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ABSTRACT 

The effects of THI 53 (2-naphtylethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline), on NO 

production and iNOS protein induction by LPS were investigated in RAW 264.7 cells and 

mice. In cells, THI 53 concentration-dependently reduced NO production and iNOS protein 

induction by LPS. In addition, THI 53 inhibited NO production and iNOS protein induction 

in LPS-treated mice. LPS-mediated iNOS protein induction was inhibited significantly by the 

specific tyrosine kinase inhibitor AG126 as well as THI 53. In addition, a JNK inhibitor 

(SP600125), but not an ERK inhibitor (PD98029) or a p38 inhibitor (SB203580), reduced 

iNOS protein level induced by LPS. Moreover, a Janus kinase 2 (JAK2) inhibitor AG490 

dose-dependently prevented LPS-mediated iNOS protein induction. LPS activated 

phosphorylations of tyrosine kinases, especially Tyk2 and STAT-1; these were reduced by 

THI 53. LPS also phosphorylated the JNK pathway; however, this was unaffected by THI 53. 

Interestingly, a JNK inhibitor (SP600125) and another tyrosine kinase inhibitor (genistein) 

significantly inhibited STAT-1 phosphorylation, suggesting that LPS-activated JNK pathway 

and a tyrosine kinase pathway (especially Tyk2) may link to the STAT-1 pathway, which is 

involved in iNOS induction. However, THI 53 regulates LPS-mediated iNOS protein 

induction by affecting the Tyk2/JAK2-STAT-1 pathway, not the JNK pathway. The inhibition 

THI 53 on LPS-induced NO production was recovered by a tyrosine phosphatase inhibitor 
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(Na3VO4), which supports that THI 53 inhibits the LPS-induced inflammatory response 

through regulation of tyrosine kinase pathways. THI 53 also inhibited LPS-mediated IFN-β 

production and NF-κB activation. Thus, THI 53 may regulate LPS-mediated inflammatory 

response through both the NF-κB and IFN-β/Tyk2/JAK2-STAT-1 pathways. 
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Introduction 

The expression of inducible nitric oxide synthase (iNOS) and the production of large 

quantities of nitric oxide (NO) may contribute to the pathophysiology of endotoxemia or 

sepsis (Thiemermann and Vane, 1990). Moreover, mice carrying the null mutant gene for 

iNOS are resistant to the hypotension and death caused by lipopolysaccharide (LPS) 

treatment (Wei et al., 1995; MacMicking et al., 1995). Thus, iNOS might play a central role 

in LPS-induced death. Many iNOS inhibitors have been reported to be beneficial in 

endotoxemic conditions. Previously, we reported that isoquinoline analogs inhibit iNOS 

mRNA and protein expression in rat aorta and RAW 264.7 cells, induced by LPS and 

cytokines (Tainlin et al., 1982; Kang et al., 1992; Chen et al., 1997). Therefore, isoquinoline 

alkaloids are of special interest for their pharmacological actions on inflammation and related 

disorders. In fact, isoquinoline alkaloids such as tetrandrine and higenamine have been used 

for several decades for the treatment of silicosis and arthritis, two disease states associated 

with considerable inflammatory mediator release (Kondo et al., 1993; Kang et al., 1999a). 

The anti-inflammatory and antirheumatoid activities of isoquinoline chemicals might be 

associated with inhibition of the transcription agent nuclear factor kappa B (NF-κB) (Chen et 

al., 1997; Kang et al., 1999b) or suppression of the production of tumor necrosis factor (TNF) 

(Tainlin et al., 1982). However, the exact mechanism is not yet clear. 
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The induction of iNOS expression involves the activation of multiple signal 

transduction pathways, including mitogen-activated protein kinases (MAPK) such as p38, 

ERK1/2 or JNK, NF-κB, PI3 kinase, and Janus tyrosine kinase (JAK)-signal transducers and 

activators of transcription (STATs) (Dell’Albani et al., 2001; Liu et al., 2001; Tan et al., 2002). 

Both in vitro and in vivo studies with tyrosine kinase inhibitors have shown that activation of 

tyrosine kinases is necessary for a number of the biological responses to LPS, including 

activation of JNK (Dong et al., 1993; Novogrodsky et al., 1994; Hambleton et al., 1996). 

