# $N^1$ -(3-Cyclohexylbutanoyl)- $N^2$ -[3-(1*H*-imidazol-4yl)propyl]guanidine, a potent partial agonist for the human histamine H<sub>1</sub>- and H<sub>2</sub>-receptor

Sheng-Xue Xie, Anja Kraus, Prasanta Ghorai, Qi-Zhuang Ye, Sigurd Elz,

## Armin Buschauer, and Roland Seifert

High Throughput Screening Laboratory, The University of Kansas, Lawrence, KS 66045 (S.-X.X., Q.-Z.Y.)

Department of Medicinal Chemistry II, University of Regensburg, D-93053 Regensburg, Germany (P.G., A.K., A.B.)

Department of Medicinal Chemistry I, University of Regensburg, D-93053 Regensburg, Germany (S.E.)

Department of Pharmacology and Toxicology, The University of Kansas, Lawrence, KS 66045 (R.S.)

Department of Pharmacology and Toxicology, University of Regensburg, D-93053 Regensburg, Germany

(R.S.)

2

Running title: H<sub>1</sub>- and H<sub>2</sub>-receptor activation by imidazolylpropylguanidines

#### **Corresponding author:**

Dr. Roland Seifert, Department of Pharmacology and Toxicology, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany; Phone: +49-941-943-4770; Fax: +49-941-943-4772. Email: roland.seifert@chemie.uni-regensburg.de

Number of text pages: Number of Tables: Number of Figures: Number of words in the Abstract: Number of words in the Introduction: Number of words in the Discussion: Number of References:

Abbreviations used: AIPG,  $N^{G}$ -acylated imidazolylpropylguanidine; GPCR, G-proteincoupled receptor; gpH<sub>1</sub>R, guinea pig histamine H<sub>1</sub>-receptor; gpH<sub>2</sub>R, guinea pig histamine H<sub>2</sub>receptor; gpH<sub>2</sub>R-G<sub>sαS</sub>, fusion protein of the guinea pig histamine H<sub>2</sub>-receptor and the short splice variant of G<sub>sα</sub>; hH<sub>1</sub>R, human histamine H<sub>1</sub>-receptor; hH<sub>2</sub>R, human histamine H<sub>2</sub>receptor; hH<sub>2</sub>R-G<sub>sαS</sub>, fusion protein of the human histamine H<sub>2</sub>-receptor and the short splice variant of G<sub>sα</sub>; hIS, histamine; RGS protein, regulator of G-protein signaling; TM, transmembrane domain.

Section: Cellular & Molecular

3

## Abstract

Both the histamine  $H_1$ -receptor ( $H_1R$ ) and  $H_2$ -receptor ( $H_2R$ ) exhibit pronounced speciesselectivity in their pharmacological properties, i.e. bulky agonists possess higher potencies and efficacies at guinea pig (gp) than at the corresponding human (h) receptor isoforms. In this study, we examined the effects of  $N^{G}$ -acylated imidazolylpropylguanidines substituted with a single phenyl- or cyclohexyl substituent on  $H_1R$  and  $H_2R$  species isoforms expressed in Sf9 insect cells.  $N^{1}$ -(3-Cyclohexylbutanoyl)- $N^{2}$ -[3-(1*H*-imidazol-4-yl)propyl]guanidine (UR-AK57) turned out to be the most potent  $hH_2R$  agonist identified so far (EC<sub>50</sub> of 23 nM in the GTPase assay at the hH<sub>2</sub>R- $G_{s\alpha}$  fusion protein expressed in Sf9 insect cells). UR-AK57 was almost a full  $hH_2R$  agonist and only slightly less potent and efficacious than at  $gpH_2R$ - $G_{s\alpha}$ . Several N<sup>G</sup>-acylated imidazolylpropylguanidines showed similar potency at hH<sub>2</sub>R and  $gpH_2R$ . Most unexpectedly, UR-AK57 exhibited moderately strong partial  $hH_1R$  agonism with a potency similar to that of histamine, whereas at  $gpH_1R$ , UR-AK57 was only a very weak partial agonist. Structure/activity relationship studies revealed that both the alkanoyl chain connecting the aromatic or alicyclic substituent with the guanidine moiety and the nature of the carbocycle (cyclohexyl versus phenyl ring) critically determine the pharmacological properties of this class of compounds. Collectively, our data show that  $gpH_1R$  and  $gpH_2R$  do not necessarily exhibit preference for bulky agonists compared to  $hH_1R$ and hH<sub>2</sub>R, respectively, and that UR-AK57 is a promising starting point for the development of both potent and efficacious hH<sub>1</sub>R- and hH<sub>2</sub>R agonists.

4

JPET #102897

Introduction

Histamine (HIS) (1) (Fig. 1) is a neurotransmitter and autacoid and acts through  $H_1$ -,  $H_2$ -,  $H_3$ - and  $H_4$ -receptors (Hill et al., 1997; Hough, 2001; Bakker et al., 2002). The  $H_1R$  couples to  $G_q$ -proteins to mediate phospholipase C activation and plays a role in the regulation of alertness and as mediator of type 1 allergic reactions (Hill et al., 1997; Bakker et al., 2002). The  $H_2R$  couples to  $G_s$ -proteins to mediate adenylyl cyclase activation and regulates  $H^+$  secretion in gastric parietal cells, cardiac contractility and various myeloid cell functions (Klinker et al., 1996; Hill et al., 1997; Bakker et al., 2002).

It has been difficult to establish relevant native test systems for the analysis of the human  $H_1R$  (h $H_1R$ ) and human  $H_2R$  (h $H_2R$ ) since there are unexplained pharmacological differences in the properties of  $hH_1R$  and  $hH_2R$  in native cells relative to standard guinea pig test organs (Burde et al., 1990; Seifert et al., 1994; Klinker et al., 1996). In order to facilitate the comparison of histamine receptors under identical experimental conditions, we established expression systems for the  $H_1R$  and  $H_2R$  in Sf9 insect cells (Kelley et al., 2001; Houston et al., 2002). Sf9 cells express the  $H_1R$  and  $H_2R$  at high levels and can be cultured in large quantities. GPCR/G-protein coupling in Sf9 membranes is monitored with high sensitivity using the steady-state GTPase assay. This assay assesses GPCR/G-protein coupling at a proximal point of the signaling cascade, avoiding potential bias introduced by assessing more downstream events such as effector activation or changes in gene expression. For the H<sub>1</sub>R, coupling of the GPCR to insect cell G<sub>q</sub>-proteins is determined and the GTPase signal is amplified by RGS proteins (Houston et al., 2002; Seifert et al., 2003). For the  $H_2R$ , fusion proteins of GPCR and mammalian  $G_{s\alpha}$  proteins ensure defined 1 : 1 stoichiometry of the coupling partners and their efficient interaction (Seifert et al., 1999; Kelley et al., 2001). By measuring GTP hydrolysis, potencies and efficacies of  $H_2R$  agonists are assessed in an

5

expression level-independent manner (Seifert et al., 1999; Kelley et al., 2001; Wenzel-Seifert et al., 2001).

