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Abstract 

Identification of adaptations to chronic morphine that are causally associated with opioid 

tolerance formation has long been intensely pursued by the opioid research community. There 

is an impressive array of components of signaling pathways that are influenced by chronic 

opioid administration.  This underscores the importance to tolerance mechanisms of the 

complex interplay of cellular adaptations that are downstream from the opioid receptor.  A major 

impetus for this research remains the need to develop opioid agonists that are potent and 

efficacious activators of analgesic mechanisms without triggering opioid tolerance-producing 

adaptations. Implicit in most models of opioid tolerance is that their underlying mechanisms are 

invariant and independent of the system in which they have been observed.  Reports that acute 

prior morphine treatment and pain could influence tolerance mechanisms were not understood 

on mechanistic levels and consequently not incorporated into commonly used models of opioid 

tolerance.  The recent demonstration that adenylyl cyclase/cAMP-related cellular adaptations to 

chronic morphine depend on cell state demonstrates that ongoing cell physiology is a critical 

determinant of tolerance mechanisms. The plasticity and pliability of cellular adaptations that 

mediate tolerance formation indicates that mechanisms underlying opioid analgesic tolerance 

could be a moving target.  While this might represent a daunting barrier to developing anti-

tolerance pharmacotherapies, appreciation of this complexity could lead to the development of 

new pharmacotherapeutic approaches. 
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Introduction 

Of the armamentarium of pharmacological agents available to manage post-surgical and 

neuropathic pain, morphine and its congeners remain among the most widely employed. 

Nevertheless, the propensity of narcotics to induce analgesic tolerance (operationally defined as 

a reduction in responsiveness to an agent following repeated exposure) profoundly limits their 

therapeutic usefulness. Not surprisingly, an enormous research effort has been expended over 

the years toward elucidating the mechanistic underpinnings of opioid tolerance.  A major 

impetus for this research remains the need to develop opioid agonists that are potent and 

efficacious activators of analgesic mechanisms without triggering opioid tolerance-producing 

adaptations. Central to this effort is the identification of tolerance substrates, i.e., adaptations 

causally associated with tolerance formation, on all organizational and functional levels.  In this 

pursuit, conceptual formulations of tolerance become critical for they determine the contour map 

guiding the journey as well as the resting stops that are targeted along the way.  

It is certainly humbling to recognize that the search for non-tolerance-forming potent narcotic 

analgesics, alone or in combination with adjunctive pharmacotherapy, has been ongoing for at 

least the past 50 years without notable success.  Moreover, this failure has occurred in the face 

of huge advances in our molecular and cellular knowledge of opioid receptors and the cell 

signaling pathways that are activated by them.  This could indicate that opioid analgesic and 

tolerance mechanisms are so inextricably intertwined that they cannot be differentially targeted.  

Alternatively, our conceptual models of tolerance might not be sufficiently inclusive to provide 

the perspectives needed to develop opioid-based medications with which to treat pain in the 

absence of tolerance.   
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This Perspective will advance the concept that models of tolerance need to embrace the 

influence of ongoing physiological state on opioid tolerance mechanisms that are utilized.  Since 

this article is not intended to be a review, aspects of opioid tolerance have been selected that 

advance the idea that opioid tolerance mechanisms are pliable and context-dependent. 

Cellular tolerance vs. adaptations involving neuronal networks 

Adaptations to chronic morphine that occur on the level of individual neurons all occur within 

neuronal networks, which can amplify (or diminish) the functional consequences of those 

adaptations.  A good exemplar of this is the ability of chronic opioids to increase activity of 

glutamatergic neurons and consequently augment N-methyl-D-aspartate (NMDA) receptor 

activity (Mao, 1999).  This illustrates the important consideration that chronic morphine can 

induce tolerance adaptations in neurons that do not bear opioid receptors, which might amplify 

or compensate for the consequences of cellular adaptations that occur within individual 

neurons.  This greatly complicates the generation of tolerance models of translational utility.  

This notwithstanding, delineation of cellular adaptations to chronic morphine enables the 

identification of putative pharmacologic cellular targets for the amelioration of tolerance 

development.  It also can facilitate the development of organizing concepts and principals that 

would apply to chronic morphine-induced adaptations on cellular as well as network 

organizational levels.