Moreover, tyrosine kinase 2 (Tyk2) is essential for LPS-induced endotoxin shock (Kamezaki 

et al., 2004). Tyk2 belongs to the JAK family, and the best-known substrate for these factors 

is the family of STAT proteins (Rane and Reddy, 2000; Ihle, 1995; 2001). The members of 

the JAK family, JAK1, JAK2, JAK3 and Tyk2, act as important protein tyrosine kinases 

(PTKs) (O’Shea et al., 2002; Schindler, 2002). JAK2 is reported to be involved in the LPS-

induced expression of iNOS in skin-derived dendritic cells (Cruz et al., 2001); however, little 

is known about the molecular mechanisms by which JAK2 transduces the LPS-induced 

signals to downstream molecules to activate proinflammatory genes. Because higenamine 

(Kang et al., 1999a) and related isoquinolines (Kang et al., 1999b) effectively reduce iNOS 

gene expression in RAW 264.7 cells and smooth muscle cells by inhibition of NF-κB, we 

speculate that the isoquinoline molecular backbone may be important for the inhibition of 
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NF-κB. In this process, phosphorylation of IκBα is vulnerable, hindering translocation of p65 

from the cytosol to the nucleus (Kang et al., 2003). Indeed, it is possible to affect the LPS-

activated PTKs pathway and its signaling cascade including MAPK or JAK/STATs by 

isoquinolines. Therefore, the purpose of the present study was to determine whether THI 53 

(Fig. 1), a newly synthesized isoquinoline alkaloid, inhibits NO production as well as iNOS 

expression in RAW 264.7 murine macrophage cells and in mice stimulated by LPS. In 

addition, we aimed to determine the molecular mechanism by which THI 53 inhibits iNOS 

induction by LPS in RAW264.7 cells. The procedure for the total synthesis of THI 53 is now 

being prepared for publication in a relevant journal. 
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Materials and methods 

Materials. Dulbecco’s modified Eagle’s medium (DMEM), fetal bovine serum 

(FBS), and antibiotics (penicillin/streptomycin) were purchased from Gibco BRL (Rockville, 

MD). Anti-iNOS antibody was from Transduction Laboratories (Lexington, KY), and anti-p-

Tyk2, anti-p-JNK, and anti-p-STAT-1 antibodies were from Cell Signaling Technology 

(Beverly, MA). Horseradish peroxidase labeled goat anti-rabbit IgG was from Santa Cruz 

Biotechnology (Santa Cruz, CA). AG490, AG126, SB203580, and PD98059 were from 

Calbiochem (San Diego, CA). Enhanced chemiluminescence (ECL) western blotting 

detection reagent was from Amersham (Buckinghamshire, UK). All other chemicals, 

including LPS (E. Coli serotype 0128:B12), SP600125 and genistein, were from Sigma-

Aldrich. (St. Louis, MO). 

Cell culture. RAW 264.7 cells were obtained from the American Type Culture 

Collection (ATTC, Rockville, MD). The cells were grown in RPMI-1640 medium 

supplemented with 25 mM N-(2-hydroxyethyl)piperazine-N-2-ethanesulphonic acid (HEPES), 

100 U/ml penicillin, 100 µg/ml streptomycin and 10% heat-inactivated fetal calf serum. 

Cell viability. Cell viability was determined colorimetrically using the MTT assay. 

Cells at the exponential phase were seeded at 1 × 104 cells/well in 24-well plates. After 

different treatments, 20 µl of 5 mg/ml MTT solution was added to each well (0.1 mg/well) 
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and incubated for 4 h, the supernatants were aspirated and the formazan crystals in each well 

were dissolved in 200 µl dimethyl sulfoxide (DMSO) for 30 minutes at 37 °C, and optical 

density at 570 nm was read on a Microplate Reader (Bio-Rad, Hercules, CA). 

Cell stimulation. RAW 264.7 cells were plated at a density of 1 × 107 cells per 100 

mm dish. The cells were rinsed with fresh medium and stimulated with LPS (1 µg/ml) in the 

presence or absence of different concentrations of THI 53 (1–30 µM) simultaneously. THI 53 

was dissolved in sterile distilled water and sterilized via a 0.2 µm filter. 

