Discriminative stimulus effects of 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane (DOM) in rhesus monkeys: antagonism and apparent pA₂ analyses

Jun-Xu Li, Kenner C. Rice, Charles P. France

Departments of Pharmacology (J.-X.L., C.P.F.) and Psychiatry (C.P.F.), the University of Texas Health Science Center at San Antonio, San Antonio, Texas; and Chemical Biology Research Laboratory (K.C.R.), National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health (NIH), Department of Health and Human Services, Bethesda, Maryland
Running Title Page

Running title: DOM discrimination and Schild analysis

Corresponding author: Charles P. France, Ph.D., Department of Pharmacology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas, 78229-3900, 210 567 6969 (Voice), 210 567 0104 (Fax), france@uthscsa.edu

Text pages: 22
Table: 2
Figures: 3
References: 28
Words in Abstract: 244
Words in Introduction: 625
Words in Discussion: 980

Abbreviations: apparent affinity, pA₂; fixed ratio, FR; 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane, DOM; 2,5-dimethoxy-4-(n)-propylthiophenethylamine, 2C-T-7; dipropyltriptamine hydrochloride, DPT; (±)2,3-dimethoxyphenyl-1-[2-(4-piperidine)-methanol], MDL 100907; 3-[2-[4-(4-fluorobenzoyl)piperidin-1-yl]ethyl]-1H-quinazoline-2,4-dione, ketanserin; 6-[2-[4-[bis(4-fluorophenyl)methylidene]piperidin-1-yl]ethyl]-7-methyl-[1,3]thiazolo[2,3-b]pyrimidin-5-one, ritanserin
Assignment: Behavioral Pharmacology
Abstract

Discriminative stimulus effects of the serotonin (5-HT) receptor agonist 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane (DOM) have been studied in rats and more recently in rhesus monkeys. This study examined DOM, 2,5-dimethoxy-4-(n)-propylthiophenethylamine (2C-T-7), and dipropyltryptamine (DPT) alone and in combination with three antagonists (MDL100907, ketanserin and ritanserin) to identify the 5-HT receptor subtype(s) that mediates the discriminative stimulus effects of these 5-HT receptor agonists. Four adult rhesus monkeys discriminated between 0.32 mg/kg (s.c.) DOM and vehicle while responding under a fixed ratio 5 schedule of stimulus shock termination. DOM, 2C-T-7 and DPT dose-dependently increased responding on the DOM-associated lever. MDL100907 (0.001-0.01 mg/kg), ketanserin (0.01-0.1 mg/kg), and ritanserin (0.01-0.1 mg/kg) each shifted the dose-response curves of DOM, 2C-T-7 and DPT rightward in a parallel manner. Schild analysis of each drug combination was consistent with a simple, competitive, and reversible interaction. Similar apparent affinity (pA₂) values were obtained for MDL100907 in combination with DOM (8.61), 2C-T-7 (8.58), or DPT (8.50), for ketanserin with DOM (7.67), 2C-T-7 (7.75), or DPT (7.71), and for ritanserin with DOM (7.65), 2C-T-7 (7.75), or DPT (7.65). Potency of antagonists in this study was correlated with binding affinity at 5-HT₂A receptors and not at 5-HT₂C or α₁ adrenergic receptors. This study used Schild analysis to examine receptor mechanisms mediating the discriminative stimulus effects of hallucinogenic drugs acting at 5-HT receptors; results provide quantitative evidence for the predominant if not exclusive role of 5-HT₂A receptors in the discriminative stimulus effects of DOM, 2C-T-7, and DPT in rhesus monkeys.
Introduction