Both H<sub>1</sub>R- and H<sub>2</sub>R agonists are important pharmacological tools for studying the role of the H<sub>1</sub>R and H<sub>2</sub>R, respectively, in (patho)physiological processes (Bakker et al., 2002; Dove et al., 2004; Pertz et al., 2004). H<sub>1</sub>R agonists are divided into three classes; *1*) small agonists derived from HIS such as 2-methylhistamine and 2-(2-thiazolyl)ethanamine, *2*) HIS derivatives with a bulkier aromatic substituent at position 2 of the imidazole ring such as 2-(3-bromophenyl)histamine and *3*) the histaprodifens (Bakker et al., 2002; Pertz et al., 2004). Unfortunately, bulky H<sub>1</sub>R agonists exhibit considerably lower potency and efficacy at the hH<sub>1</sub>R than at the guinea pig H<sub>1</sub>R (gpH<sub>1</sub>R), limiting their usefulness as tools for studying the hH<sub>1</sub>R (Seifert et al., 2003). The molecular basis for the differences in pharmacological properties between hH<sub>1</sub>R and gpH<sub>1</sub>R has recently been elucidated (Bruysters et al., 2005). A further complication is that at concentrations in the 10  $\mu$ M - 1 mM range, 2-phenylhistamines may activate G-proteins directly, i.e. in a receptor-independent manner (Seifert et al., 1994; Hagelüken et al., 1995; Klinker et al., 1996).

 $H_2R$  agonists are divided into two classes; *1*) small agonists derived from HIS (1) such as dimaprit and amthamine, *2*) long-chained and more bulky molecules such as the guanidines arpromidine and impromidine (Bakker et al., 2002; Dove et al., 2004) and the recently introduced  $N^G$ -acylated imidazolylpropylguanidines (AIPGs) which are less basic than guanidines (Xie et al., 2006). Similar to the situation with  $H_1R$  species isoforms, bulky  $H_2R$  agonists are considerably less potent and efficacious at  $hH_2R$  than at gpH<sub>2</sub>R, reducing their value as probes to examine  $hH_2R$  (Kelley et al., 2001; Wenzel-Seifert et al., 2001; Xie et al., 2006). The pharmacological differences between  $hH_2R$  and gpH<sub>2</sub>R are attributable to two amino acid differences in transmembrane domains 1 and 7 (Kelley et al., 2001; Dove et al., 2004).

6

#### JPET #102897

The AIPGs characterized so far possess two ring systems, i.e. either two phenyl rings, a phenyl- and a pyridyl ring, a phenyl- and an imidazolyl ring or a phenyl ring and a thiazole ring (Xie et al., 2006). In our present study, we examined AIPGs substituted with a single phenyl ring (**2-8**) or a single cyclohexyl ring (**9-14**), possessing various linker lengths and alkanoyl chain branching between the acylguanidine moiety and the ring system (Fig. 1). Within this series of AIPGs, UR-AK57 (**14**) is the most potent hH<sub>2</sub>R agonist identified so far, and surprisingly, this compound is also a potent partial hH<sub>1</sub>R agonist.

## **Materials and Methods**

**Materials.** Construction of baculoviruses encoding hH<sub>2</sub>R-G<sub>so3</sub>, gpH<sub>2</sub>R-G<sub>so3</sub>, hH<sub>1</sub>R and gpH<sub>1</sub>R was described previously (Kelley et al., 2001; Seifert et al., 2003). Baculoviruses encoding RGS proteins 4 and 19 were a gift from Dr. E. Ross (Department of Pharmacology, University of Southwestern Medical Center, Dallas, TX). AIPGs **2-14** were prepared according to the procedure described by Ghorai (2005). Structures of synthesized compounds were confirmed by <sup>1</sup>H NMR spectroscopy and high resolution mass spectrometry. Purity of compounds was >98% as determined by high-performance liquid chromatography or capillary electrophoresis (Schuster et al., 1997). Stock solutions of compounds **2-14** (10 mM) were prepared in dimethyl sulfoxide and stored at -20 °C. Under these conditions, compounds were stable for at least 2 years (longer periods of time were not studied). Further dilutions of compounds **2-14** were prepared in distilled water. Sources of other materials are described elsewhere (Kelley et al., 2001; Houston et al., 2002; Seifert et al., 2003). Baculovirus infection and culture of Sf9 cells and membrane preparation were performed as described (Kelley et al., 2001). H<sub>2</sub>R-G<sub>sα</sub> expression levels were 5-6 pmol/mg as assessed by immunoblotting using the M1 monoclonal antibody and β<sub>2</sub>-adrenoceptor expressed at defined

7

levels as standard (Kelley et al., 2001).  $H_1R$  expression levels were 4-6 pmol/mg as assessed by [<sup>3</sup>H]mepyramine saturation binding (Seifert et al., 2003).

**Steady-state GTPase activity assay.** GTP hydrolysis in Sf9 membranes expressing H<sub>2</sub>R-G<sub>sα</sub> fusion proteins or H<sub>1</sub>R isoforms plus RGS proteins was determined as described previously (Kelley et al., 2001; Seifert et al., 2003). In brief, assay tubes (100 µl) contained Sf9 membranes (10 µg of protein/tube), various ligands, 1.0 mM MgCl<sub>2</sub>, 0.1 mM EDTA, 0.1 mM ATP, 100 nM GTP, 1 mM adenylyl imidodiphosphate, 5 mM creatine phosphate, 40 µg creatine kinase and 0.2% (w/v) bovine serum albumin in 50 mM Tris/HCl, pH 7.4, and [γ- $^{32}$ P]GTP (0.2-0.5 µCi/tube). Reactions were conducted for 20 min at 25 °C and terminated by the addition of 900 µl slurry consisting of 5% (w/v) activated charcoal and 50 mM NaH<sub>2</sub>PO<sub>4</sub>, pH 2.0.  $^{32}$ P<sub>1</sub> in supernatant fluids of reaction mixtures was determined by liquid scintillation counting.

[<sup>3</sup>H]Mepyramine binding assay. [<sup>3</sup>H]Mepyramine competition binding experiments with Sf9 membranes expressing hH<sub>1</sub>R or gpH<sub>1</sub>R plus RGS proteins were performed as described previously (Seifert et al., 2003). In brief, assay tubes (500 μl) contained membranes (20-25 μg of protein/tube), 2 nM [<sup>3</sup>H]mepyramine and unlabeled ligands in binding buffer (12.5 mM MgCl<sub>2</sub>, 1 mM EDTA and 75 mM Tris/HCl, pH 7.4). Bound radioligand was separated from free radioligand by filtration through GF/C filters, and filter-bound radioactivity was determined by liquid scintillation counting.

**Miscellaneous.** Protein concentrations were determined using the Bio-Rad DC protein assay kit (Bio-Rad, Hercules, CA). All analyses of experimental data were performed with the Prism 4.02 software (GraphPad-Prism, San Diego, CA).  $K_i$ - and  $K_B$  values were calculated using the Cheng and Prusoff equation (Cheng and Prusoff, 1973). Statistical comparisons in Table 1 were performed with the *t*-test.

JPET Fast Forward. Published on March 22, 2006 as DOI: 10.1124/jpet.106.102897 This article has not been copyedited and formatted. The final version may differ from this version.