Assay for nitrite production. Nitric oxide was measured as its stable oxidative 

metabolite, nitrite (NOx), as described by Kang et al. (1999a). At the end of the incubation, 

100 µl of the culture medium was mixed with an equal volume of Griess reagent (0.1% 

naphthylethylenediamine dihydrochloride and 1% sulfanilamide in 5% phosphoric acid). 

Light absorbance was measured at 550 nm, and the nitrite concentration was determined 

using a curve calibrated on sodium nitrite standards. 

Western blot analysis. The cells were harvested and lysed with buffer containing 

0.5% SDS, 1% NP-40, 1% sodium deoxycholate, 150 mM NaCl, 50 mM Tris-Cl (pH 7.5), 

and protease inhibitors. The protein concentration of each sample was determined using a 

BCA protein assay kit (Pierce, Rockford, IL). To detect iNOS, 20 µg of the total protein was 

electrophoresed on a 10% polyacrylamide gel, and to detect phosphor-Tyk2, STAT-1 or JNK,  
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30 µg of the total protein was electrophoresed on a 12% polyacrylamide gel. The gels were 

transferred to polyvinylidene difluoride (PVDF) membranes by semidry electrophoretic 

transfer at 15 V for 60–75 min. The PVDF membranes were blocked overnight at 4 °C in 5% 

bovine serum albumin (BSA). The cells were incubated with primary antibodies diluted 

1:500 in Tris-buffered saline/Tween 20 (TBS-T) containing 5% BSA for 2 h and then 

incubated with the secondary antibody at room temperature for 1 h. Anti-rabbit IgG was used 

as the secondary antibody (1:5000 dilution in TBST containing 1% BSA). The signals were 

detected by ECL (Amersham, Piscataway, NJ). 

Quantitative mouse IFN-β immunoassay. The quantity of IFN-β secreted into the 

culture medium was analyzed using a commercially available mouse IFN-β enzyme-linked 

immunosorbent assay (ELISA) kit (catalogue number 42400-1, R&D Systems, Minneapolis, 

MN), according to the manufacturer’s manual. Both the samples and standards were assayed 

in parallel. 

Transfection. Transient transfections with NF-κB-luciferase constructs were as 

described by Kim et al. (2006) using Lipofectin (Gibco-BRL, Rockville, MD). Briefly, 5 × 

105 cells were plated on 60 mm plates the day before transfection and grown to about 70% 

confluence. Cells were transfected with empty vector (pGL3 and/or pcDNA3), or 1 µg of NF-

κB-luciferase + 0.5 µg of pRL-TK-luciferase. Transfections were allowed to proceed for 4 h.  
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The transfected cells were washed with 4 ml of 1 × phosphate buffered saline (PBS, pH 7.4) 

and then stimulated with 1 µg/ml LPS. The cells were cultured in serum-free DMEM until 

harvested. Luciferase activity was normalized using a pRL-TK-luciferase activity (Renilla 

luciferase activity) for each sample. 

Luciferase assay. After experimental treatments, cells were washed twice with cold 

PBS, lysed in a passive lysis buffer provided in the dual luciferase kit (Promega, Madison, 

WI) and assayed for luciferase activity using TD-20/20 luminometer (Turner Designs, 

Sunnyvale, CA) according to the manufacturer’s protocol. All transfections were done in 

triplicate. The data are presented as a ratio between Firefly and Renilla luciferase activity. 

Plasma nitrite/nitrate measurement. Mice (ICR strain, 22-25 g, male) were 

divided into four groups: (i) LPS (10 mg/kg, i.p., n = 4), (ii) LPS plus THI 53 (20 mg/kg, i.p., 

n = 4), (iii) saline (i.p., n = 4), and (iv) THI 53 (20 mg/kg, i.p., n = 4). THI 53 was 

administered 30 min before LPS injection. Eight hours after LPS treatment a whole blood 

sample was taken by cardiac puncture after anesthetizing the mice with pentobarbital. The 

plasma nitrate concentration was determined by reducing the nitrate enzymatically, using 

nitrate reductase from Aspergillus species. Briefly, plasma samples were diluted 1:10 with 

distilled water and incubated with assay buffer (composition in mM): KH2PO4 50, NADPH 

0.6, FAD 5 and nitrate reductase 10 U/ml, pH 7.5, for 30 min at 37 °C. Subsequently, culture  
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medium was mixed with an equal volume of Griess reagent (mixture of 1 part of 1% 

sulfanilamide in 5% phosphoric acid and 1 part of 0.1% naphthylethylenediamine 

dihydrochloride in water) and incubated at room temperature for 10 min. The absorbance at 

550 nm of the mixture was determined using a microplate reader. Mice were maintained in 

accordance with the Guide for the Care and Use of Laboratory Animals published by the U. S. 