Phenethylamines and tryptamines are two classes of drugs that act at serotonin (5-HT) receptors and can produce hallucinations; in general, agonists from these two classes have similar but not identical behavioral and neurochemical effects. For example, many phenethylamines bind relatively non-selectively to 5-HT$_{2A}$ and 5-HT$_{2C}$ receptors and have comparatively lower (e.g., 1000-fold) affinity for other (e.g., 5-HT$_{1A}$) 5-HT receptors. Tryptamines, on the other hand, often display higher affinity than phenethylamines for 5-HT$_{1A}$ receptors (for reviews, see Nichols, 2004; Fantegrossi et al., 2008a) and comparatively lower affinity for 5-HT$_{2A}$ and 5-HT$_{2C}$ receptors. Despite differences between phenethylamines and tryptamines in their binding selectivity for different 5-HT receptors, with few exceptions (e.g., Winter et al., 2000) agonists from these chemical classes have similar effects that appear to be mediated predominantly by 5-HT$_{2A}$ receptors (e.g., Vollenweider et al., 1998).

Drug discrimination is used to study receptor mechanisms that mediate the effects of drugs from a variety of pharmacologic classes. Many drugs with hallucinogenic effects in humans have agonist actions at 5-HT receptors and among those drugs, the discriminative stimulus effects of the phenethylamine 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane (DOM) have been studied extensively in rodents (Glennon on et al., 1982; Fiorella et al., 1995a) and more recently in non-human primates (Li et al., 2008). Converging lines of evidence indicate that despite the non-selective binding of DOM to 5-HT$_{2A}$ and 5-HT$_{2C}$ receptors, the discriminative stimulus effects of DOM appear to be mediated predominantly by 5-HT$_{2A}$ receptors inasmuch as drugs that are antagonists at 5-HT$_{2A}$ receptors often block the discriminative stimulus effects of
DOM (e.g., Glennon and Rosecrans, 1983). Moreover, the ability of drugs to antagonize the discriminative stimulus of DOM is positively correlated with binding affinity at 5-HT$_{2A}$ receptors (Fiorella et al., 1995b). However, there are conditions under which other receptors appear to play a role in the discriminative stimulus effects of DOM. For example, the non-selective 5-HT$_{2A/2C}$ receptor agonist MK-212 substitutes for the discriminative stimulus effects of DOM in rats, and this effect of MK-212 is not fully antagonized by the 5-HT$_{2A}$ receptor antagonist pirenpirone (Fiorella et al., 1995c). Collectively, these data suggest that other (e.g., 5-HT$_{2C}$) receptors might play a role, directly or by modulation, in the discriminative stimulus effects of DOM and related 5-HT receptor agonists.

This study investigated the receptor mechanisms that mediate the discriminative stimulus effects of DOM and related drugs in rhesus monkeys. Each of three 5-HT receptor agonists was studied alone and in combination with each of three other drugs that are known to have antagonist actions at 5-HT$_{2A}$ receptors: MDL 100907, ketanserin and ritanserin. Schild analysis has been used to examine receptor mechanisms for drugs acting at other receptors (Dykstra et al., 1988; Dykstra, 1990; France et al., 1990; Gerak and France, 2007) and in the current study was used to quantitatively compare dose-response curves from combinations of 5-HT receptor agonists and antagonists. MDL 100907 and ketanserin have higher affinity at 5-HT$_{2A}$ as compared to 5-HT$_{2C}$ receptors, whereas ritanserin has similar affinity at 5-HT$_{2A}$ and 5-HT$_{2C}$ receptors (NIMH Psychoactive Drug Screening Program). If 5-HT$_{2C}$ receptors are involved in the discriminative stimulus effects of DOM, then antagonists acting at 5-HT$_{2A}$ and 5-HT$_{2C}$ receptors (e.g., ritanserin) should more effectively block the effects of DOM as compared
to antagonists acting selectively at 5-HT$_{2A}$ receptors (e.g., MDL 100907). The 5-HT$_{2A}$ receptor agonists studied included DOM, 2,5-dimethoxy-4-(n)-propylthiophenethylamine (2C-T-7), and dipropyltryptamine (DPT). 2C-T-7 is a “designer” phenethylamine with hallucinogenic activity and high affinity at 5-HT$_{2A}$ and 5-HT$_{2C}$ receptors; however, the behavioral effects of 2C-T-7, including discriminative stimulus effects in non-human primates (Li et al., 2008), appear to be mediated by 5-HT$_{2A}$ receptors (Fantegrossi et al., 2005). DPT, a tryptamine with hallucinogenic activity, recently was shown to have agonist activity at 5-HT$_{2A}$ and 5-HT$_{1A}$ receptors (Li et al., 2007; Fantegrossi et al., 2008b).
Methods

