial blood pressure were measured using ultrasonic flow probes and a Transit-time Perivascular Flow Meter (Model T403, Transonic Systems, Inc., Ithaca, NY).

Data analysis. Net hepatic glucose balance (NHGB) was calculated using the arterial-venous difference method: \(\text{NHGB} = \text{load}_{\text{out}} - \text{load}_{\text{in}}, \) where \(\text{load}_{\text{out}} = H \times HF \) and \(\text{load}_{\text{in}} = (A \times AF) + (P \times PF) \); H, A, and P are the glucose concentrations in the hepatic vein, femoral artery, and portal vein blood or plasma, respectively; HF, AF, and PF are the blood flows in the hepatic vein, hepatic artery, and portal vein, respectively, as determined by the ultrasonic flow probes. According to this model, a positive value represents a net output by the liver, whereas a negative value represents a net uptake by the liver. For balance calculations glucose concentrations were converted from plasma to blood values by using previously published correction factors (Edgerton et al., 2005).
Non-HGU was calculated as the glucose infusion rate (GIR) plus NHGB, with changes in the glucose mass accounted for when deviations from steady state were present (Galassetti et al., 1999; Donmoyer et al., 2000; Moore et al., 2000). The approximate plasma insulin and glucagon concentrations in the hepatic sinusoidal bed were calculated using the formula \([A] \times \%AF + [P] \times \%PF\), where \([A]\) and \([P]\) are arterial and portal vein hormone concentrations, respectively, and \(\%AF\) and \(\%PF\) are the percent arterial and portal contributions to the total hepatic blood flow, respectively. Area under the curve (AUC) was calculated by summing average parameter values at each minute during a specified time period. Since there was an interval of at least 5 min between samples, values were estimated by taking the average value at each of the two nearest time points and multiplying by the number of minutes between them.

Statistical analysis. Statistical analyses were performed using SigmaStat (SPSS Inc, Chicago, IL) procedures. Data are presented as mean ± S.E.M. Time course data were analyzed with repeated-measures two-way analysis of variance (ANOVA), and univariate F tests were used for post hoc group comparisons. One-way ANOVA was applied to group comparisons of single time points and AUC data. Statistical significance was established at \(p < 0.05\).

RESULTS

Arterial plasma insulin levels peaked in 15 min at 92 ± 10 and 91 ± 13 µU/ml in the INH and IV groups, respectively, and reached a plateau of 18 ± 1 µU/ml by 2-h (Fig. 1A). Hepatic sinusoidal plasma insulin levels peaked at 20 min at 69 ± 7 and 70 ± 11
µU/ml in the INH and IV groups, respectively (Fig. 1B) and reached a plateau of 14 ± 1 µU/ml by 2-h. The total 485-min AUCs for arterial insulin were 12,098 ± 927 and 11,790 ± 1,010 µU/ml, in the INH and IV groups, respectively. Thus, the insulin concentrations and kinetic profiles were accurately matched between groups.

Arterial C-peptide levels dropped rapidly (<30 min) in both groups to concentrations near the level of detection of the assay (0.05 ng/ml) after initiation of somatostatin infusion, indicating that endogenous insulin secretion was quickly and effectively suppressed (Table 3). The arterial glucagon levels were close to basal and remained equivalent in the two groups throughout the experiment (Table 3). Arterial plasma cortisol levels, an index of stress, were also not different between groups (Table 3).

The arterial plasma glucose levels increased from basal to 164 ± 2 mg/dl and 162 ± 2 mg/dl in the INH and IV groups, respectively (Fig. 2A), as a result of portal (4 mg/kg/min) and peripheral (variable rate) glucose infusion. Despite matched plasma insulin and glucose levels, the peripheral glucose infusion rate (peGIR) was greater following inhalation, peaking at 16.2 ± 3.1 vs. 12.0 ± 1.4 mg/kg/min at 80 min (Fig. 2B; p < 0.05). Between 35 and 185 min the peGIR AUCs were 1,837 ± 352 versus 1,241 ± 144 mg/kg in the INH and IV groups, respectively. During the last 3-h (305–485 min) the peGIR averaged 7.7 ± 1.1 versus 5.2 ± 1.1 (Fig. 2B; p < 0.05), and the peGIR AUCs were 1,547 ± 240 versus 1,054 ± 219 mg/kg during that period in the INH and IV groups, respectively. Thus, the peGIR was greater in the INH compared with the IV group by 48% (3.8 mg/kg/min; p < 0.05) between 35 and 185 min and by 47% (2.5 mg/kg/min; p < 0.05) between 305 and 485 min (Fig. 3).
Between 35 and 185 min, net HGU (mg/kg/min) was similar in the two groups (2.5 ± 0.5 versus 2.2 ± 0.6; Fig. 4A), while (non-HGU was greater (13.6 ± 2.2 versus 10.2 ± 1.3; Fig. 4B; p < 0.05) in the INH versus IV insulin groups, respectively. Over time, however, a difference in liver glucose uptake began to predominate such that during the last 90 min net HGU was 3.6 ± 0.9 versus 1.8 ± 0.7 (p < 0.05) while non-HGU was 8.4 ± 0.9 versus 7.9 ± 1.3 in the INH versus IV groups. Hepatic glucose fractional extraction was twice as great during the last 90 min in the INH versus the IV group (0.08 ± 0.02 versus 0.04 ± 0.02, respectively; p < 0.05).