National Institutes of Health (NIH publication No. 85-23, revised 1996) and were treated 

ethically. The protocol was approved in advance by the Animal Research Committee of the 

Gyeongsang National University, Korea. 

iNOS protein detection in LPS-treated mice. The lung tissues were homogenized 

in a buffer containing 50 mM Tris/Cl, pH 7.5. 1 mM EDTA, 1 mM leupeptin, 1 mM pepstatin 

A, 0.1 mM phenylmethylsulfonyl fluoride and 1 mM dithiothreitol, and sonicated. The 

homogenates were then centrifuged at 7,500 g for 15 min four times, and the supernatants 

were subjected to SDS–PAGE (7.5% gels). The separated proteins were transferred 

electrophoretically to PVDF membranes, and the membrane was incubated with anti-iNOS 

antibody complexes that were detected using ECL western blotting detection reagents 

according to the manufacturer’s instructions. 

Statistical evaluations. Data are expressed as the mean ± SEM of results obtained 

from the number (n) of animals used. Differences between data sets were assessed by one- 
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way analysis of variance (ANOVA) followed by Newman-Keuls tests. P < 0.05 was accepted 

as statistically significant. 
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Results 

Effects of THI 53 on LPS-mediated NO production and iNOS protein induction 

in RAW264.7 cell lines. Previously, nitrite increased time dependently and peaked 18 h after 

LPS treatment in cultured RAW 264.7 cells (Kang et al., 1999a). Thus, we treated the cells 

with LPS in the presence of THI 53 (5, 10, 20, 30 µM) for 18 h. The accumulated nitrite was 

3.8 ± 1.07 µM in control media, which increased to 19.5 ± 1.24 µM following LPS treatment 

for 18 h. Cotreatment of THI 53 decreased the nitrites concentration dependently (Fig. 2A). 

Western blot analysis was performed to determine if the reduced production of NO by THI 53 

was caused by the inhibition of iNOS expression. THI 53 decreased LPS-mediated iNOS 

protein production in a concentration-dependent manner (Fig. 2B). More than 80% of cells 

were viable at treatments of up to 20 µM THI 53 in the presence of LPS. 

Effects of THI 53 on NO production and iNOS protein induction in LPS-treated 

mice. To confirm further the effect of THI 53 on NO production and iNOS protein induction 

in vivo, we examined plasma NOx levels and iNOS protein levels in lung tissues of mice 

injected with LPS (10 mg/kg) with or without THI 53 (20 mg/kg, i.p.). Eight hours after LPS 

injection, the plasma NOx was elevated to 38 ± 3.5 µM, which was decreased significantly to 

19 ± 1.8 µM by treatment with 20 mg/kg of THI 53. Because lung tissues are known to 

express iNOS protein abundantly when LPS is injected in rats and other animals, we  

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on November 15, 2006 as DOI: 10.1124/jpet.106.112052

 at A
SPE

T
 Journals on A

pril 20, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


 16 

JPET #112052 

investigated whether iNOS protein expression was reduced by THI 53 in lung tissues from 

LPS-treated mice. As expected, the iNOS protein in lung tissue increased markedly after LPS 

challenge, whereas THI 53 (20 mg/kg) significantly reduced this. Treatment with saline or 

THI 53 alone (20 mg/kg, i.p.) had no effect on NOx production or iNOS protein expression 

(Fig. 3). 

The differential involvement of MAPK and Janus tyrosine kinase 2 (JAK2) 

pathways in the iNOS induction by LPS. As mentioned in the introduction, the most 

extensively investigated intracellular signaling cascades involved in proinflammatory 

responses such as iNOS expression are the MAPK pathway and JAK/STATs pathway 

(including Tyk2). Therefore, we first confirmed the role of MAPK or JAK2 on LPS-mediated 

iNOS induction to clarify the action of THI 53 on the anti-inflammatory response. LPS-

mediated iNOS protein induction was significantly inhibited by the specific tyrosine kinase 

inhibitor AG126 as well as by THI 53 (Fig. 4A). In addition, the JNK inhibitor SP600125 

reduced the iNOS protein level induced by LPS, but the ERK inhibitor PD98059 or the p38 

inhibitor SB203580 did not affect this (Fig. 4B). Moreover, the JAK2 inhibitor AG490 

prevented LPS-mediated iNOS protein induction in a dose-dependent manner. 