Subjects

Four adult rhesus monkeys weighing between 4 kg and 8 kg and previously trained to discriminate between saline and 0.32 mg/kg DOM (Li et al., 2008) were housed individually with unlimited access to water. Primate chow (Harlan Teklad High Protein Monkey Diet, Madison, WI), fresh fruit, and peanuts were provided after daily sessions in amounts sufficient to maintain normal, age- and gender-appropriate weights. Monkeys were maintained on a 14/10 h light/dark cycle. The animals used in these studies were maintained in accordance with the Institutional Animal Care and Use committee, The University of Texas Health Science Center at San Antonio, and with the 1996 Guide for the Care and Use of Laboratory Animals (Institute of Laboratory Animals Resources on Life Sciences, National Research Council, National Academy of Sciences).

Apparatus

During experimental sessions, subjects were seated in chairs (Model R001, Primate Products, Miami, FL) that provided restraint at the neck and arms and were placed within ventilated, sound-attenuating chambers. Chambers were equipped with response panels, each containing two stimulus lights and two response levers. The feet of monkeys were placed in shoes that were mounted to the front of chairs and equipped with brass electrodes to which a brief (250 ms, 3 mA) electric shock could be delivered from a.c. generators. Experiments were controlled and data recorded with a microprocessor and commercially available interface (Med Associates Inc., East Fairfield, VT).
Procedure

Daily training sessions comprised two to six 15-min cycles with each cycle starting with a 10-min timeout period, during which stimulus lights were not illuminated and responding had no programmed consequence. This timeout period was followed by a 5-min response period during which stimulus lights were illuminated above the levers and a schedule of stimulus shock termination was active. Monkeys could extinguish stimulus lights and postpone scheduled shock for 30 s by responding five times (fixed ratio [FR] 5) consecutively on the lever designated correct by an injection administered during the first minute of the cycle (e.g., right lever, saline; left lever, DOM). Incorrect responses reset the FR requirement on the correct lever. Failure to satisfy the FR requirement within 30 s resulted in the delivery of a brief (250 msec, 3 mA) stimulus. Thereafter, shock was delivered every 30 s until the response requirement was satisfied, the cycle ended, or a total of four shocks were delivered, which ever occurred first. For drug training sessions, monkeys received an injection of 0.32 mg/kg DOM (s.c.) prior to one cycle followed by one sham (no injection) cycle. For vehicle training sessions monkeys received an injection of saline (s.c.) prior to one cycle followed by between one and five sham (no injection) cycles. Monkeys had previously satisfied the following criteria for 5 consecutive or 6 of 7 sessions (Li et al., 2008): at least 80% of the total responses on the correct lever; and fewer than 5 responses (one FR requirement) on the incorrect lever prior to completion of the FR on the correct lever. Thereafter, monkeys were tested every third day provided that the testing criteria were satisfied during intervening training sessions. If monkeys failed to satisfy these criteria testing was postponed until the criteria were satisfied for two consecutive training sessions.
Test sessions were similar to training sessions except that 5 consecutive responses on either lever postponed shock and increasing doses of drug were administered across cycles. For substitution studies, saline was administered in the first cycle followed by increasing doses of drug in subsequent cycles with the cumulative dose increasing by 0.25 or 0.5 log units per cycle. Drugs were studied up to doses that occasioned greater than 80% responding on the DOM lever. For antagonism studies, a single dose of antagonist was administered 5 min prior to the start of the first cycle.