JPET #102897

8

#### Results

#### Agonist potencies and efficacies of AIPGs 2-14 at hH2R-Gsas and gpH2R-Gsas

in the GTPase assay. In membranes expressing hH<sub>2</sub>R-G<sub>so5</sub> (Fig. 2A) and gpH<sub>2</sub>R-G<sub>so5</sub> (Fig. 2B), HIS activated GTP hydrolysis with an EC<sub>50</sub> value of ~1  $\mu$ M. UR-AK57 was a 50-fold more potent agonist (EC<sub>50</sub>, 23 nM) at hH<sub>2</sub>R than HIS. At gpH<sub>2</sub>R, UR-AK57 activated GTP hydrolysis 130-fold more potently (EC<sub>50</sub>, 9 nM) than HIS. At hH<sub>2</sub>R, UR-AK57 was almost a full agonist (*E<sub>max</sub>*, 0.87), and at gpH<sub>2</sub>R, UR-AK57 was a full agonist (*E<sub>max</sub>*, 1.11). UR-AK57 constitutes the most potent hH<sub>2</sub>R agonist identified so far and surpasses the previous leader, UR-PG55B, which is substituted with two p-fluorophenyl groups, in terms of potency by two-fold (Xie et al., 2006). Moreover, UR-AK57 clearly surpasses UR-PG55B (*E<sub>max</sub>*, 0.61) in terms of efficacy (Xie et al., 2006). Shortening of the connecting chain (13 *versus* 14) reduced potency and efficacy. Exchange of the 3-cyclohexylbutanoyl group in compound 14 against a 4-cyclohexylbutanoyl residue (12) had little effect on efficacy and potency; the same was true for shortening of the connecting alkanoyl chain between the guanidine moiety and the cyclohexyl ring (12→11→10→9).

Exchange of cyclohexyl against phenyl  $(14\rightarrow 8)$  reduced hH<sub>2</sub>R potency without affecting efficacy. Shortening of the connecting chain  $(8\rightarrow 7)$  was also well tolerated. In the series of compounds with a phenyl ring and a connecting chain ranging from tetramethylene to none  $(6\rightarrow 2)$ , minor changes in potency except for compound 2 and variable effects on efficacy were noted.

Overall, as is true for guanidines (Kelley et al., 2001) and AIPGs with two aromatic ring systems (Xie et al., 2006), AIPGs with a single ring system exhibited higher potencies and efficacies at  $gpH_2R-G_{s\alpha S}$  than at  $hH_2R-G_{s\alpha S}$  (Table 1 and Fig. 3). However, among the series of aryl/diarylalkylguanidines ("guanidines"), AIPGs with two aromatic substituents and AIPGs with one substituent, the systematic difference between  $hH_2R$  and 9

#### JPET #102897

gpH<sub>2</sub>R was the smallest (compare Tables 1 and 3 of this study with Fig. 6 and Table 2 in Kelley et al. (2001) and Fig. 2 and Table 1 in Xie et al. (2006)). Most notably, among compounds **2-14**, six derivatives (46% of the compound pool) (**3**, **4**, **6**, **9**, **11**, **12**) exhibited potencies that varied by just two-fold among hH<sub>2</sub>R and gpH<sub>2</sub>R, whereas for guanidines only one out of nine compounds (11% of the compound pool) (BU-E-43) fell in this group (Kelley et al., 2001). For AIPGs substituted with two aromatic ring systems just three out of twelve compounds (25% of the compound pool) (UR-PG137, UR-PG-55B and UR-PG153) were in this range (Xie et al., 2006).

#### Structure-activity relationships for the partial hH<sub>1</sub>R agonism and gpH<sub>1</sub>R

antagonism of AIPGs 2-14 in the GTPase assay. In membranes expressing hH<sub>1</sub>R (Fig. 2C) and gpH<sub>1</sub>R (Fig. 2D), HIS activated GTP hydrolysis with an EC<sub>50</sub> value of ~200 nM. At hH<sub>1</sub>R UR-AK57 was a similarly potent agonist (EC<sub>50</sub>, 280 nM) as HIS. The stimulatory effect of UR-AK57 on GTP hydrolysis catalyzed by gpH<sub>1</sub>R was too small to assess potency. At hH<sub>1</sub>R, UR-AK57 was a moderately strong partial agonist ( $E_{max}$ , 0.56), and at gpH<sub>1</sub>R, UR-AK57 was only a very weak partial agonist ( $E_{max}$  0.13). Among all AIPGs studied, compound 14 was the most potent and efficacious partial hH<sub>1</sub>R agonist. Chain shortening (9, 10, 13), chain elongation (12) and methyl group removal (11) reduced agonist potency and efficacy. Exchange of the cyclohexyl ring (9-14) against a phenyl ring (2-8) reduced hH<sub>1</sub>R agonism as well. Collectively, a 3-substituted butanoyl moiety connecting the guanidino group and the cyclohexyl ring are favorable for hH<sub>1</sub>R agonism.

Most AIPGs, particularly compound **14**, exhibited much lower efficacies at  $gpH_1R$ than at  $hH_1R$  (Table 2). In fact, AIPGs were  $gpH_1R$  antagonists with affinities in the 0.5-2  $\mu$ M range. UR-AK57 (**14**) exhibited ~3-fold higher affinity for  $hH_1R$  than for  $gpH_1R$  in the GTPase assay. Other AIPGs exhibited up to 15-fold higher affinity for  $gpH_1R$  than for  $hH_1R$ .

10

#### Inhibition of UR-AK57 (14)-stimulated GTP hydrolysis at hH<sub>1</sub>R by H<sub>1</sub>R

**antagonists.** H<sub>1</sub>R agonists of the 2-phenylistamine class are cationic-amphiphilic compounds and efficient direct G-protein activators in some systems (Seifert et al., 1994; Hagelüken et al., 1995). In order to exclude direct G-protein activation as mechanism for the GTPase stimulation by UR-AK57, which is cationic-amphiphilic as well, we studied the effects of the first-generation H<sub>1</sub>R antagonists mepyramine, promethazine, diphenhydramine, triprolidine and cyproheptadine as well as the second-generation H<sub>1</sub>R antagonists terfenadine and fexofenadine on GTP hydrolysis stimulated by UR-AK57 (1  $\mu$ M) (Fig. 4). H<sub>1</sub>R antagonists inhibited GTP hydrolysis in the order of potency promethazine > cyproheptadine > triprolidine > mepyramine > diphenhydramine > terfenadine >> fexofenadine. This order of potency fits exactly to the one observed for HIS-stimulated GTP hydrolysis at hH<sub>1</sub>R (Seifert et al., 2003).

## Affinities of HIS and AIPGs for hH<sub>1</sub>R and gpH<sub>1</sub>R in [<sup>3</sup>H]mepyramine

**competition binding experiments.** In the GTPase assay, we determined the agonist potencies of AIPGs at  $hH_1R$ , but for the gpH<sub>1</sub>R, antagonist affinities had to be determined. Since agonist potencies depend on several factors including G-protein availability, those values cannot directly be compared with antagonist potencies (Seifert et al., 1999). Therefore, we compared potencies of representative AIPGs in the [<sup>3</sup>H]mepyramine competition binding assay. All compounds inhibited [<sup>3</sup>H]mepyramine binding according to monophasic isotherms (Table 3) that were insensitive to guanine nucleotides (data not shown). The latter findings indicate that ternary complex formation is not detected in this system, probably due to the low expression level of the insect  $G_q$ -protein (Houston et al., 2002). Among all compounds studied, UR-AK57 (**14**) exhibited the highest affinity for hH<sub>1</sub>R. Chain shortening between the

11

guanidino group and the cyclohexyl group (10, 13) and substitution of the cyclohexyl ring by a phenyl ring (5, 6 and 8) were unfavorable, whereas  $hH_1R$  tolerated chain elongation (12). At gpH<sub>1</sub>R, UR-AK22 (6) exhibited the highest affinity within the compound pool, whereas UR-AK57 (14) ranged among the low-affinity compounds at this receptor. gpH<sub>1</sub>R tolerated a phenyl ring (5, 6 and 8), a methylene linker (10) and a trimethylene linker (12) better than  $hH_1R$ . In contrast,  $hH_1R$  tolerated the methyl-branched chain (13 and 14) better than gpH<sub>1</sub>R.

