CHARACTERIZATION OF THE pH OF FOLATE RECEPTOR-
CONTAINING ENDOSONMES AND THE RATE OF HYDROLYSIS
OF INTERNALIZED ACID-LABILE FOLATE-DRUG
CONJUGATES

Jun Yang, Hongtao Chen, Iontcho R. Vlahov, Ji-Xin Cheng, Philip S. Low

Department of Chemistry (J.Y., H.C., J.C., P.S.L.), Weldon School of Biomedical
Engineering (H.C., J.C.), Purdue University, West Lafayette, IN 47907, Endocyte, Inc.,
West Lafayette, IN 47906 (I.R.V.)
Running title Hydrolysis of acid-labile folate-drug conjugates in endosomes

Corresponding author: Philip S. Low,
Department of Chemistry, Purdue University, West Lafayette, IN 47907,
Tel (765)4945273, Fax (765)4945272, Email: plow@purdue.edu

Abbreviations FR, folate receptor; FRET, fluorescence resonance energy transfer;
BODIPY FL, 6-((4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-
propionyl)amino)hexanoic acid, fluorescein; GPI, glycosphingolipid;
FITC, fluorescein isothiocyanate; ALFR, acid labile folate-FRET reporter

Document Statistics:
Number of pages: 27
Number of figures/schemes: 5
Number of references: 40
Number of words in the Abstract: 209
Number of words in the Introduction: 649
Number of words in the Discussion: 667

Recommended section assignment: Cellular and molecular; Metabolism, transport and pharmacogenomics.
Abstract

Despite the widely accepted assumption that most endosomal compartments are acidic, evaluation of the efficiency of pH-dependent drug release from a ligand-targeted drug conjugate during receptor-mediated endocytosis is lacking. We have therefore undertaken to characterize the kinetics of pH-dependent drug release from a model folate-drug conjugate during folate receptor (FR)-mediated endosomal trafficking. For this purpose, we synthesized an acid labile folate-FRET reporter (ALFR), that emits green fluorescence (BODIPY FL) only after acid-catalyzed hydrolysis of the acyl hydrazone linker. In a cell-free system, cleavage of ALFR was found to be efficient only at acidic pHs ($t_{1/2} = 1.95$ h, 4.63 h and 75 h, at pHs 4, 5, and 6, respectively) and essentially resistant to hydrolysis at pH 7. Curiously, when applied to folate receptor-expressing cancer cells, the acid-labile folate-linked probe exhibited little or no recovery of BODIPY FL fluorescence (green), even after 55 h incubation, arguing very inefficient cleavage within the FR endocytic pathway. To understand this unanticipated observation, we measured the pH of FR-containing endosomes using ratiometric fluorescence microscopy and observed that most FR+ endosomes are only mildly acidic (average pH~6.5). Taken together, these data argue that the FR trafficking pathway does not involve acidic compartments, and that acyl hydrazone linkers may constitute a poor option for FR-mediated drug delivery.
Introduction

Tumor-specific delivery of anti-cancer drugs can often be achieved by attaching the cytotoxic drug to a tumor-recognizing ligand (e.g. an antibody or a low molecular weight ligand). Such attachments, however, can potentially introduce steric hindrances and prevent association of the drug with its molecular target. Therefore, improved therapeutic efficacy is frequently only realized when the active agent is linked to its targeting ligand through a cleavable spacer that is stable in circulation but readily hydrolyzed upon entry into its target cell. In particular, linkers that are selectively hydrolyzed at acidic pH have received considerable attention, since the majority of receptor-directed drugs are delivered to endosomal compartments or lysosomes where pHs are thought to be low (Kratz et al., 1999; Masson et al., 2004; Maxfield and McGraw, 2004). The slightly acidic microenvironment of some tumors (~pH 6.5) has also been proposed to assist in release of these drugs, especially when the conjugate is expected to be trapped within the tumor for prolonged periods (Ashby, 1966; Lavie et al., 1991; Gatenby et al., 2006).

Among the acid labile linkers in common use today, acyl hydrazones have exhibited good activity in many preclinical studies. When exploited to link doxorubicin to tumor-recognizing antibodies, for example, an acyl hydrazone bridge was found to resist unwanted hydrolysis at neutral pH (>10% drug release at 5 h), but readily discharge free doxorubicin after only 2h at pH 4.5 (>50% release) (Kaneko et al., 1991). Not surprisingly, when tested on tumor-bearing mice, the antibody-targeted, releasable doxorubicin exhibited a maximum tolerated dose (MTD) 3~4 fold higher than the
unmodified drug (Trail et al., 1992). Similar improvement in drug tolerance has also been observed with pH-sensitive antibody-conjugated vinca alkaloids (Laguzza et al., 1989; Johnson et al., 1990; Gutowski et al., 1991; Appleman and Frey, 1996).