Translational utility of tolerance models

It is important to keep in mind that opioid tolerance is not a unitary entity and that variable 

mechanisms might underlie the development of tolerance to each of the multiple effects of the 

same agonist in the same or different experimental systems.  It is also essential to remember 

that there are multiple forms of tolerance, each of which could be mediated via a different subset 

of adaptations.  These can often be differentiated by their specificity and temporal 

characteristics.  For example, opioid receptor homologous desensitization resulting from G 

protein uncoupling has a very rapid (minutes) onset (Law and Loh, 1999), whereas adaptations 
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involving upregulation of the adenylyl cyclase (AC) cascade requires hours for full manifestation 

(Nestler and Aghajanian, 1997; Nestler et al., 1994).  Yet another proposed adaptation to 

chronic morphine that is heterologous and that has a much more delayed onset involves down-

regulation of the sodium pump and a reduction in its electrogenic contribution to membrane 

potential (Fleming, 1999).  The existence of multiple organizational levels on which opioid 

tolerance can occur and the multiplicity of functions that can be influenced by opioids require 

that mechanistic models that attempt to define tolerance be appropriately constrained and 

qualified in relationship to the system under study. 

Impairment of opioid receptor functionality 

Most models of opioid tolerance frequently employed revolve around the conceptual rubric that 

it is the direct result of the actual loss of specific opioid receptor-mediated signaling, i.e., opioid 

receptor desensitization.  This desensitization is frequently envisioned to involve a reduction in 

spare opioid receptors, (Chavkin and Goldstein, 1984) increased opioid receptor internalization 

(Bohn et al., 2000), decreased opioid receptor density (Chakrabarti et al., 1995) and altered 

content of G proteins (Ammer and Schulz, 1995).  A pivotal aspect of such models is the 

enhanced phosphorylation of the opioid receptor via G protein receptor kinase that 

accompanies its activation and is a prelude to its forming a complex with β-arrestin (Appleyard 

et al., 1999; Kovoor et al., 1997; Pei et al., 1995).  This results in its targeting to clathrin-coated 

pits, G protein uncoupling and its subsequent internalization and intracellular trafficking to 

subcellular compartments, e.g., lysozomes where receptor degradation can occur.  

These events directly parallel those that have been extensively described for the β2-adrenergic 

receptor and they are shared by most, if not all G protein coupled receptors (GPCRs). The 

relevance of these events and models that revolve around them to in vivo pharmacological 

opioid tolerance is certainly suggested by the coincidence of the temporal characteristics of 
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opioid receptor phosphorylation and G protein uncoupling with the onset of the acute loss of 

opioid receptor functionality, i.e., receptor desensitization or ‘acute tolerance’ (Appleyard et al., 

1997; Zhang et al., 1996).  Importantly, the above mechanistic formulations of opioid tolerance 

are invariably thought of as being invariant responses to chronic morphine, independent of 

ongoing physiological state. 

Post opioid receptor adaptations to chronic morphine 

Numerous post opioid receptor cellular adaptations to chronic morphine have been identified 

that challenge the centrality of the uncoupling theory of opioid tolerance by suggesting 

alternative mechanisms.  Furthermore, these underscore the complex interplay of tolerance 

mechanisms with cell physiology and the need for more complex working models that reflect it.  

Many tolerance-related adaptations pertain to adenylyl cyclase (AC)-cAMP (Duman et al., 1988; 

Guitart and Nestler, 1989; Kim et al., 2006; Lane-Ladd et al., 1997; Nestler and Tallman, 1988) 

and protein kinase C (PKC) (Mao et al., 1995; Mayer et al., 1995; Narita et al., 1995; Wang et 

al., 1996; Wei and Roerig, 1998; Zeitz et al., 2001) signaling pathways.  More recently, chronic 

morphine was shown to up-regulate specific AC isoforms (Chakrabarti et al., 1998a; Rivera and 

Gintzler, 1998), increase phosphorylation of AC (Chakrabarti et al., 1998b) and the Gβ subunit of 

G proteins (Chakrabarti et al., 2005b), and increase association of the µ-opioid receptor (MOR) 

with Gs (Chakrabarti and Gintzler, 2007; Chakrabarti et al., 2005a).  Notably, all of these 

adaptations not only occur concomitantly but also have convergent signaling consequences; in 

the aggregate they shift acute MOR-coupled signaling from AC inhibitory to stimulatory (Gintzler 

and Chakrabarti, 2006).  