#### Discussion

Historically, the availability of a generally applicable and reliable analysis system for the hH<sub>2</sub>R was a substantial problem (Klinker et al., 1996; Dove et al., 2004). During the past years, our group has established fusion proteins of the hH<sub>2</sub>R and  $G_{s\alpha}$  as standard model for the analysis of both agonists and antagonists (Kelley et al., 2001; Wenzel-Seifert et al., 2001; Houston et al., 2002; Xie et al., 2006). UR-AK57 (14) is the most potent  $hH_2R$  agonist known so far, and among all bulky hH2R agonists examined, it also exhibits one of the highest efficacies (Table 1) (Kelley et al., 2001; Xie et al., 2005). Thus, a 3-substituted butanoyl moiety connecting the cyclohexyl substituent and the guanidino group is optimal in affording high potency and efficacy at hH<sub>2</sub>R. Probably, the cyclohexyl ring and butanovl moiety of UR-AK57 form hydrophobic interactions with amino acid residues in tramsmembrane domains 3, 6 and 7, and Ala-271 in transmembrane domain 7 of  $hH_2R$  may be of particular importance in this respect (Kelley et al., 2001). It is noteworthy that  $hH_2R$ tolerated alterations of linker length between the acylguanidino group and the phenyl- or cylohexyl ring quite well (Table 1), indicative for conformational flexibility of  $hH_2R$  with this particular compound class. With diarylalkylguanidines as ligands, hH<sub>2</sub>R exhibited lower overall conformational flexibility than gpH<sub>2</sub>R (Kelley et al., 2001), but those guanidines are

12

#### JPET #102897

also bulkier than the AIPGs studied herein. Thus, among the guanidines and AIPGs studied so far, UR-AK57 possesses the optimum properties in terms of hH<sub>2</sub>R potency and efficacy.

The recently studied AIPGs with two aromatic ring substituents surpass UR-AK57 in terms of potency at  $gpH_2R-G_{s\alpha s}$  (EC<sub>50</sub> of UR-AK57 9 nM versus EC<sub>50</sub> of UR-PG80, 6 nM). The opposite is true for  $hH_2R$  (EC<sub>50</sub> of UR-AK57, 23 nM versus EC<sub>50</sub> of UR-PG80, 78 nM). These data support the notion that  $hH_2R$  accommodates the 3-cyclohexylbutanoyl moiety of UR-AK57 particularly well. It is conceivable that Ala-271 is crucial in mediating the high-affinity interactions of phenyl- and cyclohexyl-substituted AIPGs with  $hH_2R$ , whereas  $gpH_2R$  bears an aspartate residue at this position, rendering hydrophobic interactions impossible (Kelley et al., 2001). However, in  $gpH_2R$ , alternative hydrophobic interactions of AIPGs with other as yet unidentified amino acids in transmembrane domains 3, 6 and 7 must take place since those compounds exhibit high affinity for  $gpH_2R$  as well.

Bulky guanidines are moderately potent  $H_1R$  antagonists, with arpromidine exhibiting a  $K_i$  value of 33 nM at gpH<sub>1</sub>R in the [<sup>3</sup>H]mepyramine competition binding assay (Seifert et al., 2003). At hH<sub>1</sub>R, arpromidine is 10-fold less potent than at gpH<sub>1</sub>R ( $K_i$ , 350 nM) (Seifert et al., 2003). Structural differences in transmembrane domain 2 play a crucial role for the differences in affinity of guanidines at the two H<sub>1</sub>R receptor isoforms (Bruysters et al., 2005). The exchange of the guanidino group against an acylguanidino group decreases affinity for gpH<sub>1</sub>R about 300-fold ( $K_i$  of UR-PG136 in the [<sup>3</sup>H]mepyramine competition binding assay, 9.6 µM). Similar changes were observed for arpromidine versus UR-PG136 at hH<sub>1</sub>R (Xie et al., 2006). These data show that AIPGs ensure excellent selectivity (> 100-fold) for H<sub>2</sub>R isoforms relative to H<sub>1</sub>R isoforms. However, while in terms of affinity for H<sub>1</sub>R isoforms, AIPGs substituted with two aromatic ring systems were not particularly interesting, we noted that those compounds were weak partial hH<sub>1</sub>R agonists with preference for gpH<sub>1</sub>R in terms of agonist efficacy (Xie et al., 2006).

Based on those observations we examined the effects of AIPGs substituted with a single aromatic/aliphatic substituent on  $H_1R$  isoforms. Unexpectedly, UR-AK57 turned out to be moderately strong partial h $H_1R$  agonist exhibiting a potency that approaches that of HIS. In fact, in terms of efficacy ( $E_{max}$ , 0.56) and potency (EC<sub>50</sub>, 280 nM) at h $H_1R$ , UR-AK57 is comparable to the most potent derivatives of the 2-phenylhistamine class, which are classic  $H_1R$  agonists (Bakker et al., 2002; Pertz et al., 2004). Specifically, 2-(3-bromophenyl)histamine exhibits an efficacy of 0.73 and a potency of 210 nM at h $H_1R$  (Seifert et al., 2003). In marked contrast, UR-AK57 is only a very weak partial agonist at gp $H_1R$  with lower apparent affinity than for h $H_1R$  in GTPase experiments (Table 2). Thus, UR-AK57 is the first synthetic  $H_1R$  agonist with higher potency and efficacy for h $H_1R$  than gp $H_1R$ .

Since AIPGs are cationic-amphiphilic and compounds with such properties can activate G-proteins directly (Seifert et al., 1994; Hagelüken et al., 1995), it was important to exclude the possibility of direct G-protein activation by AIPGs. Direct G-protein-stimulatory effects of histamine receptor ligands are usually observed at concentrations > 10-100  $\mu$ M (Seifert et al., 1994; Hagelüken et al., 1995), but the stimulatory effects of UR-AK57 on GTP hydrolysis in membranes expressing hH<sub>1</sub>R were already apparent at a concentration as low as 100 nM (Fig. 2C). The different concentration ranges argue against direct G-protein stimulation playing a part in the GTPase activation in hH<sub>1</sub>R-expressing Sf9 membranes. The largely different effects of UR-AK57 on GTPase activity in Sf9 membranes expressing hH<sub>1</sub>R and gpH<sub>1</sub>R (compare Figs. 2C and 2D) also corroborate the notion that the stimulatory effects of the compound on hH<sub>1</sub>R are not due to direct G-protein activation since Sf9 membranes harboring hH<sub>1</sub>R and gpH<sub>1</sub>R express the same type of endogenous G<sub>q</sub>-protein (Houston et al., 2002). Finally, the studies with H<sub>1</sub>R antagonists (Fig. 4) provided definitive proof that the

13

14

pronounced stimulatory effect of UR-AK57 on GTPase activity is due to  $H_1R$  activation and no due to receptor-independent G-protein activation.