The folate receptor (FR), a GPI-anchored membrane protein involved in folate endocytosis, is often over-expressed on tumor cells (Elnakat and Ratnam, 2004). Because folate and folate-drug conjugates bind FR with high affinity (Kd~1nM), and since FR rapidly recycle between the plasma membrane and the cell interior (Kamen and Smith, 2004; Sabharanjak and Mayor, 2004), strategies have been pursued to exploit folate for selective targeting of attached imaging and therapeutic agents to tumors (Jackman et al., 2004; Leamon and Reddy, 2004; Lu et al., 2004; Zhao and Lee, 2004; Hilgenbrink and Low, 2005; Reddy et al., 2005). Analyses of such drug uptake processes reveal that folate-drug conjugates are internalized into endosomes via receptor-mediated endocytosis (Chatterjee et al., 2001) and then released from FR before it resurfaces for the next round of delivery (Kamen and Smith, 2004; Paulos et al., 2004). Importantly, a previous report by Lee et al. that the pH of FR-containing endosomes can drop below pH 5 offered encouragement that pH-labile linkers might be ideal for assuring efficient drug release only after uptake by targeted cancer cells (Lee et al., 1996). However, more recent studies of Fivaz and coworkers (Fivaz et al., 2002) demonstrating that polyvalent ligands, such as those used by Lee and colleagues to measure endosomal pH, follow a different endocytic pathway than monovalent ligands for GPI-anchored receptors such as FR, raised questions regarding the applicability of the Lee et al. (Lee et al., 1996) studies to delivery of monovalent folate-targeted drugs.
To evaluate the effectiveness of pH-sensitive acyl hydrazone linkers for intracellular drug release during FR-mediated endocytosis, we prepared a folate-dye conjugate (acid labile folate-FRET reporter, ALFR) whose fluorescence is quenched via intramolecular fluorescence resonance energy transfer (FRET) until the pH-sensitive hydrazone bond to the dye is cleaved at low pH. By measuring fluorescence, we first characterized the folate-FRET reporter’s cleavage kinetics at different pHs in vitro, and then monitored cleavage of the folate conjugate in real time in intact cancer cells during folate receptor-mediated endocytosis. Because the rate of intracellular hydrazone hydrolysis was unexpectedly slow, we finally characterized the pH of monovalent folate conjugate-containing endosomal compartments in live cells.
Methods

Materials—All reagents for the synthesis of the folate backbone were purchased from Novabiochem (San Diego, CA). 4-maleimidophenylacetic acid was obtained from Sigma-Aldrich (St. Louis, MO). Pteroic acid and folate-FITC were generous gifts from Endocyte, Inc. (West Lafayette, IN). BODIPY FL hydrazide was purchased from Molecular Probes Eugene, Oregon).

Cell culture—KB cells, a human nasopharyngeal cancer cell line, was grown continuously as a monolayer using folate-free RPMI medium (Invitrogen, Carlsbad, CA) containing 10% heat-inactivated fetal calf serum (Hyclone, Logan, UT) at 37 °C in a 5% CO₂/95% air-humidified atmosphere in the presence of ampicillin and streptomycin. Cells were grown in 35 mm glass bottom Petri dishes (Mat Tek, Ashland, MA) for imaging studies. All cells were cultured to 50-60% confluence prior to each experiment.

Synthesis and characterization of the acid-labile folate FRET reporter (ALFR)

Synthesis of ALFR was carried out by following Scheme 1. Briefly, folate-dabcyl was prepared by standard Fmoc chemistry on an acid-sensitive trityl resin loaded with Fmoc-L-Cys (Trt)-OH, as described previously (Leamon et al., 2002). Crude folate-dabcyl was dissolved in water (pH 8.2) in the presence of argon to prevent disulfide bond formation. The resulting solution was loaded on a VYDAC “protein and peptide C18” HPLC column and separated using 10 mM ammonium acetate (pH 5.0) and acetonitrile as the mobile phase. HPLC purified folate-dabcyl was characterized by LC-MS (MW=1135.09),
using a Waters 2995 HPLC system coupled with a Waters Micromass ZQ™ Mass Spectrometer.