To determine if inhalation of insulin affected ACE activity, arterial blood BK, BK1–5, ATI, and ATII were measured (Table 4). ACE activity leads to degradation of BK into BK1–5 and ATI into ATII; therefore the ratios provide indices of ACE activity. There were no differences in the arterial levels or ratios of BK1–5 to BK or ATII to ATI. Furthermore, mean arterial pressure, which is affected by the ACE system, did not differ between groups throughout the study (data not shown).

DISCUSSION

The primary purpose of this study was to determine whether the increase in non-HGU associated with inhalation of insulin is prolonged beyond 4-h. To accomplish this, the arterial plasma insulin kinetics were closely matched in two groups of dogs in which insulin initially entered the blood via pulmonary absorption or via the IVC. Later in the study insulin, was infused in both groups to prevent insulin deficiency. Plasma glucose levels were clamped, and indices of peripheral and hepatic glucose turnover were assessed for 8-h. Inhalation of insulin was associated with increased glucose disposal in
the dog, even after 8-h, despite the fact that by that time all of the circulating insulin was derived from insulin infusion.

As in previous studies (Edgerton et al., 2005; Edgerton et al., 2006a; Edgerton et al., 2006b), the effect of insulin inhalation on enhanced peripheral non-HGU lasted approximately 3-h. This occurred despite virtual identity in arterial insulin and glucose levels between the inhaled and infused insulin groups. Thereafter, non-HGU was similar in the two groups. However, throughout the 8-h of observation, net HGU progressively increased in the inhaled insulin group compared with the insulin infusion group. Thus, despite matched glucose and insulin loads at the liver, during the last 3-h of the study the majority of the increase in glucose disposal resulting from inhalation of insulin was accounted for by the liver. This effect was manifest despite the fact that circulating insulin derived from lungs would have been cleared from the circulation within 3–4-h following inhalation (Edgerton et al., 2005; Edgerton et al., 2006a; Edgerton et al., 2006b).

In light of these results, one can speculate that the progressive increase of HGU may reflect specific inhaled insulin–dependent transcriptional and translational effects on enzymes that regulate HGU. Also, reciprocity between liver and muscle occurs, so that as liver glucose uptake is enhanced there is a reciprocal decrease in non-HGU such that there is little impact on whole-body glucose disposal (Adkins et al., 1987; Galassetti et al., 1998; Moore et al., 2000).

In previous studies, circulating insulin levels fell below basal ~3-h after inhalation in the presence of somatostatin (Edgerton et al., 2005; Edgerton et al., 2006). In the present study we chose to use late infusion of insulin in both groups to prevent insulin
deficiency so as to avoid the substantial hyperglycemia which would have occurred over the 8-h duration of the study. In addition, this study design more closely emulates the situation of human patients who do not usually experience complete insulinopenia or marked hyperglycemia overnight. In addition, the glucose lowering effect may be dependant on some minimal insulin presence; for example, if enhancing insulin-stimulated glucose transport or slowing deactivation of the insulin receptor is involved.

The Tmax following Exubera inhalation is more rapid in the canine compared to the human (15 vs. 50-60 min) (Becker et al., 2006; Fountaine et al., 2008). However, when comparing the human data with another, faster-acting inhaled insulin (Technosphere; Tmax 15 min; (Rave et al., 2007)) the effect on fasting glucose was comparable (personal communication). Therefore, it is not likely that the difference in pharmacokinetics between species is a confounding factor.