Effects of THI 53 on the tyrosine kinase pathway and JNK pathway involved in 

LPS-mediated iNOS expression. Treatment with various kinase inhibitors or with THI 53 
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showed that increased iNOS protein production induced by LPS occurs via JNK of the 

MAPK, tyrosine kinase and JAK2 pathways. This suggested that THI 53 may affect LPS-

activated kinase pathways. Thus, we next examined whether THI 53 inhibited LPS-mediated 

phosphorylation of tyrosine kinase, especially Tyk2. Phosphorylation of Tyk2 peaked 60 min 

after LPS treatment, and this was reduced by treatment with THI 53 (20 µM) (Fig. 5A). In 

addition, phosphorylation of STAT-1 was first detected 2 h after LPS treatment, peaked at 4 

and 8 h, and then decreased (Fig. 5B). The level of phosphorylated STAT-1 was also reduced 

by THI 53 (20 µM). In addition, JNK was phosphorylated and peaked first at 1 h but again 

much more strongly at 16 h after LPS challenge (Fig. 5C). When we examined if THI 53 

inhibited LPS-phosphorylated JNK at 1 h, we found that THI 53 failed to inhibit JNK 

phosphorylation by LPS: instead it was enhanced prominently (Fig. 5C). 

Next, we aimed to investigate the LPS-related signaling cascade between tyrosine 

kinase, JNK and JAK-STAT pathways. JNK inhibitor (SP600125) and another tyrosine kinase 

inhibitor (genistein) inhibited STAT-1 phosphorylation significantly, suggesting that the LPS-

activated JNK and tyrosine kinase pathways (especially Tyk2) may link to the STAT-1 

pathway (Fig. 5D). Moreover, THI 53 and AG126 (a tyrosine kinase inhibitor) effectively 

inhibited LPS-induced NO production (Fig. 6A). This effect was counteracted by the tyrosine 

phosphatase inhibitor Na3VO4 in a dose-dependent manner (Fig. 6B, C). This result supports  
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the hypothesis that the inhibitory effects of THI 53 on LPS-mediated inflammatory response 

are regulated via tyrosine kinase pathways.  

Phosphorylated STAT-1 is involved in iNOS expression. Because JAK/STAT 

pathway is in the downstream of IFN-β production and THI53 inhibited STAT-1 

phosphorylation in our results, finally, we’d like to confirm if THI 53 inhibits iNOS 

expression by LPS through the regulation of IFN-β/JAK-2-STAT-1 pathway. Thus, we 

investigated the effect of THI 53 on the induction of IFN-β by LPS. As expected, LPS 

induced IFN-β production in a time dependent manner, started to increase prominently at 2 h 

and showed dramatic increase of IFN-β production at 4 h of LPS treatment, which was 

efficiently inhibited by treatment of THI 53 (Fig. 7). 

Effect of THI 53 on the activation of NF-κB by LPS. LPS activates IκB kinase and 

MAP kinases, which result in the activation of NF-κB and AP-1. The inducibility of iNOS 

depends upon NF-κB (Xie et al., 1994). Therefore, we investigated the effect of THI 53 on 

NF-κB activation by LPS. As expected, THI 53 appeared to inhibit NF-κB activation by LPS, 

when determined by western blot analysis and luciferase assay (Fig. 8A, B). However, this 

inhibitory effect of NF-κB activation by THI 53 was not pronounced, which means that the 

LPS-mediated inflammatory response may be mediated through both the NF-κB and 

Tyk2/JAK2-STAT-1 pathways. 
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Discussion 

We demonstrated here that THI 53 reduced NO production and iNOS protein 

induction concentration dependently in LPS-treated RAW 264.7 cells. NO is massively 

generated from iNOS in endothelial and vascular smooth muscle cells several hours after a 

challenge with LPS and is known as an important pathologic mediator of endotoxin shock 

(Kilbourn et al., 1990). Therefore, selective inhibitors of iNOS with various chemical 

structures have been used as tools for the investigation of LPS-induced sepsis in animals. 