These cellular adaptations to long-term morphine underscores that at least a subset of tolerance 

mechanisms do not cause the loss of opioid receptor functionality but rather the alteration of the 

consequences of opioid receptor activation.  This is very revealing because it indicates that the 
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protective function served by opioid tolerance formation, i.e., the reinstatement of initial steady 

state conditions, does not result solely from unidirectional adaptations, e.g., restricted opioid 

receptor functionality, but also from the active assertion of compensatory opioid receptor-

coupled cell signaling strategies.   

Opioid receptor pleiotropy and duality of signaling

Identification of the interrelated cellular adaptations to long-term morphine treatment highlighted 

above is a poignant reminder that formation of tolerance utilizes the flexibility that is inherent in 

receptor G protein signaling.  Opioid receptor pleiotropy (tolerance-associated enhanced 

coupling to Gs) (Chakrabarti et al., 2005a) and the duality of G protein signaling via the Gα and 

Gβγ subunits (tolerance-associated enhanced AC Gβγ stimulatory AC signaling) (Chakrabarti et 

al., 1998a) are both recruited in response to persistent opioid receptor activation. GPCR 

pleiotropy and duality of G protein subunit signaling are pillars of cell signaling plasticity and 

underlie much of the richness and diversity of signaling that is characteristic of GPCRs.  Thus, it 

should not be surprising that they also underlie many of the cellular adaptations that enable cell 

survival in the face of prolonged opioid exposure.  Chronic morphine-induced enhanced opioid 

receptor pleiotropy and duality of signaling enable opioid tolerance mechanisms to be pliable, as 

reflected by the shift in MOR-coupled signaling from Giα/Goα inhibitory to Gsα /Gβγ stimulatory AC 

signaling (Gintzler and Chakrabarti, 2006).  This multi-dimensionality of cellular adaptations to 

long-term morphine treatment demands the development of mechanistic models of opioid 

tolerance that include a much broader spectrum of adaptational mechanisms than has thus far 

been the case if they are to be medicinally relevant.  

Influence of prior treatment on spinal opioid tolerance and addiction 

Although not concluded at the time of publication, some early behavioral studies do indicate that 

tolerance adaptations could depend on physiological state.  For example, there is provocative 

data predating the biochemical demonstration of the opioid receptor, that the antinociceptive 
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effect of morphine can be reduced by a single dose of systemic morphine administered months 

earlier (Cochin and Kornetsky, 1964).  More recently (Lim et al., 2005), it was shown that the 

rate of onset and the magnitude of antinociceptive tolerance increases with serial intrathecal 

morphine injections.  The authors suggest that repeated cycles of morphine exposure produce 

sustained changes in the spinal cord that modulate the development of opioid tolerance to 

subsequent morphine exposure.  The demonstration that prior history of morphine-induced 

plasticity can influence the magnitude of subsequently observed tolerance adaptations can be 

construed to indicate that at least some of the adaptations to chronic morphine are not set in 

stone and in fact resonate with evolving physiological state.  However, in the absence of any 

formal direct demonstration of this concept, these phenomena remained an enigma. 

Behavioral studies conducted months following opioid withdrawal also support the notion that 

ongoing physiological state can be a major determinant of addiction predisposition.  For 

example, morphine-dependent rats that had been successfully detoxified and showed no 

significant signs of morphine dependence consumed significantly larger volumes of morphine 

solution than opiate naïve controls and had recurrence of morphine tolerance and dependence 

(Dai et al., 1984).  Subsequently, it was suggested (Bartoletti et al., 1987) that modification of 

the neuronal mechanism subserving the excitatory component of the action of opiates by 

chronic morphine treatment that had occurred months earlier could represent a neurobiological 

basis for recidivism in addicts.  While the mechanisms responsible for the pliability of opioid 

responsiveness have remained unidentified, such observations further support the notion of the 

state dependence of the processes of tolerance and dependence.   