4-maleimidophenylacetic acid (2.1 mg) was reacted with BODIPY FL hydrazide (3 mg) in tetrahydrofuran (THF) using trifluoracetic acid (1 equivalent relative to 4-maleimidophenylacetic acid) as a catalyst. Reaction progress was followed by analytical HPLC (mobile phase: 10 mM ammonium acetate (pH 5.0) in acetonitrile) and found to reach 90% completion within 0.5 h. After removal of THF in vacuo, folate-dabcyl (9 mg) and excess N,N’-Diisopropylethylamine (DIPEA) were added, and the reaction progress was again monitored by analytical HPLC (mobile phase: 10 mM ammonium acetate (pH 7.0) in acetonitrile). By 1 h, the reaction was found to reach completion, and the desired product was isolated by preparative HPLC using 1mM sodium phosphate (pH 7.2) as the mobile phase. The final conjugate, ALFR, was characterized by LC-MS (MW=1638.4). Analytical and preparative HPLC runs were performed using a Waters 2996 system and a Waters 2487 system, respectively. All HPLC systems used in this study are coupled with a Waters Photodiode array.

The binding specificity and affinity of ALFR for the folate receptor was determined by a previously described competition assay with slight modification (Leamon et al., 2002). In brief, KB cells were incubated with folate rhodamine (25 nM; Kd for FR ~20 nM) in the presence of increasing concentrations of ALFR (0-200 nM) for 30 min on ice, followed by washes with fresh PBS to remove unbound conjugate. Cells were then immediately lysed with 2% SDS and measured for rhodamine fluorescence using an Aminco Bowman Series 2 luminescence spectrometer (Ex=545 nm, Em=595
nm). Analysis of the competitive binding curve yielded a Kd of ALFR for the folate receptor of ~17 nM (Supplemental Data).

Characterization of the pH-dependent cleavage of ALFR in solution- In order to measure the pH dependence of ALFR hydrolysis in vitro, ALFR was dissolved in 10mM sodium citrate (pHs 4 and 5) or 10mM sodium phosphate (pHs 6 and 7). ALFR solutions (10 nM) were incubated at room temperature for the indicated lengths of time and then subjected to fluorescence spectrophotometry (excitation: 488 nm and emission: 520 nm) using an Aminco Bowman Series 2 luminescence spectrometer. The fluorescence intensities were plotted against incubation time, and Sigma Plot software was used to calculate the release half time assuming first-order kinetics at all pHs.

FRET Imaging-Fluorescence resonance energy transfer (FRET) imaging was performed using an Olympus IX-70 inverted confocal microscope system. KB cells were incubated with a mixture of ALFR (100 nM) and folate rhodamine (a known ligand for FR; 100 nM) for 30 min on ice to minimize diffusional uptake of the probe and to prevent any receptor-mediated endocytosis prior to imaging. Cells were then washed with fresh culture medium to remove unbound conjugate. After incubation at 37°C in culture medium for the desired lengths of time (0.5 to 55 hrs), cells were examined under an Olympus 60X/1.2 NA water objective using an argon laser (488 nm) and the proper emission filter (520/40 nm). As a positive control, the same cells were also imaged for folate-rhodamine fluorescence (λ ex = 543 nm, λ em = 595 nm) to assure that FR
internalization occurred normally. Image processing was performed using FluoView software (Olympus USA, Center Valley, PA).

pH determination of FR-containing endosomes by fluorescence ratio imaging—The pH of FR-containing endosomes was measured by following the previously described procedure with slight modifications (Lee et al., 1996). Briefly, KB cells were incubated for 0.5 h at 0°C with an equimolar solution (100 nM each) of the pH-insensitive construct, folate-rhodamine, and the pH-sensitive construct, folate-FITC. After washes with fresh medium to remove unbound folate conjugates, cells were then incubated at 37°C for an additional 3 h to allow endocytic trafficking to reach a steady state. Laser excitation bands at 488 nm and 543 nm were then used to independently excite fluorescein and rhodamine fluorescence, respectively, and images were acquired using an Olympus IX-70 inverted confocal microscope with appropriate filters. The intensity of each type of folate conjugate (i.e. folate-FITC and folate rhodamine) in individual endosomes was quantitated using Image J Software (http://rsb.info.nih.gov/ij/) (Abramoff MD, 2004). To construct the calibration curve (i.e. standard curve), equal molar folate-rhodamine and folate-FITC were mixed at different pHs and imaged using confocal microscopy under the same conditions used for the cell imaging. Endosome fluorescence was quantitated in several distinct areas in the microscope field and averaged. The ratio of green to red fluorescence was plotted against pH using SigmaPlot software.
Results