Some isoquinoline alkaloids inhibit NO production and iNOS induction in vascular smooth 

muscle cells and RAW 264.7 cells activated with LPS and/or IFN-γ (Kang et al., 1999a,b). 

We have confirmed that THI 52 inhibits both TNF-α and iNOS mRNA expression in RAW 

264.7 cells activated with LPS via regulation of NF-κB activation (Kang et al., 2003). In the 

present study, we showed that THI 53, a newly synthesized isoquinoline alkaloid and a 

structural analog of THI 52, blocked NO production and iNOS protein induction in 

RAW264.7 macrophage cells and in lung tissues from mice following LPS stimulation. In 

addition, THI 53 inhibited LPS-mediated phosphorylations of Tyk2 and STAT-1, which are 

involved in iNOS expression. Furthermore, we demonstrated that LPS-phosphorylated JNK 

was also involved in iNOS induction; however, THI 53 did not inhibit the LPS-activated JNK 

pathway. Phosphorylated JNK peaked twice following LPS treatment, once at 1 h and later at  
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16 h, whereas phosphorylated STAT-1 peaked at 4–8 h. Therefore, we presume that LPS may 

activate Tyk2 and JNK, followed by activation of JAK2/STAT-1 pathways; thereafter, JNK is 

phosphorylated again by activated STAT-1 (Fig. 9). 

Although the cellular and biochemical mechanisms leading to endotoxicity are not 

understood completely, it is generally accepted that LPS acts via endogenous mediators, 

mainly produced by mononuclear phagocytes (Nathan, 1987). LPS is mainly triggered and 

regulated by a series of signaling pathways including the NF-κB transcription factor and 

MAPKs (Marczin et al., 1993; Paul et al., 1995). There is one report that LPS activates MAP 

kinases to induce COX-2 but not iNOS in RAW 264.7 cells (Paul et al., 1999). In contrast, 

many chemicals inhibit iNOS induction by blocking MAPKs in macrophages activated by 

LPS (Lee et al., 2000; Chakravortty et al., 2001). In the present study, we found that the 

specific JNK inhibitor SP600125 effectively reduced LPS-induced iNOS protein levels; 

however, the specific ERK1/2 inhibitor PD98059 and the p38 MAP kinase inhibitor 

SB203580 did not inhibit iNOS induction by LPS. This suggests a differential role of MAPK 

in LPS-mediated iNOS induction even though THI 53 did not inhibit the JNK pathway 

activated by LPS. 

LPS is the major active agent in the pathogenesis of endotoxin-mediated shock. The 

binding of LPS to toll-like receptor 4 (TLR4) leads to the activation of monocytes and  
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macrophages, which then release cytokines and NO. LPS activates both MyD88-dependent 

and MyD88-independent pathways, each of which leads to the activation of MAPKs and NF-

κB. In addition to the signaling cascade downstream of TLR4 (Akira, 2003), IFN-β and IFN-γ 

are also involved in sensitivity to LPS. Deficiencies in the IFN-β (Karaghiosoff et al., 2003) 

or IFN-γ receptors (Car et al., 1994) result in resistance to high dose LPS challenge. 

Kamezaki et al. (2004) reported that the LPS-induced activations of NF-κB and AP-1 were 

unaffected by the absence of Tyk2, and that IFN-β and γ signals activated by LPS challenge 

were severely affected in Tyk2-deficient mice. Tyk2 is a member of the JAK family and has 

been demonstrated to play a restricted role in IFN-α/β signaling and to have an important role 

in IL-12 signaling (Karaghiosoff et al., 2000; Shimoda et al., 2000). Some IFN-α/β-induced 

biological activities, such as inhibition of the growth of bone marrow progenitor cells, and 

NO production from macrophages after LPS stimulation, were abrogated in the absence of 

Tyk2. In addition, it has been reported the role of STAT-1 in the induction by LPS of the 

iNOS gene in mouse macrophages (Gao et al., 1998). From these reports, we speculate that 

there may be two pathways related to LPS challenge: one via NF-κB and the other via the 

link between Tyk2 and IFN. Our results also showed that THI 53 effectively inhibited LPS-

induced iNOS expression, LPS-activated Tyk2 and STAT-1 phosphorylation, but its inhibitory 

effect on LPS-activated NF-κB was relatively weak. In fact, Fig. 7 showed that LPS 
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treatment induced IFN-β production in a time dependent manner, which is efficiently 

inhibited by treatment of THI 53. This may be because the LPS-mediated inflammatory 

response is mediated through not only the NF-κB pathway but also the IFN-β/Tyk2/JAK-2-