Possible mechanisms of increased non-HGU associated with insulin inhalation have been postulated, including a nitric oxide (NO)–mediated event (Edgerton et al., 2006a) and the blockade of the renin-angiotensin system through inhibition of ACE, which has been shown clinically to increase insulin sensitivity (Henriksen and Jacob, 2003a; Henriksen and Jacob, 2003b; Damas et al., 2004; Jandeleit-Dahm et al., 2005). In fact, in addition to its stimulatory effects on NO synthase, insulin decreases ACE activity, including activity in the lung (Krulwitz et al., 1984; Erman et al., 1998; Sharifi et al., 2004), thus increasing kinin levels and decreasing ATII. Binding of BK to the B2 receptor directly increases NO levels, enhances insulin signaling (via insulin receptor substrate-1 phosphorylation and phosphatidylinositol 3-kinase activity), increases GLUT-4 glucose transporter translocation in skeletal muscle, and has been shown to be a potent insulin-
dependent enhancer of glucose uptake in muscle and fat (Henriksen and Jacob, 2003a; Damas et al., 2004). Studies also suggest that reduced binding of ATII to the AT\textsubscript{1} receptor may also increase insulin sensitivity (Henriksen et al., 2001). Although the present study was not designed to specifically test the hypothesis that inhalation of insulin increases glucose utilization by an ACE-dependent effect, ACE activity and arterial blood concentrations of BK, BK\textsubscript{1–5}, ATI, and ATII were measured. No differential effects of treatment were observed, however, suggesting that the ACE system may not be the mediator of the specific gluco-metabolic effects of inhaled insulin.

It can be hypothesized that decreased fasting glucose levels following insulin inhalation are due to a depot effect stemming from slowly absorbed inhaled insulin. However, this study, as well as previous studies in humans (Heise et al., 2005) and the dog (Cherrington, et al., 2004; Edgerton et al., 2005; Edgerton et al., 2006b), indicate that a slow release of insulin from a putative intrapulmonary depot did not occur despite evidence for intrapulmonary accumulation of insulin (Brain et al., 2008). Given the protracted nature of the effect on glucose disposal, however, we believe that inhaled insulin does generate a long-lived signal in the lungs. The formation of a circulating insulin-sensitizing factor is one possibility, but other mechanisms of action should be considered, for example stimulation of neuronal pathways.

The future of insulin inhalation is unclear following Exubera's withdrawal from the market in 2007 and the observation of more frequent lung cancer cases in clinical trials in 20081. Despite these concerns, however, identification of the mechanism involved in the glucose lowering effect may prove useful in the treatment of diabetes. Further studies will be required to identify secondary molecular mechanisms and to

1 This article has not been copyedited and formatted. The final version may differ from this version.
clarify whether these can be utilized for therapeutic advantage by means other than inhalation of insulin.

In summary, greater glucose disposal was observed for as long as 8-h following insulin inhalation when circulating insulin and glucose concentrations were matched between inhaled and infused insulin groups. While this was initially due to a greater non-HGU, in time increased net HGU primarily accounted for the difference. This finding may explain why inhalation of insulin prior to an evening meal is often associated with lower fasting plasma glucose levels the next morning.
REFERENCES

Quattrin T, Belanger A, Bohannon NJ and Schwartz SL (2004) Efficacy and safety of inhaled insulin (Exubera) compared with subcutaneous insulin therapy in patients

FOOTNOTES

This study was sponsored by Pfizer Inc.

Reprint Requests

Dale S. Edgerton, PhD

Molecular Physiology and Biophysics

Vanderbilt University Medical Center

710 Robinson Research Building, Nashville, TN 37232-0615

Tel: 615-322-7013/7014

Fax: 615-343-0490

E-mail: dale.edgerton@vanderbilt.edu

1On October 18, 2007, Pfizer Inc announced that it would cease marketing Exubera because it did not meet customers’ needs or financial expectations. On April 9, 2008, Pfizer Inc announced that it was updating the Exubera Product Insert to include the following statement: In studies of Exubera in people with diabetes, lung cancer occurred in a few more people who were taking Exubera than in people who were taking other diabetes medicines. All of the people in these studies who developed lung cancer used to smoke cigarettes. There were too few cases to know if the lung cancer was related to Exubera.
LEGENDS FOR FIGURES

Fig. 1. Arterial and hepatic sinusoidal plasma insulin levels for the INH and IV insulin groups (n = 9 each; mean ± S.E.M).

Fig. 2. Arterial plasma glucose levels and peripheral glucose infusion rates for the INH and IV insulin groups (n = 9 each; mean ± S.E.M; *p < 0.05 INH versus IV).

Fig. 3. Mean peripheral glucose infusion rates (35–95 min and 305–485 min) for the INH and IV insulin groups (n = 9 each; mean ± S.E.M; *p < 0.05 INH versus IV).