pH-dependent cleavage of the acid labile folate-FRET reporter

As shown in Fig. 1, the acid-labile folate-FRET reporter (ALFR) is comprised of: 1) the tumor-targeting ligand, folic acid, 2) a peptide spacer that improves water solubility of the conjugate, 3) the FRET donor, BODIPY FL (488/520 nm) that is linked to folate via the pH-sensitive acyl hydrazone linker, and 4) the quencher, dabcyl, that is attached to folate via a pH-insensitive amide bond. The probe is designed to assure quenching of BODIPY FL fluorescence as long as the fluorescence donor in the fluorescence resonance energy transfer (FRET) pair, is attached in close proximity to dabcyl, the quencher (fluorescence acceptor) in the FRET pair. Upon acid-catalyzed hydrolysis of the hydrazone linker, the green fluorescent dye will be released, while dabcyl remains attached to the folate-containing fragment via its amide bond. This separation of BODIPY FL from its quencher leads to loss of FRET and the consequent recovery of BODIPY FL’s green fluorescence.

As an initial test of this methodology, the kinetics of the folate-FRET reporter’s dequenching was determined at various pHs (i.e. 4.0, 5.0, 6.0, and 7.0). As seen in Fig. 2, half-times for folate-FRET hydrolysis (assuming a first-order reaction in all cases) were found to be 1.95 h at pH 4, 4.63 h at pH 5, and 75 h at pH 6. No release was detected at pH 7. These data suggest that: 1) recovery of BODIPY FL fluorescence constitutes a useful surrogate marker of the acyl hydrazone cleavage in ALFR, 2) the acyl hydrazone linker is stable at pH 7, but increasingly less stable as pH decreases, and 3) cleavage of the acyl hydrazone is reasonably rapid between pH 4 and 5.
Characterization of ALFR cleavage in intact cancer cells

We next examined acid-catalyzed hydrolysis of the folate-FRET reporter in live FR-expressing cancer cells by confocal fluorescence microscopy. In contrast to the rapid dequenching of ALFR seen in buffered solutions in vitro, hydrazone hydrolysis was not detectable until 5.5 h post-administration. Thus, at 5.5 h, a low level of green fluorescence appeared in a perinuclear region of the cell that was previously identified as the recycling endocytic compartment (Chatterjee et al., 2001) (Figure 3B). Curiously, as incubation proceeded, fluorescence remained surprisingly weak. Careful analysis of serial micrographs acquired at different time points revealed that recovery of BODIPY FL fluorescence barely improved with time (i.e. 18.5 h (Fig. 3C) and 55 h (data not shown)). As a positive control, the same cells were simultaneously incubated with folate-rhodamine (a known ligand for FR) and imaged for rhodamine fluorescence at various time points to assure that FR internalization occurred normally (Fig. 3D). The prominent rhodamine fluorescence both on the cell surface and within endocytic compartments demonstrates that both FR binding and conjugate internalization were proceeding unabated in these cells. Because a similar lack of ALFR dequenching was also observed in the absence of the added folate rhodamine, we concluded acyl hydrazone cleavage is inefficient within the FR endocytic pathway.

Measurement of the pH of FR-containing endosomes

Lack of measurable cleavage of the folate-FRET conjugate in KB cells was unexpected in view of a previous paper from our lab (Lee et al., 1996) reporting the pH of FR-
containing endosomes to range from 4.7-5.8 in the same KB cell line. However, because this previous pH analysis was obtained using a polymeric dye conjugate tethered to multiple folates, and since polyvalent ligands have been subsequently shown to force GPI-anchored receptors to enter and traffic in cells by a distinct pathway (Fivaz et al., 2002), we undertook to re-characterize the intracellular pH of folate-containing endosomes using monovalent folate-dye conjugates. For this purpose, we incubated KB cells with a solution containing equimolar quantities of folate-FITC (a pH-sensitive dye conjugate) and folate-rhodamine (a pH-insensitive dye conjugate), and then measured endosomal pH by quantitating the ratio of green (fluorescein) to red (rhodamine) fluorescence in each endocytic vesicle. By comparing this ratio to the same ratio obtained for the same solution of dye conjugates in standard buffers (Fig. 3G), an estimate of intraendosomal pH could be obtained. As shown in Figs. 3E and F, folate-FITC and folate rhodamine were both seen to internalize and cluster in the perinuclear region where previous monovalent folate-dye conjugates have been reported to collect (Chatterjee et al., 2001). However, due to quenching of FITC at low pH, some endosomes exhibited primarily rhodamine fluorescence, suggesting some decline in pH between FR on the cell surface and FR in the perinuclear endosomes. Ratiometric analysis revealed that the pH of FR-containing endosomes ranged from 5.6 to 7.2, with the most prominent pH values ranging from pH6.6 to 6.8 (Fig. 4). This unexpectedly high compartmental pH range is probably alone sufficient to explain the very slow rate of folate-FRET hydrolysis in KB cells (compare Fig. 2). The results are also consistent with the observation that FR traffics through recycling endosomes which are known to have a pH of only 6.5 (Turek et al., 1993; Mayor et al., 1998; Chatterjee et al., 2001).
Discussion