STAT-1 pathway. Our result is supported by Jung et al. (2005), where TLR4 agonists such as 

LPS induced NF-κB activation and IFN-β production in microglia, and neutralizing Ab 

against IFN-β attenuated TLR4-mediated microglial apoptosis. IFN-β alone, however, did not 

induce a significant cell death. 

Okugawa et al. (2003) reported that JAK2 regulated phosphorylation of JNK by LPS 

in RAW264.7 cells, and we showed that inhibition of JNK pathway with the specific JNK 

inhibitor SP600125 reduced phosphorylated STAT-1. Furthermore, we found that LPS 

activated the JNK and Tyk2-JAK2/STAT-1 pathways; consequently, phosphorylated STAT-1 

reactivates JNK. The major function of the JAK family kinases is considered to be activation 

of STAT. Thus, from these reports, we can conclude that LPS-induced activation of JAK2 

protein tyrosine kinase pathway in macrophages is central to mediation of inflammation 

through Tyk2/JAK2-STAT-1. In addition, we wish to highlight the role of JNK in LPS-

induced inflammation by activating STAT-1 phosphorylation or by affecting other 

transcription factors such as AP-1, even though JNK is not a point where THI 53 acts to 

inhibit the LPS-mediated iNOS induction. We conclude that the ability of THI 53 to suppress 
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NO production and iNOS expression by LPS is via regulation of the Tyk2 pathway linked to 

JAK2-STAT-1, and via NF-κB activated by LPS. Thus, THI 53 is highly likely to be 

therapeutic in conditions where upregulation of iNOS is the main cause of health problems, 

such as septic shock. 
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Legends for Figures 

Fig. 1. The structure of the isoquinoline compound THI 53: 2-naphtylethyl-6,7-dihydroxy-

1,2,3,4-tetrahydroisoquinoline. 

 

Fig. 2. Effects of THI 53 on NO production and iNOS protein level (A), and cell viability (B) 

in RAW 264.7 cells activated with LPS (1 µg/ml). (A) RAW264.7 cells were stimulated with 

LPS for 18 h in the presence of different concentrations of THI 53 (5, 10, 20 and 30 µM). 

After treatment of LPS with and without THI 53 for 18 h, aliquots (100 µL) of the culture 

medium were mixed with an equal volume of Griess reagent. The absorbance at 570 nm was 

measured, and the nitrite concentration was determined using a curve calibrated to sodium 

nitrite standards. Treatment with THI 53 reduced LPS-induced iNOS protein levels in RAW 

264.7 cells. (B) Cell viability was determined by MTT assay as described in the methodology. 

Data represent the mean ± SEM of triple determinations. One-way analysis of variance was 

used to compare group means, followed with Newman–Keuls tests (significance compared 

with the control, ** P < 0.01; significance compared with LPS, † P < 0.05 or ‡ P < 0.01). 

 

Fig. 3. Effect of THI 53 on plasma NOx levels and iNOS induction in LPS-treated mice. 

Mice were pretreated with 20 mg/kg of THI 53 for 30 min. Thereafter, mice were activated 
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by LPS (10 mg/kg) for 8 h, and plasma NOx (A) or iNOS protein levels in the lung tissues 

were measured following euthanasia. Data represent the mean ± SEM of three experiments. 

One-way analysis of variance was used to compare the multiple group means followed by 

Newman–Keuls tests (significance compared with the control, ** P < 0.01; significance 

compared with LPS, ‡ P < 0.01). 

 

Fig. 4. Signaling pathway involved in LPS-induced iNOS expression in RAW264.7 cells. 