In the [ ${}^{3}$ H]mepyramine competition binding assay, UR-AK57 exhibited similar potency at hH<sub>1</sub>R and gpH<sub>1</sub>R ( $K_i$ , ~1 µM) (Table 3). The higher apparent affinity of the compound for hH<sub>1</sub>R in the GTPase assay (EC<sub>50</sub>, 280 nM) (Table 2) is probably due to the fact that in those studies, only the high-affinity (G-protein-coupled) UR-AK57-liganded hH<sub>1</sub>R is assessed, whereas in the [ ${}^{3}$ H]mepyramine competition binding assay only the low-affinity (Gprotein-uncoupled) UR-AK57-liganded hH<sub>1</sub>R is assessed. This affinity difference between the two assays probably reflects the relative paucity of available G-proteins as coupling partners which are detected with greater sensitivity in the GTPase assay than in the binding assay. The similar affinity of UR-AK57 at gpH<sub>1</sub>R in the GTPase- and [ ${}^{3}$ H]mepyramine competition binding assays compared to the different apparent affinities of this compound in the corresponding assays with hH<sub>1</sub>R (Tables 2 and 3) further support the notion of a specific agonist action of UR-AK57 on hH<sub>1</sub>R.

The structure-activity relationships of AIPGs for interaction with  $hH_1R$  and  $gpH_1R$  are different in terms of agonist efficacy and affinity in the GTPase and [<sup>3</sup>H]mepyramine competition binding assay (Tables 2 and 3). Most importantly, a 3-substituted butanoyl moiety as is present in **14** is favorable for  $hH_1R$  agonism. These data indicate that it may become possible to synthesize bulky  $H_1R$  agonists with even greater preference for  $hH_1R$  relative to  $gpH_1R$  than UR-AK57.

Our present study demonstrates that the notion of bulky agonists exhibiting higher potencies and efficacies at  $gpH_1R$  and  $gpH_2R$  than at  $hH_1R$  and  $hH_2R$ , respectively (Kelley et al., 2001; Seifert et al., 2003; Xie et al., 2006), is actually not true. Specifically, several AIPGs substituted with a phenyl or cyclohexyl ring exhibit similar potencies at  $hH_2R$  and  $gpH_2R$  and include the most potent  $hH_2R$  agonist identified so far (Fig. 3 and Table 1). In

15

terms of efficacy at  $hH_2R$ , UR-AK57 comes close to a full agonist as well. Most strikingly, UR-AK57 is also a potent and moderately strong partial  $hH_1R$  agonist with much higher efficacy than at gpH<sub>1</sub>R (Figs. 2C and 2D). Thus, UR-AK57 constitutes an interesting starting point for the development of potent and efficacious  $hH_2R$ - and  $hH_1R$  agonists.

Not only may  $H_2R$  agonists be a good starting point for the development of  $H_1R$ agonists but conversely,  $H_1R$  agonists may also serve as template for the development of  $H_2R$ agonists. This notion is supported by the finding that  $N^{\alpha}$ -(imidazolylethyl)histaprodifen, originally synthesized as  $H_1R$  agonist (Pertz et al., 2004), is a potent partial  $hH_1R$  agonist  $(EC_{50}, 0.24 \mu M; E_{max}, 0.84)$ , and a potent partial hH<sub>2</sub>R agonist  $(EC_{50}, 0.57 \mu M; E_{max}, 0.39)$ (Seifert et al., 2003). Our present data emphasize the importance of examining all potential ligands for the  $H_1R$  and  $H_2R$  both in the agonist- and antagonist mode for each receptor subtype and species isoform and not to extrapolate the putative ligand properties from previous studies obtained even with closely related compounds. We assume that the numerous compounds designed for agonistic activity at  $H_1R$  and  $H_2R$  (Bakker et al., 2002; Pertz et al., 2004; Dove et al., 2004), still hold many surprising pharmacological properties that have been missed so far because of incomplete analyses. In future studies we will systematically analyze agonist and antagonist effects of guanidines, AIPGs and histaprodifens at  $H_1R$  and  $H_2R$  species isoforms. In this analysis, we will include the human and guinea pig histamine receptor and the rat receptor as recent data point to unique pharmacological properties of the rat H<sub>2</sub>R (Xie et al., 2006). In terms of future compound synthesis, pharmacophoric elements of the histaprodifens and 2-phenylhistamines will be combined with structural elements of **2-14**. Finally, the compounds analyzed in this paper will have to be examined in native systems.

16

## Acknowledgements

We thank Dr. G. Georg (Department of Medicinal Chemistry, University of

Kansas, KS) for continuous support and encouragement. Thanks are also due to the reviewers

for their constructive critique.

17

## References

- Bakker RA, Timmerman H and Leurs R (2002) Histamine receptors: specific ligands, receptor biochemistry, and signal transduction. *Clin Allergy Immunol* **17:**27-64.
- Bruysters M, Jongejan A, Gillard M, van de Manakker F, Bakker RA, Chatelain P and Leurs R (2005) Pharmacological differences between human and guinea pig histamine H<sub>1</sub> receptors: Asn84 (2.61) as key residue within an additional binding pocket in the H<sub>1</sub> receptor. *Mol Pharmacol* 67:1045-1052.
- Burde R, Buschauer A and Seifert R (1990) Characterization of histamine H<sub>2</sub>-receptors in human neutrophils with a series of guanidine analogues of impromidine. Are cell type-specific H<sub>2</sub>-receptors involved in the regulation of NADPH oxidase? *Naunyn-Schmiedeberg's Arch Pharmacol* 341:455-461.
- Cheng Y and Prusoff WH (1973) Relationship between the inhibition constant (K<sub>i</sub>) and the concentration of inhibitor which causes 50 per cent inhibition (I<sub>50</sub>) of an enzymatic reaction. *Biochem Pharmacol* **22:**3099-3108.
- Dove S, Elz S, Seifert R and Buschauer A (2004) Structure-activity relationships of histamine H<sub>2</sub> receptor ligands. *Mini-Rev Med Chem* **4**:941-954.
- Ghorai P (2005) Arpromidine-related acylguanidines: synthesis and structure-activity relationships of a new class of guanidine-type histamine H<sub>2</sub> receptor agonists with reduced basicity. Ph D Thesis, University of Regensburg, Germany.
- Hagelüken A, Grünbaum L, Klinker JF, Nürnberg B, Harhammer R, Schultz G, Leschke C, Schunack W, Seifert R (1995) Histamine receptor-dependent and/or –independent activation of guanine nucleotide-binding proteins by histamine and 2-substituted histamine derivatives in human leukemia (HL-60) and human erythroleukemia (HEL) cells. *Biochem Pharmacol* 49:901-914.

18

Hill SJ, Ganellin CR, Timmerman H, Schwartz JC, Shankley NP, Young JM, Schunack W, Levi R and Haas HL (1997) International Union of Pharmacology. XIII. Classification of histamine receptors. *Pharmacol Rev* 49:253-278.

Hough LB (2001) Genomics meets histamine receptors: new subtypes, new receptors. *Mol Pharmacol* **59:**415-419.

Houston C, Wenzel-Seifert K, Bürckstümmer T and Seifert R (2002) The human histamine
H<sub>2</sub>-receptor couples more efficiently to Sf9 insect cell G<sub>s</sub>-proteins than to insect cell
G<sub>q</sub>-proteins: limitations of Sf9 cells for the analysis of receptor/G<sub>q</sub>-protein coupling. J
Neurochem 80:678-696.