Data Analyses

Drug discrimination data are expressed as a percentage of the total responses made on the DOM-paired lever averaged among four monkeys (± 1 SEM) and plotted as a function of dose. Rate of lever pressing is plotted as the average (± 1 SEM) number of responses per second on both levers. The control response rate is the average of the five vehicle training sessions before the test.

Doses of test drugs to occasion 50% drug lever responding (ED_{50}) and 95% confidence limits (95% CL) were estimated using interpolation or linear regression using the portion of the dose-effect curve spanning 50% drug-lever responding. Dose ratios were determined for each monkey by dividing the ED_{50} values for each agonist (DOM, 2C-T-7, and DPT) studied in combination with an antagonist (MDL100907, ketanserin, and ritanserin) by the ED_{50} values for each agonist studied alone. Schild analyses were conducted as described previously (e.g., Li et al., 2008) using the method of Arunlakshana and Schild (1959). Schild plots were constructed by plotting the log of the dose ratio (agonist with antagonist divided by agonist alone) - 1 as a function of the negative log dose of antagonist (moles/kg). Straight lines were simultaneously fitted to
the individual Schild plots using GraphPad Prism version 5.00 for Windows (GraphPad Software, San Diego, CA) and the following equation: log (dose ratio - 1) = -log (molar dose of antagonist) x slope + intercept. Apparent affinity (pA2) values and 95% confidence limits (CL) with unconstrained slopes and, when appropriate, with slopes constrained to -1 (unity) were determined for each agonist and antagonist combination. Slopes of Schild plots were considered to conform to unity when the 95% CL included -1 and did not include 0 (e.g., Paronis and Bergman, 1999).

Drugs

The compounds used in this study were as follows: 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane (DOM) and 2,5-dimethoxy-4-(n)-propylthiophenethylamine (2C-T-7) obtained from NIDA (Research Technology Branch, Rockville, MD); dipropyltryptamine hydrochloride (DPT) and (+)2,3-dimethoxyphenyl-1-[2-(4-piperidine)-methanol] (MDL 100907) were synthesized as described previously (Ullrich T and Rice KC, 2000); ketanserin tartrate (3-[2-[4-(4-fluorobenzoyl)piperidin-1-yl]ethyl]-1H-quinazoline-2,4-dione) and ritanserin (6-[2-[4-[bis(4-fluorophenyl)methyldene]piperidin-1-yl]ethyl]-7-methyl-[1,3]thiazolo[2,3-b]pyrimidin-5-one) were purchased from Sigma-Aldrich (St. Louis, MO). MDL100907 was dissolved in 20% DMSO (v/v) and saline; other drugs were dissolved in sterile 0.9% saline. Doses are expressed as the form of the drug listed above in mg/kg body weight or in Schild plots as moles/kg. Injection volumes were 0.1-1.0 ml.
Results

DOM, 2C-T-7, and DPT increased responding on the DOM associated lever in a dose-related manner (upper panel, Fig. 1) with the largest dose of each occasioning more than 90% DOM-lever responding (ED$_{50}$ [95% CL] = 0.158 [0.117, 0.194] mg/kg for DOM, 0.156 [0.145, 0.167] mg/kg for 2C-T-7, and 0.639 [0.436, 0.817] mg/kg for DPT). DOM and 2C-T-7 were similar in potency and both were 4-fold more potent than DPT. None of the compounds markedly altered rate of lever pressing at the doses studied (lower panel, Fig. 1).