RAW 264.7 cells were stimulated with LPS (1 µg/ml) for 18 h after 1 h pretreatment with 

various kinase inhibitors, and iNOS protein levels from cell lysate were detected by western 

blotting. (A) AG126, a tyrosine kinase inhibitor given together with THI 53 reduced the 

iNOS level induced by LPS. (B) SP600125, a specific JNK inhibitor, significantly inhibited 

LPS-mediated iNOS expression, but an ERK1/2 inhibitor PD98059 or the p38 inhibitor 

SB203580 did not. (C) AG490, a Janus kinase 2 (JAK2) inhibitor, also blocked LPS-induced 

iNOS expression. The results were confirmed by two independent experiments. 

 

Fig. 5. Inhibition of THI 53 on LPS-mediated Tyk2 and STAT-1 phosphorylation. Cell lysates 

were extracted from cells treated with LPS at the indicated times, and western blot analysis 

was performed using antibodies to phosphorylated Tyk2 and Tyk2 (A), to phosphorylated  
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STAT-1 and STAT-1 (B), or to phosphorylated JNK and JNK (C). Pretreatment with THI 53 

(20 µM) prevented activation of the LPS-induced Tyk2 or STAT-1 pathway; this did not 

prevent JNK phosphorylation by LPS but enhanced it. (D) To investigate the involvement of 

tyrosine kinase or JNK in the STAT-1 pathway by LPS, cells were treated with a tyrosine 

kinase inhibitor (genistein; GT) or a JNK inhibitor (SP600125). The experiments were 

repeated twice. 

 

Fig. 6. The inhibitor of tyrosine phosphatase, Na3VO4, reversed the inhibition of NO 

production caused by THI 53 or by the tyrosine kinase inhibitor AG126 in dose-dependent 

manners. (A) THI 53 (20 µM) or AG126 (20 µM), a tyrosine kinase inhibitor, reduced NO 

production in LPS-treated RAW 264.7 cells. Cells were pretreated with the tyrosine 

phosphatase inhibitor Na3VO4 (1 µM or 5 µM for 1 h) and were then stimulated with LPS. 

The tyrosine phosphatase inhibitor reversed the inhibition of LPS-induced NO production 

caused by THI 53 (B) or AG126 (C). Data represent the mean ± SEM of triple determinations. 

One-way analysis of variance was used to compare the multiple group means followed by 

Newman–Keuls test (significance compared with the control, ** P < 0.01; significance 

compared with LPS, † P < 0.05 or ‡ P < 0.01; significance compared with THI 53 or AGS126, 

§ P < 0.05 or §§ P < 0.01). 
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Fig. 7. Effects of THI 53 on LPS-induced IFN-β production in RAW 264.7 cells. ELISA was 

performed using the supernatant from the LPS-treated cells in a time-dependent manner. 

Before LPS treatment, cells were pretreated with THI 53 (20 µM) for 1 h. The data are 

presented as means ± SEM of three independent experiments. One-way analysis of variance 

was used for comparisons of the multiple group means followed by Newman–Keuls test 

(significance compared to the control, ** P < 0.01; significance compared with LPS, † P < 

0.05 or ‡ P < 0.01). 

 

Fig. 8. Effects of THI 53 on LPS-induced NF-κB activation. (A) Cells were pretreated with 

THI 53 (5, 10 or 20 µM) for 1 h and then treated with LPS (1 µg/ml) for 1 h. After treatment, 

nuclear or cytoplasmic fractions were extracted and NF-κB (p65) protein level was 

determined by western blot analysis as described in the methodology. The data are from two 

independent experiments. (B) Cells were transfected with empty vector or 1 µg of NF-κB-

luciferase plus 0.5 µg of pRL-TK-luciferase. Cells were allowed to recover for 24 h and then 

treated with 1 µg/ml of LPS with/without THI 53 (5, 10 or 20 µMl). Cells were harvested 1 h 

after treatment. Luciferase activities are presented as fold activation relative to that of the 

untreated cells. Results are presented as the mean ± SEM of three independent experiments.  
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One-way analysis of variance was used to compare the multiple group means followed by 

Newman–Keuls test (significance compared with the control, * P < 0.05; significance 

compared to the LPS, † P < 0.05). 

 

Fig. 9. Possible mechanisms by which THI 53 inhibits LPS-mediated inflammatory responses 

such as iNOS induction or NO production. LPS activates Tyk2 and JNK pathways, which are 

linked to the STAT-1 and NF-κB pathways, resulting in iNOS induction. THI 53 can affect 

the IFN-β/Tyk2/JAK2-STAT-1 and NF-κB pathways but not the JNK pathway. 
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