- Kelley MT, Bürckstümmer T, Wenzel-Seifert K, Dove S, Buschauer A and Seifert R (2001) Distinct interaction of human and guinea pig histamine H<sub>2</sub>-receptor with guanidinetype agonists. *Mol Pharmacol* 60:1210-1225.
- Klinker JF, Wenzel-Seifert K and Seifert R (1996) G-protein-coupled receptors in HL-60 human leukemia cells. *Gen Pharmacol* **27:**33-54.
- Pertz HH, Elz S, and Schunack W (2004) Structure-activity relationships of histamine H<sub>1</sub>receptor agonists. *Mini Rev Med Chem* **4**:935-940.
- Schuster A, Bernhardt G and Buschauer A (1997) Determination of the arpromidine-type histamine H<sub>2</sub>-receptor agonist N<sup>1</sup>- [3-(3,4-difluorophenyl)-3-(2-pyridyl)propyl]-N<sup>2</sup>-[3-(1*H*-imidazol-4-yl)propyl]guanidine and corresponding N<sup>3</sup>-alkoxycarbonylguanidines by HPLC and CE. *Eur J Pharm Sci* 5:79-88.

Seifert R, Hagelüken A, Höer A, Höer D, Grünbaum L, Offermanns S, Schwaner I, Zingel V, Schunack W and Schultz G (1994) The H<sub>1</sub> receptor agonist 2-(3chlorophenyl)histamine activates G<sub>i</sub> proteins in HL-60 cells through a mechanism that is independent of known histamine receptor subtypes. *Mol Pharmacol* 45:578-586

19

- Seifert R, Wenzel-Seifert K and Kobilka BK (1999) GPCR- $G_{\alpha}$  fusion proteins: an approach for the molecular analysis of receptor/G-protein coupling. *Trends Pharmacol Sci* **20**:383-389.
- Seifert R, Wenzel-Seifert K, Bürckstümmer T, Pertz HH, Schunack W, Dove S, Buschauer A and Elz S (2003) Multiple differences in agonist and antagonist pharmacology between human and guinea pig histamine H<sub>1</sub>-receptor. *J Pharmacol Exp Ther* **305:**1104-1115.
- Wenzel-Seifert K, Kelley MT, Buschauer A and Seifert R (2001) Similar apparent constitutive activity of human histamine H<sub>2</sub>-receptor fused to long and short splice variants of G<sub>sα</sub>. J Pharmacol Exp Ther **299**:1013-1020.
- Xie S-X, Ghorai P, Ye Q-Z, Buschauer A and Seifert R (2006) Probing ligand-specific histamine H<sub>1</sub>- and H<sub>2</sub>-receptor conformations with N<sup>G</sup>-acylated imidazolylpropylguanidines. J Pharmacol Exp Ther **317**:139-146.

20

## Footnotes

This work was supported by the National Institutes of Health COBRE award 1 P20 RR15563 and matching support from the State of Kansas and the University of Kansas (R. S. and Q.-Z. Y.) and the Graduate Training Program (Graduiertenkolleg GRK 760, "Medicinal Chemistry:

Molecular Recognition - Ligand-Receptor Interactions") of the Deutsche

Forschungsgemeinschaft (R. S., S. E. and A. B.).

21

## **Legends for Figures**

Fig. 1. Structures of  $H_2R$  agonists. HIS (1) is the reference compound. Compounds 2-14 are AIPGs.

## Fig. 2. Comparison of the agonistic effects of HIS and UR-AK57 (14) at H1R- and H2R

**species isoforms.** Steady-state GTPase activity in Sf9 membranes expressing  $hH_2R-G_{s\alpha S}$  (**A**),  $gpH_2R-G_{s\alpha S}$  (**B**),  $hH_1R$  plus RGS protein 4 (**C**) or  $gpH_1R$  plus RGS protein 4 (**D**) was determined as described in *Methods*. Reaction mixtures contained HIS or UR-AK57 at the concentrations indicated on the abscissa to generate saturated concentration/response curves. Data were analyzed by non-linear regression and were best fit to sigmoid concentration/response curves. Data shown are the means  $\pm$  SD of a representative experiment performed in triplicates. A summary of the results of 5-8 independent experiments is shown in Table 1.

#### Fig. 3. Correlation between efficacies and potencies of AIPGs at hH<sub>2</sub>R-G<sub>sos</sub> and gpH<sub>2</sub>R-

**G**<sub>sαS</sub>. Agonist efficacies were taken from Table 1, and p*EC*<sub>50</sub> values were derived from the EC<sub>50</sub> values shown in Table 1. Solid lines represent the actual correlations obtained. Dashed lines represent the 95% confidence intervals of the correlations. The straight dotted lines represent the correlations that would have been obtained if efficacies and p*EC*<sub>50</sub> values, respectively, had been identical in the two systems compared with each other. The theoretical curves have a slope of 1.00. **A**, correlation of efficacies of AIPGs at hH<sub>2</sub>R-G<sub>sαS</sub> *versus* gpH<sub>2</sub>R-G<sub>sαS</sub>. Slope, 0.70 ± 0.14;  $r^2 = 0.69$ ; p = 0.0004 (significant). **B**, correlation of potencies of AIPGs at hH<sub>2</sub>R-G<sub>sαS</sub> *versus* gpH<sub>2</sub>R-G<sub>sαS</sub>. Slope, 0.96 ± 0.12;  $r^2 = 0.86$ ; p < 0.0001 (significant).

22

## Fig. 4. Inhibition of UR-AK57-stimulated GTP hydrolysis at hH<sub>1</sub>R by H<sub>1</sub>R antagonists.

Steady-state GTPase activity in Sf9 membranes expressing hH<sub>1</sub>R plus RGS protein 4 was determined as described in *Methods*. Reaction mixtures contained UR-AK57 (1  $\mu$ M) and various H<sub>1</sub>R antagonists at the concentrations indicated at the abscissa. MEP, mepyramine; PRO, promethazine; TEF, terfenadine; FEX, fexofenadine; DPH, diphenhydramine; TRI, triprolidine; CYPH, cyproheptadine. Data were analyzed by non-linear regression and were best fit to sigmoid concentration/response curves. Data shown are the means  $\pm$  SD of 3 independent experiments.