MDL100907 (left panels, Fig. 2), ketanserin (middle panels, Fig. 2), and ritanserin (right panels, Fig. 2) antagonized the discriminative stimulus effect of all three agonists, in each case shifting the dose-response curves to the right in a dose-related manner. For example, under control conditions doses of 0.32-1.0 mg/kg DOM, 0.32 mg/kg 2C-T-7, and 1.0-3.2 mg/kg DPT occasioned greater than 90% drug lever responding (filled symbols, upper, middle and lower panels, respectively, Fig. 2); in monkeys that received 0.01 mg/kg MDL100907 doses of 3.2 mg/kg DOM, 3.2 mg/kg 2C-T-7, and 10 mg/kg DPT were required to produce at least 90% responding on the DOM lever (triangles, left panels, Fig. 2). In the presence of larger doses of antagonists, larger doses of agonists were required to obtain responding on the drug lever. For example, after administration of 0.1 mg/kg ritanserin doses of 5.6 mg/kg DOM, 3.2 2C-T-7, and 10.0 mg/kg DPT were required to obtain greater than 90% drug lever responding (open circles, right panels, Fig. 2). For all drug combinations the antagonism was surmountable with larger doses of agonists occasioning responding on the DOM.
associated lever. When administered alone, none of the antagonists occasioned responding on the DOM associated lever (points above “V”, all panels, Fig. 2).

The same data shown in Fig. 2 as dose-response curves are presented in Fig. 3 as Schild plots, expressing the magnitude of antagonism (ordinate; log [DR-1]) as a function of the –log of antagonist dose (abscissa). The similarity among the three regression lines in each panel (i.e., for each antagonist combined with each of three different agonists) reflects the similar potency for each antagonist in attenuating the discriminative stimulus effects of DOM, 2C-T-7, and DPT. The intercept of each regression line with the horizontal dashed line (0 on the ordinate) indicates the apparent pA₂, or estimated dose of antagonist to shift the agonist dose-response curve 2-fold to the right. The apparent pA₂ values were similar for each antagonist studied in combination with each of the three agonists (Table 1). For example, the pA₂ values (unconstrained slopes) for MDL100907 were as follows: 8.77 with DOM; 8.59 with 2C-T-7; and 8.62 with DPT. None of the slopes of the Schild regression lines was significantly different from -1 (unity); thus, Table 1 also shows apparent pA₂ values determined with slopes constrained to -1. With the constrained slope the pA₂ values for MDL100907 were as follows: 8.61 with DOM; 8.50 with 2C-T-7; and 8.58 with DPT. Overall, MDL 100907 was 7.1- and 7.6-fold more potent than ketanserin and ritanserin, respectively, in antagonizing the discriminative stimulus effects of DOM, 2C-T-7 and DPT.
Discussion

Reliable stimulus control between DOM and saline was maintained in rhesus monkeys responding under a two-choice, multiple-cycle, cumulative-dosing procedure and the potency of DOM under these conditions was similar to its potency determined when the same monkeys responded under a single-cycle, acute-dosing procedure (Li et al., 2008). Under this multiple-cycle, cumulative-dosing procedure 2C-T-7 and DPT also increased responding on the DOM associated lever with potencies similar to their potencies under the single-cycle, acute-dosing procedure (Li et al., 2008). One general feature of drug discrimination procedures is pharmacological selectivity such that, in general, only drugs that share a mechanism of action with the training drug occasion responding on the drug-associated lever. In that regard, the apparent qualitative similarity in discriminative stimulus effects among these three compounds is consistent with actions at 5-HT$_{2A}$ receptors. While DPT also binds to 5-HT$_{1A}$ receptors and 2C-T-7 has similar affinity for 5-HT$_{2A}$ and 5-HT$_{2C}$ receptors (Fantegrossi et al., 2005), results of these substitution studies indicate that agonist activity at 5-HT$_{2A}$ receptors accounts for the DOM-like discriminative stimulus effects of these drugs.