Dependence of cellular opioid tolerance mechanisms on cell state

A review of the opioid tolerance literature reveals that while cellular biochemical parameters of 

morphine administration are often considered in studies of tolerance, the influence of ongoing 

physiology and cell state are not.  The complexity and multi-dimensionality of cellular 
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mechanisms underlying opioid tolerance is underscored by the recent report that a subset of 

interrelated cell signaling adaptations to chronic morphine exposure do not represent a fixed set 

of adaptations but are themselves cell state-dependent (Shy et al., 2007).   

This notion was directly put to the test by comparing AC-cAMP-related adaptations to long-term 

morphine treatment among Chinese Hamster ovary cells (CHO) stably expressing MOR (MOR-

CHO) and MOR-CHO overexpressing either AC2 (AC2−MOR-CHO) or AC1 (AC1-MOR-CHO).  

These cells manifest qualitatively opposite consequences of acute MOR activation as a result of 

differences in the relative abundance of specific AC isoforms (Federman et al., 1992; Tsu et al., 

1995; Yoshimura et al., 1996) that are differentially regulated by Gβγ (Tang and Gilman, 1991).  

The qualitative difference in the consequences of acute MOR activation (AC inhibition vs. 

stimulation) has a profound effect on the manifestation of multiple, complementary AC-related 

adaptations to chronic morphine, many of which are diametrically opposite (Shy et al., 2007).  

Strikingly, none of the AC/cAMP-related adaptations to chronic morphine observed in MOR-

CHO and AC1-MOR-CHO (increased AC and Gβ phosphorylation, membrane protein kinase 

Cγ  translocation and MOR Gs association (Chakrabarti and Gintzler, 2003; Chakrabarti et al., 

2005a; Chakrabarti et al., 2005b; Chakrabarti et al., 1998b) are observed in AC2-MOR-CHO.  

Instead, overexpression of AC2 negates the increment in Gβ phosphorylation and PKCγ

translocation and reverses the increment in AC phosphorylation and MOR Gs association to a 

decrement (Shy et al., 2007).   

These experiments formally tested the interrelatedness of tolerance adaptations and cell state.  

Results directly demonstrate that adaptational strategies in the AC/cAMP signaling pathway 

elicited by chronic morphine are not hard-wired but instead are conditional on cell state.  In this 
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particular case, the default acute responsiveness of cells to MOR activation is a determinant of 

the mechanisms harnessed by cells to cope with the persistent activation of MOR.  In cells in 

which acute MOR activation inhibits AC activity (MOR-CHO, AC1-MOR-CHO, left panel of the 

schematic), chronic morphine elicits adaptations that augment a stimulatory arm of MOR-G 

protein coupling.  Conversely, in cells manifesting acute stimulatory AC responsiveness to MOR 

(AC2-MOR-CHO, right panel of the schematic), the same treatment with morphine elicits 

adaptations that enhance AC inhibitory responsiveness.  Notably, the substrates for tolerance 

formation remain the same but are differentially modulated.  This underscores the plasticity of 

the cellular adaptations that mediate tolerance formation and provide a cellular basis for 

inferences to that effect drawn from much earlier behavioral studies.   

Relevance to CNS 

The cellular environment in which the plasticity of long-term morphine responsiveness was 

demonstrated contains differences in the abundance of AC isoforms that are not found in 

naturally occurring neuronal tissue. This notwithstanding, there is, undoubtedly, analogous 

variation in the distribution of AC isoforms (and other signaling molecules), albeit more subtle, 

across brain regions (Cali et al., 1994; Glatt and Snyder, 1993; Mons and Cooper, 1994; Mons 

et al., 1993; Xia et al., 1991).  Consequently, nuanced differences in the state of cells present 

would likely occur, particularly following chronic morphine since many of the AC isoforms are 

differentially regulated by chronic opioid administration (Avidor-Reiss et al., 1997).  Thus, the 

plasticity of adaptations related to AC/cAMP signaling in cells maintained in culture would seem 

to be applicable to the CNS.  