|      |         |                                   | $hH_2R$ - $G_{s\alpha S}$ |           |                                   | $gpH_2R$ - $G_{s\alpha S}$ |           | $\begin{array}{l} EC_{50} \ hH_2R\text{-}G_{s\alpha S} \\ EC_{50} \ gpH_2R\text{-}G_{s\alpha S} \end{array}$ |
|------|---------|-----------------------------------|---------------------------|-----------|-----------------------------------|----------------------------|-----------|--------------------------------------------------------------------------------------------------------------|
| Cpd. |         | efficacy                          | EC <sub>50</sub> (nM)     | rel. pot. | efficacy                          | EC <sub>50</sub> (nM)      | rel. pot. |                                                                                                              |
| 1    | HIS     | 1.00                              | $1,200 \pm 300$           | 100       | 1.00                              | $1,200 \pm 200$            | 100       | 1.00                                                                                                         |
| 2    | UR-AK41 | $0.50 \pm 0.01^{*}$               | $1,400 \pm 37^*$          | 86        | $0.84 \pm 0.06$                   | $640 \pm 170$              | 190       | 2.19                                                                                                         |
| 3    | UR-AK26 | $0.76 \pm 0.01^{*}$               | $150 \pm 8^*$             | 800       | $0.90 \pm 0.01$                   | 76 ± 13                    | 1,600     | 1.98                                                                                                         |
| 4    | UR-AK51 | $0.84 \pm 0.03^{*}$               | $100 \pm 16^{*}$          | 1,200     | $1.05 \pm 0.11$                   | $23 \pm 1$                 | 5,200     | 4.35                                                                                                         |
| 5    | UR-AK67 | $0.61 \pm 0.01^{*}$               | $67 \pm 9^*$              | 1,800     | $\textbf{0.84} \pm \textbf{0.01}$ | $21 \pm 2$                 | 5,700     | 3.19                                                                                                         |
| 6    | UR-AK22 | $0.60 \pm 0.01^{*}$               | $72 \pm 23$               | 1,700     | $0.80 \pm 0.06$                   | 56 ± 5                     | 2,100     | 1.29                                                                                                         |
| 7    | UR-AK68 | $0.81 \pm 0.03$                   | $75\pm26^*$               | 1,600     | $0.89 \pm 0.03$                   | $29 \pm 7$                 | 4,100     | 2.59                                                                                                         |
| 8    | UR-AK24 | $0.87 \pm 0.01^{*}$               | $67 \pm 2^*$              | 1,800     | $1.03 \pm 0.06$                   | $12 \pm 1$                 | 10,000    | 5.58                                                                                                         |
| 9    | UR-AK46 | $0.76 \pm 0.05^{*}$               | $38 \pm 4^*$              | 3,200     | $0.99 \pm 0.08$                   | 21 ± 1                     | 5,700     | 1.81                                                                                                         |
| 10   | UR-AK62 | $\boldsymbol{0.87 \pm 0.04}$      | $62\pm6^*$                | 1,900     | $1.01 \pm 0.13$                   | $23 \pm 1$                 | 5,200     | 2.70                                                                                                         |
| 11   | UR-AK49 | $0.76 \pm 0.04^{*}$               | $46 \pm 2^{*}$            | 2,600     | $1.02\pm0.11$                     | $22 \pm 1$                 | 5,500     | 2.09                                                                                                         |
| 12   | UR-AK64 | $0.66 \pm 0.01^*$                 | $23 \pm 2^*$              | 5,200     | $0.84 \pm 0.06$                   | 16 ± 2                     | 7,500     | 1.44                                                                                                         |
| 13   | UR-AK59 | $\textbf{0.74} \pm \textbf{0.06}$ | $99 \pm 8^*$              | 1,200     | $0.90 \pm 0.08$                   | $37 \pm 8$                 | 3,200     | 2.68                                                                                                         |
| 14   | UR-AK57 | $\textbf{0.87} \pm \textbf{0.05}$ | $23\pm3^*$                | 5,200     | $1.11 \pm 0.16$                   | 9 ± 1                      | 13,300    | 2.56                                                                                                         |

Table 1. Agonist potencies and efficacies of HIS and AIPGs at hH<sub>2</sub>R-G<sub>sos</sub> and gpH<sub>2</sub>R-G<sub>sos</sub> in the GTPase assay

Steady-state GTPase activity in Sf9 membranes expressing hH<sub>2</sub>R-G<sub>s\alphaS</sub> and gpH<sub>2</sub>R-G<sub>s\alphaS</sub> was determined as described in *Methods*. Reaction mixtures contained ligands at concentrations from 1 nM - 100  $\mu$ M as appropriate to generate saturated concentration/response curves. Data were analyzed by non-linear regression and were best fit to sigmoid concentration/response curves. Typical basal GTPase activities ranged between ~1.5 – 3.0 pmol/mg/min, and the maximum stimulatory effect of histamine (100  $\mu$ M) amounted to 250 - 350% above basal. The efficacy (*E<sub>max</sub>*) of histamine was determined by non-linear regression and was set 1.00. The *E<sub>max</sub>* values of other agonists were referred to this value. Data shown are the means ± SD of 5-8 experiments performed in duplicates each. \* *p* < 0.05 for comparison of hH<sub>2</sub>R-G<sub>s\alphaS</sub> and gpH<sub>2</sub>R-G<sub>s\alphaS</sub>. The relative potency (rel. pot.) of histamine was set 100, and the potencies of other agonists were referred to this value. We also calculated the ratio of the EC<sub>50</sub> values of H<sub>2</sub>R agonists for hH<sub>2</sub>R-G<sub>s\alphaS</sub> and gpH<sub>2</sub>R-G<sub>s\alphaS</sub>. Cpd., compound.

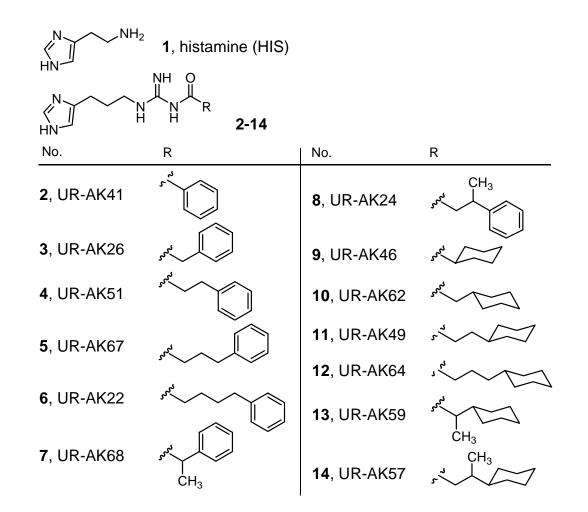
24

## Table 2. Agonist potencies and efficacies of HIS and AIPGs and antagonist potencies of

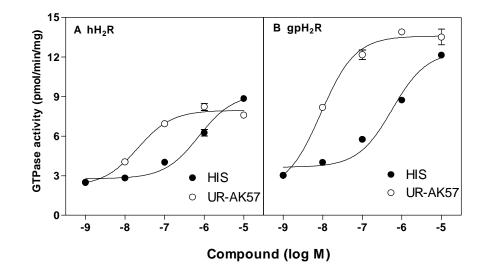
|      |         | hH <sub>1</sub> R |                                         | gpH <sub>1</sub> R |                  |
|------|---------|-------------------|-----------------------------------------|--------------------|------------------|
| Cpd. |         | efficacy          | EC <sub>50</sub> or K <sub>B</sub> (nM) | efficacy           | $K_{\rm B}$ (nM) |
| 1    | HIS     | 1.00              | $190\pm8.6$                             | 1.00               | $210\pm5.3$      |
| 3    | UR-AK26 | $0.14\pm0.05$     | n. d.                                   | $0.02\pm0.01$      | n. d.            |
| 4    | UR-AK51 | $0.21\pm0.03$     | n. d.                                   | $0.01\pm0.01$      | $850\pm80$       |
| 5    | UR-AK67 | $0.19\pm0.01$     | n. d.                                   | $0.06\pm0.03$      | $720\pm110$      |
| 6    | UR-AK22 | $0.15\pm0.02$     | $6,000 \pm 200 \ (K_B)$                 | $0.06\pm0.01$      | $840\pm170$      |
| 7    | UR-AK68 | $0.26\pm0.01$     | $3,500 \pm 100$                         | $0.05\pm0.02$      | $2,000 \pm 100$  |
| 8    | UR-AK24 | $0.35\pm0.05$     | n. d.                                   | $0.01\pm0.01$      | $760\pm70$       |
| 9    | UR-AK46 | $0.32\pm0.11$     | 13,000                                  | $0.23\pm0.12$      | $890\pm90$       |
| 10   | UR-AK62 | $0.29\pm0.02$     | n. d.                                   | $0.28\pm0.04$      | $720 \pm 100$    |
| 11   | UR-AK49 | $0.24\pm0.04$     | n. d.                                   | $0.11\pm0.01$      | $620\pm50$       |
| 12   | UR-AK64 | $0.21\pm0.04$     | n. d.                                   | $0.08\pm0.02$      | $530\pm50$       |
| 13   | UR-AK59 | $0.32\pm0.07$     | $2,300 \pm 360$                         | $0.21\pm0.02$      | $1,300 \pm 190$  |
| 14   | UR-AK57 | $0.56\pm0.06$     | $280\pm4$                               | $0.13\pm0.04$      | $750\pm120$      |