Drugs with affinity for and no apparent efficacy at 5-HT$_{2A}$ receptors can attenuate the discriminative stimulus effects of DOM and related agonists in rats (Glennon et al., 1983) and in non-human primates (Li et al., 2008). Similarly in the current study, drugs that are known to have antagonist actions at 5-HT$_{2A}$ receptors antagonized the discriminative stimulus effects of all three 5-HT receptor agonists, in each case shifting the discrimination dose-response curve to the right. MDL 100907 and ketanserin bind selectively to 5-HT$_{2A}$ receptors, as compared to 5-HT$_{2C}$ receptors, whereas ritanserin has
similar affinity for 5-HT$_{2A}$ and 5-HT$_{2C}$ receptors. Despite differences in their binding selectivity for different 5-HT receptors, all three antagonists blocked the effects of all three agonists in a dose-related and surmountable manner.

Schild analysis has been used to evaluate the behavioral effects of drugs acting at various different receptors including opioid (Woods et al., 1988; France et al., 1990), GABA$_{A}$ (Paronis and Bergman, 1999), and 5-HT$_{1A}$ receptors (Koek et al., 2000); however, this approach has not been used widely to examine the behavioral effects of drugs acting at 5-HT$_{2A}$ receptors. Despite the challenges inherent with this analysis (e.g., Kenakin, 1982), particularly in vivo when assumptions (e.g., equilibrium) can not be confirmed, remarkably orderly data can be obtained with this approach using behavioral data (Dykstra et al., 1988; Paronis and Bergman, 1999). Similarly in the current study, the dose-response curves of each agonist were shifted to the right in an orderly dose-related manner by each of the antagonists. Moreover, for each drug combination the Schild analysis yielded slopes that were not significantly different from unity (-1), a result that is consistent with a simple, competitive, and reversible interaction, likely at a single 5-HT receptor subtype (e.g., 5-HT$_{2A}$).

One value of Schild analysis is that the role of a particular receptor in the observed response can be confirmed quantitatively by comparing families of dose-response curves for combinations of agonists and antagonists that vary in selectivity for different receptors. Each of the agonists used in this study (DOM, 2C-T-7 and DPT) has activity at 5-HT$_{2A}$ receptors, but each also has activity at other receptors. Similarly, each of the antagonists used in this study (MDL 100907, ketanserin, and ritanserin) has affinity for 5-HT$_{2A}$ receptors, but each also has affinity for other receptors. If only one
receptor type mediates the effects of all drugs under a particular set of conditions, then under those conditions the potency of an antagonist should be same in blocking the actions of all agonists that have activity at that receptor. As shown by the convergence of regression lines on Schild plots (Fig. 3) and the estimated apparent pA$_2$ values (Table 1), the potency of each antagonist was remarkably similar with each of three different agonists. For example, the (unconstrained) apparent pA$_2$ values for ritanserin in combination with DOM, 2C-T-7 and DPT were 7.67, 7.76 and 7.76, respectively. Constraining the slope of the Schild plot to unity (-1) had little effect on the absolute value of the apparent pA$_2$ values or on the high degree of consistency among these values across agonists (Table 1), and this was the case for all three antagonists. Collectively, these results strongly suggest that a single receptor type mediates the effects of all three agonists and antagonists under these in vivo conditions and, therefore, and that affinity for and efficacy at other receptors types does not and that the interaction of these drugs with that receptor type is simple, competitive and reversible.

To the extent that only one receptor type mediates the effects of drugs under the conditions used in this discrimination study, the relative potency or affinity of these drugs for that receptor should predict their effects in this assay. Indeed, that appears to be the case both for agonists and for antagonists. DOM and 2C-T-7 have similar potency, and both are 3-fold more potent than DPT, in producing head twitching in mice (Fantegrossi et al., 2005, 2008b), an effect that is thought to be mediated by 5-HT$_{2A}$ receptors. Based on apparent pA$_2$ values, ketanserin and ritanserin have very similar potency in antagonizing the discriminative stimulus effects of each agonist, being 10-17 fold less potent than MDL100907 in this regard. This potency relationship among these three
antagonists parallels their relative potencies in blocking DOI-induced head twitching (Table 2). Moreover, the potency of MDL 100907, ketanserin and ritanserin in antagonizing the discriminative stimulus effects of DOM, 2C-T-7 and DPT parallels their relative binding affinities for 5-HT$_{2A}$ receptors and not their relative binding affinities for 5-HT$_{2C}$ or α_1 adrenergic receptors (Table 2). This striking similarity between antagonist potencies in the present study and receptor binding affinities in other studies provides strong evidence for these discriminative stimulus effects, and perhaps the discriminative stimulus effects of other related drugs with hallucinogenic actions in humans, being mediated by a single receptor type (5-HT$_{2A}$).