Translational utility of pliability of tolerance mechanisms 

The extent to which such plasticity generalizes to the multitude of other adaptations elicited by 

long-term morphine treatment, [e.g., opioid receptor downregulation/internalization, MOR G-

protein uncoupling, increased activity of mitogen activated protein kinase (Bilecki et al., 2005), 

altered association/activity of RGS proteins], needs to be determined on all organizational and 
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functional levels.  This notwithstanding, a picture is emerging that suggests that opioid tolerance 

mechanisms represent a moving target.  In the end, attempts to define a complete set of 

tolerance substrates may be successful.  However, the nature of their modulation as well as 

altered interactions and functionality would seem to define a continuum of multidirectional 

changes rather than a rigid predetermined grid.   

Future challenges and clinical implications 

A poignant exemplar of the influence of physiological state on tolerance mechanisms that 

remains an enigma is the complex interrelationship that has been demonstrated between pain 

and opioid tolerance development.  For example, tolerance did not compromise the efficacy of 

opioids, administered over three months, to significantly reduced back pain severity in a large 

cohort of patients with well-defined spinal diseases (Mahowald et al., 2005).  Similarly, 

intrathecal opioid therapy was found to be effective in the management of chronic non-cancer 

pain, which was not inhibited by the development of tolerance (Roberts et al., 2001).  Analogous 

results had been obtained in pre-clinical rat studies in which the analgesic action of the 

continuous systemic application of morphine on chronic thermal hyperalgesia due to sciatic 

constriction injury was unabated after seven days, which is considered long-term for animal 

models (Backonja et al., 1995).  Notably, studies utilizing mice and a chronic inflammatory pain 

model demonstrated an opposite effect on tolerance development and that tolerance 

development could be modulated by an interaction between chronic inflammatory pain and 

genetics (Liang et al., 2006).  At present, there is no mechanistic understanding of attenuated 

opioid tolerance development in some pain states.   A complete understanding of the ways in 

which ongoing physiological state can influence opioid tolerance mechanisms could prove to be 

useful in identifying unique physiological parameters of painful states that are causally 

associated with diminished tolerance and a biochemical basis for this interaction.  
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Validation of the generality of the perspective that opioid tolerance mechanisms are plastic 

would certainly represent a major paradigm shift that, on the surface, would make even more 

daunting attempts to develop pharmacological strategies that would eliminate or at least 

markedly attenuate opioid tolerance formation.  However, realization of the pliability of opioid 

tolerance mechanisms could also open new possibilities.  It could suggest the utility of 

developing anti-tolerance pharmacotherapies that target a very restricted CNS region, which is 

essential for opioid antinociception and contains cells utilizing a homogeneous set of tolerance 

adaptations.  The unfolding increasing complexity of opioid tolerance represents a panoply of 

pharmacologic possibilities with which to play. 
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Legends for Figures 

Comparison of AC/cAMP-related adaptations to chronic morphine when acute MOR 

activation inhibits or stimulates AC activity. In MOR-CHO and AC1-MOR-CHO cells, in 

which acute activation of MOR inhibits AC activity (left panel), chronic morphine elicits 

convergent adaptations that shift the consequences of MOR activation from Giα/Goα inhibitory to 

Gsα/Gβγ AC stimulatory.  These adaptations consist of (1) augmented AC phosphorylation, (2) 

increased membrane translocation of PKC, (3) augmented phosphorylation of the Gβ subunit of 

Gβγ and (4) increased association of MOR with Gs.  Increased phosphorylation of some AC 

isoforms (e.g., AC2) increases their stimulatory responsiveness to Gsα (5) and Gβγ, which is 

further augmented by increased phosphorylation of Gβ.  In contrast, in cells in which acute 

activation of MOR results in stimulation of AC activity (AC2-MOR-CHO, right panel), none of 

these adaptations to chronic morphine occur.  The increase in Gβ phosphorylation and PKC 

translocation is negated and the increment in AC phosphorylation and MOR Gs association 

reverses to a decrement.  These observations reflect that tolerance mechanisms are dynamic, 

pliable and interconnected with cell physiology.  Dashed arrows in right panel (AC2-MOR-CHO) 

denotes a reduction in activity of signaling events 2,3,4,5 relative to the analogous events on the 

left (MOR-CHO/AC1-MOR-CHO), which is denoted by solid arrows.  G=glycosylation sites on 

the N-terminus of MOR. 
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