Fig. 4. Net hepatic glucose balance and non-HGU glucose uptake for the INH and IV insulin groups (n = 9 each; mean ± S.E.M; *p < 0.05 INH versus IV).
TABLES

TABLE 1
Algorithm for intravenous infusion of insulin in the insulin inhalation group (95–485 min)

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>mU/kg/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–95</td>
<td>NA</td>
</tr>
<tr>
<td>95–110</td>
<td>0.10</td>
</tr>
<tr>
<td>110–125</td>
<td>0.20</td>
</tr>
<tr>
<td>125–155</td>
<td>0.26</td>
</tr>
<tr>
<td>155–185</td>
<td>0.32</td>
</tr>
<tr>
<td>185–215</td>
<td>0.38</td>
</tr>
<tr>
<td>215–245</td>
<td>0.44</td>
</tr>
<tr>
<td>245–485</td>
<td>0.50</td>
</tr>
</tbody>
</table>
TABLE 2
Algorithm for intravenous infusion of insulin in the IV insulin infusion group (0–485 min)

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>mU/kg/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–5</td>
<td>1.6</td>
</tr>
<tr>
<td>5–10</td>
<td>2.0</td>
</tr>
<tr>
<td>10–15</td>
<td>2.2</td>
</tr>
<tr>
<td>15–20</td>
<td>2.0</td>
</tr>
<tr>
<td>20–35</td>
<td>1.8</td>
</tr>
<tr>
<td>35–50</td>
<td>1.4</td>
</tr>
<tr>
<td>50–65</td>
<td>1.0</td>
</tr>
<tr>
<td>65–80</td>
<td>0.8</td>
</tr>
<tr>
<td>80–95</td>
<td>0.7</td>
</tr>
<tr>
<td>95–125</td>
<td>0.6</td>
</tr>
<tr>
<td>125–485</td>
<td>0.5</td>
</tr>
</tbody>
</table>
TABLE 3

Arterial plasma C-peptide, glucagon and cortisol levels prior to treatment (0 min) and during the experimental period (65–485 min)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>65</th>
<th>125</th>
<th>185</th>
<th>245</th>
<th>305</th>
<th>365</th>
<th>425</th>
<th>485</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterial plasma C-peptide (ng/ml)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inhalation</td>
<td>0.21 ± 0.03</td>
<td>0.02 ± 0.01</td>
<td>0.02 ± 0.01</td>
<td>0.03 ± 0.01</td>
<td>0.03 ± 0.01</td>
<td>0.02 ± 0.01</td>
<td>0.03 ± 0.01</td>
<td>0.06 ± 0.03</td>
<td>0.06 ± 0.04</td>
</tr>
<tr>
<td>IV infusion</td>
<td>0.26 ± 0.07</td>
<td>0.04 ± 0.02</td>
<td>0.04 ± 0.01</td>
<td>0.05 ± 0.02</td>
<td>0.05 ± 0.02</td>
<td>0.04 ± 0.01</td>
<td>0.04 ± 0.02</td>
<td>0.05 ± 0.02</td>
<td>0.08 ± 0.04</td>
</tr>
<tr>
<td>Arterial plasma glucagon (pg/ml)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inhalation</td>
<td>39 ± 4</td>
<td>37 ± 3</td>
<td>35 ± 2</td>
<td>35 ± 1</td>
<td>37 ± 2</td>
<td>36 ± 2</td>
<td>33 ± 2</td>
<td>33 ± 2</td>
<td>29 ± 2</td>
</tr>
<tr>
<td>IV infusion</td>
<td>42 ± 3</td>
<td>51 ± 2</td>
<td>41 ± 3</td>
<td>37 ± 5</td>
<td>41 ± 3</td>
<td>38 ± 2</td>
<td>38 ± 3</td>
<td>33 ± 3</td>
<td>37 ± 3</td>
</tr>
<tr>
<td>Arterial plasma cortisol (μg/ml)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inhalation</td>
<td>5.5 ± 0.9</td>
<td>6.7 ± 1.7</td>
<td>5.1 ± 1.4</td>
<td>3.4 ± 0.4</td>
<td>2.4 ± 0.2</td>
<td>2.5 ± 0.5</td>
<td>3.5 ± 0.5</td>
<td>3.9 ± 1.0</td>
<td>3.6 ± 0.4</td>
</tr>
<tr>
<td>IV infusion</td>
<td>10.7 ± 1.9</td>
<td>7.8 ± 1.1</td>
<td>4.0 ± 0.6</td>
<td>3.9 ± 0.6</td>
<td>3.1 ± 0.5</td>
<td>3.3 ± 0.5</td>
<td>4.0 ± 0.9</td>
<td>3.5 ± 0.6</td>
<td>5.4 ± 1.1</td>
</tr>
</tbody>
</table>

Mean ± S.E.M.; n = 9 per group.
TABLE 4
Arterial blood angiotensin I, angiotensin II, bradykinin, and bradykinin 1–5 levels and ratios of angiotensin II to I and bradykinin 1–5 prior to treatment (0 min) and during experimental period (65–485 min).