Acknowledgements

The authors thank John Bernal, Blake Harrington and Christopher Cruz for expert technical assistance.
References

NIMH Psychoactive Drug Screening Program, http://pdsp.med.unc.edu

Vickers SP, Easton N, Malcolm CS, Allen NH, Porter RH, Bickerdike MJ, Kennett GA
(2001) Modulation of 5-HT(2A) receptor-mediated head-twitch behaviour in the rat by 5-

Psilocybin induces schizophrenia-like psychosis in humans via a serotonin-2 agonist

Winter JC, Filipink RA, Timineri D, Helsley SE, Rabin RA (2000) The paradox of 5-
methoxy-N,N-dimethyltryptamine: an indoleamine hallucinogen that induces stimulus
control via 5-HT$_{1A}$ receptors. Pharmacol Biochem Behav 65:75-82.

Footnote

A portion of this work was supported by the intramural programs of the National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism.

CPF is the recipient of a Senior Scientist Award (DA17918) from the National Institute of Drug Abuse, NIH.
Legends for figures

Fig. 1 Discriminative stimulus and rate effects of DOM, 2C-T-7, and DPT in four rhesus monkeys discriminating between vehicle and 0.32 mg/kg DOM. Abscissae, dose in milligrams per kilogram of body weight; “V”, vehicle. Ordinates, mean (± S.E.M.) percentage of responses on the DOM lever (upper panel) and mean (± S.E.M.) rate of responding in responses per second (lower panel).

Fig. 2 Discriminative stimulus effects of DOM (upper panels), 2C-T-7 (middle panels), and DPT (lower panels) administered alone (filled symbols) and in combination with different doses of MDL100907 (left panels), ketanserin (center panels), and ritanserin (right panels). See Fig. 1 for other details.

Fig. 3 Schild plots constructed from the same data shown in Fig. 2. Abscissa, negative log of the dose of antagonist in moles per kilogram body weight. Ordinate, log of the dose ratio (DR) -1.
Table 1

Results of Schild analyses for combinations of 5-HT2 receptor antagonists and agonists in rhesus monkeys (n = 4)