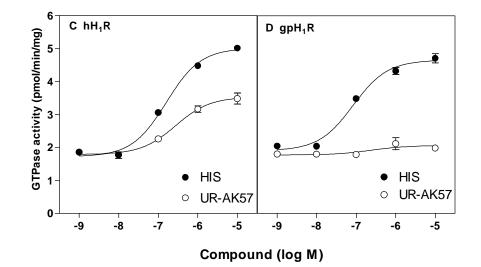
## AIPGs at hH<sub>1</sub>R and gpH<sub>1</sub>R in the GTPase assay

Steady-state GTPase activity in Sf9 membranes expressing hH<sub>1</sub>R and gpH<sub>1</sub>R in the presence of the RGS proteins 4 or 19 was determined as described in *Methods*. Reaction mixtures contained ligands at concentrations from 1 nM - 1 mM as appropriate to generate saturated concentration/response curves. Data were analyzed by non-linear regression and were best fit to sigmoid concentration/response curves. Typical basal GTPase activities ranged between ~1.5 -2.5 pmol/mg/min, and the maximum stimulatory effect of histamine (100  $\mu$ M) amounted to 125 -175% above basal. The efficacy ( $E_{max}$ ) of histamine was determined by non-linear regression and was set 1.00. The  $E_{max}$  values of other agonists were referred to this value. Data shown are the means  $\pm$  SD of 5-8 experiments performed in duplicates each. The relative potency (rel. pot.) of histamine at hH<sub>1</sub>R was set 100, and the potencies of other agonists were referred to this value. With several AIPGs, particularly with gpH<sub>1</sub>R, the stimulatory effects were too small to calculate agonist potencies. In those cases, efficacies with agonist at a fixed concentration (100  $\mu$ M) and  $K_{\rm B}$  values (determined in the presence of 1  $\mu$ M HIS) were calculated. n. d., not determined.

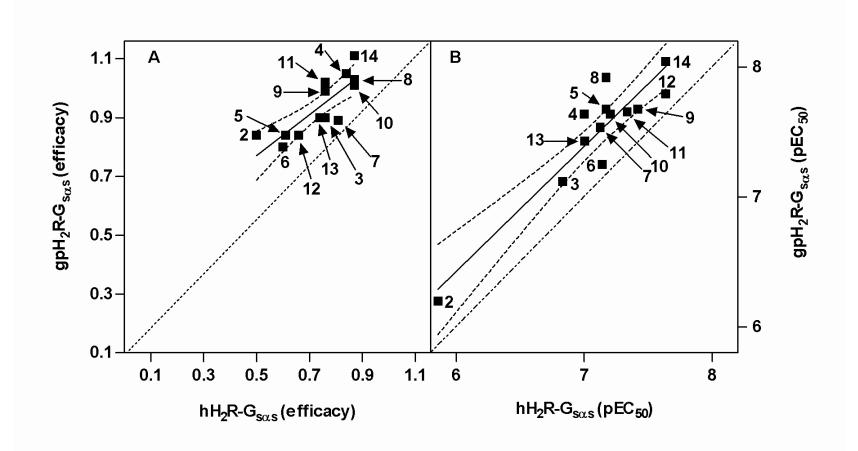

25

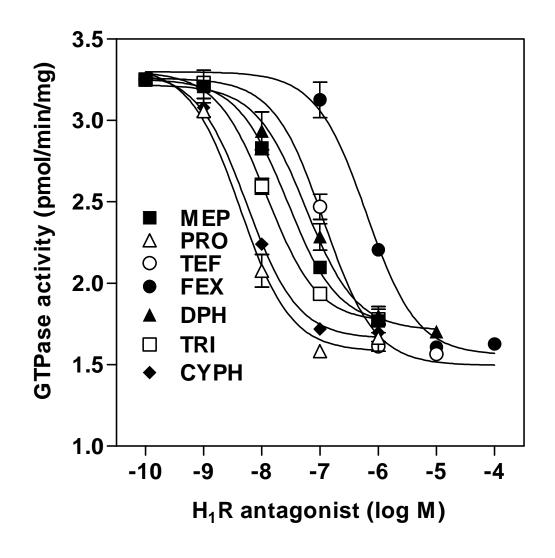
| Table 3. Affinities of HIS and AIPGs at hH <sub>1</sub> R and gpH <sub>1</sub> R in the [ <sup>3</sup> H]mepyramine |  |
|---------------------------------------------------------------------------------------------------------------------|--|
| competition binding assay                                                                                           |  |


|      |         | hH <sub>1</sub> R |           | gpH <sub>1</sub> R |           |                 |
|------|---------|-------------------|-----------|--------------------|-----------|-----------------|
| Cpd. |         | $K_i(\mu M)$      | rel. aff. | $K_i(\mu M)$       | rel. aff. | aff. ratio gp/h |
| 1    | HIS     | $2.0 \pm 0.19$    | 100       | $4.6\pm0.24$       | 100       | 0.43            |
| 5    | UR-AK67 | $14 \pm 3.7$      | 14        | $2.2\pm0.39$       | 210       | 6.36            |
| 6    | UR-AK22 | $2.9\pm0.14$      | 69        | $0.44\pm0.14$      | 1,000     | 6.59            |
| 8    | UR-AK24 | $5.3\pm0.20$      | 38        | $2.6\pm0.72$       | 180       | 2.04            |
| 10   | UR-AK62 | $7.0\pm0.48$      | 29        | $4.7\pm0.63$       | 98        | 1.48            |
| 12   | UR-AK64 | $0.99\pm0.22$     | 200       | $0.35\pm0.05$      | 1,300     | 2.82            |
| 13   | UR-AK59 | $6.0\pm0.47$      | 33        | $11 \pm 2.6$       | 42        | 0.56            |
| 14   | UR-AK57 | $0.91\pm0.16$     | 220       | $1.6\pm0.37$       | 290       | 0.57            |


[<sup>3</sup>H]Mepyramine competition binding in Sf9 membranes expressing hH<sub>1</sub>R or gpH<sub>1</sub>R with RGS4 or RGS19 was determined as described in *Methods*. Reaction mixtures contained Sf9 membranes (20-25  $\mu$ g of protein), 2 nM [<sup>3</sup>H]mepyramine and unlabeled ligands at concentrations of 10 nM - 1 mM as appropriate to generate saturated competition curves. Data were analyzed by non-linear regression and were best fit to one-site (monophasic) competition curves. Data shown are the means ± SD of 3-5 experiments performed in duplicate. The relative affinity of HIS (rel. aff.) was set 100, and the affinities of other ligands were referred to this value. We also calculated the ratio of the *K*<sub>B</sub> values for hH<sub>1</sub>R and gpH<sub>1</sub>R (aff. ratio gp/h).

## JPET #102897 Fig. 1





Downloaded from jpet.aspetjournals.org at ASPET Journals on April 20, 2024





JPET Fast Forward. Published on March 22, 2006 as DOI: 10.1124/jpet.106.102897 This article has not been copyedited and formatted. The final version may differ from this version.