In this study, we have undertaken to characterize the pH-dependence of model drug release from a folate-drug conjugate during FR endosomal trafficking. We have described the synthesis of an acyl hydrazone linked folate-FRET conjugate that emits green fluorescence only after acid-catalyzed hydrolysis of the acid-labile linker. In a cell-free system, cleavage of ALFR was found to be efficient at acidic pHs, but extremely slow at neutral pH. When little measurable folate-FRET conjugate was seen to hydrolyze during endocytosis by FR-expressing KB cells, the pH of FR-containing endosomes was re-evaluated using monovalent folate-dye conjugates. The observation that FR-containing endosomes are only mildly acidic (average pH ~6.6-6.8) argued that acyl hydrazone hydrolysis during FR-mediated endocytosis was highly inefficient largely because FR+ endosomal pHs are too high to catalyze folate-FRET cleavage efficiently. The data also suggest that pH-sensitive linkers that release their therapeutic cargo only slowly between pH 6-7 may not enable maximal intracellular release of drugs from monovalent folate-drug conjugates. However, acid labile spacers that hydrolyze rapidly within this pH range may yield effective folate conjugates if the targeted therapeutic agent can reach an FR on the tumor cell surface before it is hydrolyzed in the plasma (Leamon et al., 2006).

The finding that FR-containing endosomes do not experience low pHs distinguishes them from many other endocytic pathways. In general, endosome acidification is thought to occur within 2-3 min following receptor-mediated endocytosis
due to an influx of protons via a vacuolar proton ATPase (Grabe and Oster, 2001; Beyenbach and Wieczorek, 2006; Hurtado-Lorenzo et al., 2006). As a result, the pH of early endosomes, sorting endosomes and multivesicular bodies can drop rapidly to pH~6.0 and below, allowing non-recycling ligands (e.g. LDL etc.) to dissociate from their receptors and sort into late endosomes (~pH 5.5) and lysosomes (~pH 5.0). Acidic conditions in the lysosomal system are then thought to facilitate protein denaturation and degradation (McCoy and Schwartz, 1988; Chapman, 2006). In contrast to such nonrecycling receptors, trafficking of recycling receptors is thought to proceed through a distinct sorting compartment, also known as the recycling center, before returning to the plasma membrane for reuse. Unlike lysosomes, these recycling compartments have been demonstrated to have pHs between 6 and 7 (Maxfield and McGraw, 2004). The fact that the FR endocytic pathway is characterized by compartmental pHs in this range can now be viewed as consistent with the fact that FR does not traffic to lysosomes, but rather is recycled back to the cell surface for further use. Importantly, this pH gradient along the FR endocytic pathway is conducive to folate acquisition by mammalian cells. Thus, unlike folic acid which remains bound to FR throughout the endocytic pathway, 5-methyltetrahydrofolate, the common form of folate in the body, rapidly loses its affinity for FR upon endosomal acidification and is consequently released into the cytosol where it participates in various biological processes.