<table>
<thead>
<tr>
<th>Drugs</th>
<th>Slope</th>
<th>95% CL</th>
<th>pA2</th>
<th>95% CL</th>
<th>pA2</th>
<th>95% CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>(unconstrained)</td>
<td>(unconstrained)</td>
<td>(constrained)</td>
<td></td>
<td>(constrained)</td>
<td></td>
<td>(constrained)</td>
</tr>
<tr>
<td>MDL100907 and DOM</td>
<td>- 0.77</td>
<td>(- 0.53, -1.03)</td>
<td>8.77</td>
<td>(8.51, 9.03)</td>
<td>8.61</td>
<td>(8.46, 8.76)</td>
</tr>
<tr>
<td>MDL100907 and 2C-T-7</td>
<td>- 0.98</td>
<td>(- 0.60, -1.36)</td>
<td>8.59</td>
<td>(8.38, 8.80)</td>
<td>8.58</td>
<td>(8.44, 8.72)</td>
</tr>
<tr>
<td>MDL100907 and DPT</td>
<td>0.80</td>
<td>(- 0.36, - 1.24)</td>
<td>8.62</td>
<td>(8.31, 8.94)</td>
<td>8.50</td>
<td>(8.33, 8.68)</td>
</tr>
<tr>
<td>Ketanserin and DOM</td>
<td>0.70</td>
<td>(- 0.33, -1.08)</td>
<td>7.86</td>
<td>(7.54, 8.01)</td>
<td>7.67</td>
<td>(7.51, 7.84)</td>
</tr>
<tr>
<td>Ketanserin and 2C-T-7</td>
<td>0.90</td>
<td>(- 0.53, - 1.27)</td>
<td>7.81</td>
<td>(7.57, 8.05)</td>
<td>7.75</td>
<td>(7.61, 7.90)</td>
</tr>
<tr>
<td>Ketanserin and DPT</td>
<td>0.81</td>
<td>(- 0.45, - 1.16)</td>
<td>7.78</td>
<td>(7.50, 8.06)</td>
<td>7.71</td>
<td>(7.57, 7.85)</td>
</tr>
<tr>
<td>Ritanserin and DOM</td>
<td>0.97</td>
<td>(- 0.61, - 1.33)</td>
<td>7.67</td>
<td>(7.48, 7.86)</td>
<td>7.65</td>
<td>(7.52, 7.79)</td>
</tr>
<tr>
<td>Ritanserin and 2C-T-7</td>
<td>1.00</td>
<td>(- 0.65, - 1.35)</td>
<td>7.76</td>
<td>(7.59, 7.92)</td>
<td>7.75</td>
<td>(7.63, 7.88)</td>
</tr>
<tr>
<td>Ritanserin and DPT</td>
<td>0.81</td>
<td>(- 0.38, - 1.23)</td>
<td>7.76</td>
<td>(7.45, 8.07)</td>
<td>7.65</td>
<td>(7.48, 7.82)</td>
</tr>
</tbody>
</table>
Table 2.

<table>
<thead>
<tr>
<th></th>
<th>MDL100907</th>
<th>Ketanserin</th>
<th>Ritanserin</th>
</tr>
</thead>
<tbody>
<tr>
<td>In vivo antagonism</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOM discriminative stimulus (pA₂, mg/kg)</td>
<td>0.0006ᵃ</td>
<td>0.0075ᵃ</td>
<td>0.0102ᵃ</td>
</tr>
<tr>
<td></td>
<td>(0.0003-0.0012)</td>
<td>(0.0053-0.0157)</td>
<td>(0.0071-0.0158)</td>
</tr>
<tr>
<td>DOI-induced head twitch (ED₅₀, mg/kg)</td>
<td>0.005ᵇ</td>
<td>0.029ᶜ</td>
<td>0.027ᶜ</td>
</tr>
<tr>
<td></td>
<td>(0.009-0.096)</td>
<td>(0.008-0.091)</td>
<td></td>
</tr>
<tr>
<td>In vitro binding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-HT₂ₐ receptor (Kᵢ, nM)</td>
<td>0.85ᵈ</td>
<td>3.16ᶜ</td>
<td>3.80ᶜ</td>
</tr>
<tr>
<td>5-HT₂₉ receptor (Kᵢ, nM)</td>
<td>88ᵈ</td>
<td>186ᶜ</td>
<td>2.3ᶜ</td>
</tr>
<tr>
<td>α₁ adrenergic (Kᵢ, nM)</td>
<td>128ᵈ</td>
<td>15ᶜ</td>
<td>190ᶜ</td>
</tr>
</tbody>
</table>

ᵃPotency (mg/kg) to antagonize the DOM discriminative stimulus in monkeys (values in parentheses are the 95% confidence limits)

ᵇED₅₀ re-calculated from Vickers et al., 2001

ᶜfrom Kleven et al., 1997 (values in parentheses are 95% confidence limits)

dfrom Kehne et al., 1996
Figure 3

- **MDL109007**
 - DOM
 - 2C-T-7
 - DPT

- **Ketanserin**

- **Ritanserin**

Log (DR-1) vs. -Log (antagonist dose)