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>65</th>
<th>125</th>
<th>185</th>
<th>245</th>
<th>305</th>
<th>365</th>
<th>425</th>
<th>485</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterial blood angiotensin I (pg/ml)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inhalation</td>
<td>269</td>
<td>94</td>
<td>75</td>
<td>66</td>
<td>82</td>
<td>81</td>
<td>84</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>IV infusion</td>
<td>416</td>
<td>193</td>
<td>133</td>
<td>120</td>
<td>123</td>
<td>182</td>
<td>133</td>
<td>142</td>
<td>143</td>
</tr>
</tbody>
</table>

Arterial blood angiotensin II (pg/ml)									
Inhalation	38	9	9	8	9	9	9	9	9
IV infusion	72	14	10	10	9	9	9	9	9

Arterial blood bradykinin (fmol/ml)									
Inhalation	11	10	10	11	12	11	9	9	10
IV infusion	7	6	7	7	8	8	9	9	9

<p>| Arterial blood bradykinin 1–5 (fmol/ml) | | | | | | | | | |
| Inhalation | 13 | 12 | 14 | 15 | 17 | 16 | 17 | 17 | 16 |</p>
<table>
<thead>
<tr>
<th></th>
<th>14 ± 5</th>
<th>9 ± 3</th>
<th>8 ± 3</th>
<th>10 ± 3</th>
<th>11 ± 3</th>
<th>14 ± 3</th>
<th>14 ± 3</th>
<th>17 ± 3</th>
<th>21 ± 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV infusion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angiotensin II to I ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inhalation</td>
<td>0.2 ± 0.0</td>
<td>0.1 ± 0.0</td>
</tr>
<tr>
<td>IV infusion</td>
<td>0.2 ± 0.0</td>
<td>0.1 ± 0.0</td>
</tr>
<tr>
<td>Bradykinin 1–5 to bradykinin ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inhalation</td>
<td>1.8 ± 0.6</td>
<td>1.6 ± 0.4</td>
<td>1.7 ± 0.4</td>
<td>1.7 ± 0.5</td>
<td>1.8 ± 0.5</td>
<td>1.9 ± 0.5</td>
<td>2.0 ± 0.4</td>
<td>3.0 ± 1.1</td>
<td>2.1 ± 0.5</td>
</tr>
<tr>
<td>IV infusion</td>
<td>2.2 ± 0.8</td>
<td>1.4 ± 0.4</td>
<td>1.7 ± 0.7</td>
<td>1.4 ± 0.3</td>
<td>1.6 ± 0.4</td>
<td>1.7 ± 0.5</td>
<td>2.0 ± 0.5</td>
<td>2.3 ± 0.6</td>
<td>2.7 ± 0.7</td>
</tr>
</tbody>
</table>

Mean ± S.E.M.; n = 9 per group.
Figure 1A

- **Arterial Plasma Insulin (µU/ml)**
- **Hepatic Sinusoidal Plasma Insulin (µU/ml)**

Figure 1B

- **Inhaled Insulin (n=9)**
- **IV Insulin (n=9)**

TIME (Min)

0 65 125 185 245 305 365 425 485
Figure 3

Peripheral glucose infusion rate (mg/kg/min)

- Inhaled Insulin (n=9)
- IV Insulin (n=9)

35 - 185 min
305 - 485 min

*
Inhaled Insulin (n=9)
IV Insulin (n=9)

Figure 4A

Net Hepatic Glucose Balance (mg/kg/min)

Output

Uptake

4B

Non-Hepatic Glucose Uptake (mg/kg/min)

- Inhaled Insulin (n=9)
- IV Insulin (n=9)

TIME (Min)

0 65 125 185 245 305 365 425 485

0 4 8 12 16 20

** This article has not been copyedited and formatted. The final version may differ from this version.

JPET Fast Forward. Published on December 19, 2008 as DOI: 10.1124/jpet.108.146985

Downloaded from jpet.aspetjournals.org on October 19, 2017