Finally, as noted above, when Lee et al. employed polymeric folate conjugates derivatized with multiple folates to measure the pH in FR+ endosomes, they observed pH values between pH 4.7 and 5.8, with the most frequent pH value around 5.0 (Lee et al., 1996). Importantly, subsequent research from other labs (Fivaz et al., 2002) has now
shown that multivalent ligands traffic rapidly to late endosomes/lysosomes where the pH is normally in the range measured by Lee et al. This observation not only explains the apparent discrepancy between the Lee et al. data and our own, but it also suggests that the choice of a releasable linker for folate-targeted drug delivery should be guided by the valence of the conjugate employed. Whenever a multivalent folate conjugate such as a dendrimer (Choi et al., 2005; Majoros et al., 2006), liposome (Reddy and Low, 2000; Shi et al., 2002; Sudimack et al., 2002), or lipoplex (Xu et al., 2001), etc. is to be constructed, a pH-sensitive linker may prove optimal for efficient drug release. In contrast, where a monovalent folate conjugate is to be delivered, a disulfide-linked conjugate (Yang et al., 2006), should provide superior intracellular drug delivery.
Acknowledgements

We thank Dr. Santhapuram Hari Krishna, Paul Kleindl for their advice on the synthesis of the ALFR conjugate; Peggy Beck for her assistance with the LC-MS, and Erina Vlashi for providing the folate-rhodamine. We also appreciate the insightful comments from Dr. Christopher Leamon.
References

Footnotes

Current address (J.Y.): St. Jude Children’s Research Hospital, Memphis, TN 38105
Legends for figures

Scheme 1 Synthesis of the acid-labile folate-FRET reporter (i.e. ALFR)

Figure 1 Schematic representation of acid-triggered hydrolysis ALFR and its association with dequenching of BODIPY FL fluorescence. In the intact folate-FRET probe, emission of BODIPY FL fluorescence is depressed by the quencher, namely dabcy1, due to fluorescence resonance energy transfer (FRET) from BODIPY FL to dabcy1. Upon hydrolysis of the acyl hydrazone, BODIPY FL is released from the folate backbone, resulting in loss of FRET and concurrent recovery of BODIPY FL fluorescence.

Figure 2 pH-dependent hydrolysis of acid-labile folate-FRET reporter (ALFR). ALFR was dissolved at various pHs (i.e. pH 4 (open triangles), pH 5 (solid triangles), pH 6 (open circles), and pH 7 (solid circles)), and incubated at room temperature for the indicated lengths of time. The solutions were then examined by fluorescence spectrophotometry (excitation: 488 nm and emission: 520 nm) to quantitate the rate of appearance of BODIPY FL fluorescence.

Figure 3 Hydrolysis of ALFR during FR-mediated endocytosis and measurement of pH in FR-containing endosomes. A-D: Hydrolysis of ALFR during FR-mediated endocytosis in KB cells. Cells were incubated for 0.5 h with a mixture of the ALFR (100
nM) and folate rhodamine (a known ligand for FR, 100 nM), and then washed to remove unbound conjugate. Cells were imaged by confocal microscopy for BODIPY FL fluorescence after 1.5 h (A), 5.5 h (B), or 18.5 h (C) further incubation in culture medium ($\lambda_{\text{ex}} = 488$ nm). As a positive control, the same cells were imaged for rhodamine fluorescence ($\lambda_{\text{ex}} = 543$ nm) at the above time points (image at 18.5 h shown as panel D) to assure that FR internalization occurred normally. E-H: measurement of pH in FR-containing endosomes of KB cells by ratiometric imaging. Cells were incubated with an equal molar concentration of folate-FITC (a pH-sensitive conjugate) and folate-rhodamine (a pH-insensitive conjugate) (100 nM) for 0.5 h and washed to remove the unbound ligands. Cells were then incubated in fresh medium for another 3 h to allow receptor-mediated endocytosis to reach a steady state. Confocal images were obtained at excitation wavelengths for fluorescein (488 nm, (E) and rhodamine (543 nm, (F)). Panel H shows an overlay of panels E and F. Calibration curve (G) was established by comparing fluorescein and rhodamine fluorescence from pH 5.2 to 6.8, as described in methods.

Figure 4 Histogram of KB cell compartmental pH values. The histogram represents pH values calculated by ratioing 132 endosomal areas (approximately 30-40 vesicles from each of four cells) in the folate-FITC and folate-rhodamine images, as described in the materials and methods. The experiment was repeated three times with similar results.
Scheme 1

Folate-dabcyl

Synthesis of the acid-labile folate-FRET reporter (ALFR)

C₄₉H₅₃F₃N₁₄O₁₃S
Mol. Wt.: 1135.09

C₇₅H₇₇BF₅N₁₉O₁₆S
Mol. Wt.: 1638.4

TFA, THF
DIPEA, DMSO

This article has not been copyedited and formatted. The final version may differ from this version.
Figure 1
Figure 3
Figure 4

Percentage of total FR endosomes present vs pH.