MEN16132, a novel potent and selective non-peptide kinin B₂ receptor antagonist. In vivo activity on bradykinin-induced bronchoconstriction and nasal mucosa microvascular leakage in anesthetized guinea-pigs.

Claudio Valenti, Cecilia Cialdai, Sandro Giuliani, Alessandro Lecci, Manuela Tramontana, Stefania Meini, Laura Quartara and Carlo Alberto Maggi.

Departments of Pharmacology (C.V., C.C., S.G., A.L., M.T., S.M., C.A.M.) and Chemistry (L.Q.), Menarini Ricerche S.p.A., Florence, Italy.
Running title: MEN16132, B₂ receptor antagonist on guinea pig airways

Corresponding author:
Dr. Sandro Giuliani, Pharmacology Department Menarini Ricerche S.p.A., Via Rismondo 12A, 50131 Florence, Italy, Tel. +39 055 5680750, Fax +39 055 5680419, E-mail: sgiuliani@menarini-ricerche.it

Number of text pages: 28
Number of tables: 0
Number of figures: 7
Number of references: 36
Number words in the abstract: 254
Number words in the introduction: 489
Number words in the discussion: 1307

Abbreviations:
BK, bradykinin
i.t., intratracheal
i.n., intranasal
PPE, plasma protein extravasation
ACE, angiotensin converting enzyme

Recommended section assignment: Inflammation & Immunopharmacology
Abstract

We have tested the activity of MEN16132 or 4-(S)-Amino-5-(4-{4-[2,4-dichloro-3-(2,4-
dimethyl-8-quinolyloxy)methyl]phenylsulfonamido}tetrahydro-2H-4-pyranylcarbonyl}-
piperazino)-5-oxopentyl)(trimethyl)ammonium chloride hydrochloride, a novel non-
peptide kinin B₂ receptor antagonist, on BK-induced inflammatory responses,
bronchoconstriction and hypotension in guinea-pigs. After intravenous (1-10 nmol/kg
i.v.), intratracheal (10-100 nmol/kg i.t.) or aerosol (0.01-0.1 mM/5min) administration,
MEN16132 inhibited in a dose-dependent manner the bronchoconstriction induced
by BK (10 nmol/kg i.v.). MEN16132 was more potent and possessed a longer
duration of action as compared to the peptide B₂ receptor antagonist Icatibant: after
i.v. administration its inhibitory effect on bronchoconstriction lasted more than 8h at
30nmol/kg. When administered by i.v. or i.t. routes, the dose completely inhibiting
bronchoconstriction, partially reduced also the hypotensive response to BK, whereas
after aerosol administration the inhibitory effect was limited to respiratory level.
Intranasal (i.n.) administration of MEN16132 (0.01-0.3 nmol/nostril) reduced, in a
dose-dependent and long-lasting manner, the nasal mucosa plasma protein
extravasation (PPE) induced by BK (100 nmol/nostril) and it exerted a complete
inhibition at about thirty fold lower dose than Icatibant. At 1 nmol/nostril MEN16132
activity was significant for at least 6h with no systemic effect measured as inhibition
of BK-induced hypotension and at 10 nmol/nostril the inhibitory effect lasted for more
than 15h with only a weak effect on hypotension. These findings indicate that in vivo
MEN16132 is a potent kinin B₂ receptor antagonist with long duration of action, both
after i.v. and local administration. A complete and prolonged inhibition of BK-induced
bronchoconstriction or nasal inflammation can be achieved with MEN16132 topical
administration (aerosol or i.n.) at doses devoid of systemic effects.
Introduction

BK, a nonapeptide generated in plasma and tissues by activation of kininogens, exerts its effects through the constitutively expressed B_2 receptor before degradation by enzymatic cleavage. The des-Arg^9 metabolites of BK maintain a biological activity mediated by the B_1 receptor, which is not or barely expressed in normal tissues, but it is up-regulated following inflammation and tissue injury (Leeb-Lundberg et al., 2005). In humans and guinea-pigs, the kinin B_2 receptors are present in lungs (Mak and Barnes, 1991) and nasal airways (Dear et al., 1996; Fujiwara et al., 1989). In guinea-pig airways, BK induces bronchoconstriction (Wirth et al., 1993), microvascular leakage (Ichinose and Barnes, 1990; Ricciardolo et al., 1994) and bronchial hyperreactivity (Omini et al., 1989); furthermore in vitro evidence indicates that BK may stimulate inflammatory cells recruitment (Sato et al., 1996; Koyama et al., 2000). These effects are mediated by the B_2 receptor, also indirectly through the release of cyclooxygenase products and sensory nerve endings stimulation (Ichinose et al., 1990; Nakajima et al., 1994). In man, BK induces potent bronchoconstriction and cough when inhaled in asthmatic patients (Polosa and Holgate, 1990; Choudry et al., 1989) and rhinitis-like symptoms when instilled into the nose (Churchill et al., 1991). Furthermore, BK is generated in human nasal secretions during rhinovirus infections (Shibayama et al., 1996) and allergic rhinitis (Svensson et al., 1990; Proud et al., 1983). On the basis of these findings, a therapeutic potential role of kinin B_2 receptor antagonists has been hypothesized for the treatment of airways inflammatory pathologies associated with hyperresponsiveness to BK, such as chronic bronchial asthma (Akbary et al., 1996), or with the release of BK, such as perennial and seasonal allergic rhinitis (Austin et al., 1994; Turner et al., 2001).
On the other hand, in addition to their proinflammatory activities, kinins also exert protective effects on the cardiovascular system. Several studies have provided evidence suggesting that BK contributes to the antihypertensive and cardioprotective effects of angiotensin-converting enzyme inhibitors (Kuoppala et al., 2000; Campbell et al., 2005). In rat BK exerts an injury-limiting effect in the ischaemic and reperfused heart (Ito et al., 2003; Driamov et al., 2004) and acute cardiovascular effects produced by kinin B\(_2\) receptor antagonists have been observed (Carini et al., 2002). On the basis of these considerations it would be important to obtain a block of B\(_2\) receptors in the airways without interfering with those at cardiovascular level.

MEN16132 (Fig 1) is a new selective non-peptide antagonist of the kinin B\(_2\) receptor endowed with high affinity for the guinea-pig and human receptors (Cucchi et al., submitted). In this study we have investigated the ability of the new B\(_2\) receptor antagonist, MEN16132, in inhibiting BK-induced bronchoconstriction or PPE in nasal mucosa after intravenous or local administration (aerosol, intratracheal or intranasal). The peptide B\(_2\) receptor antagonist Icatibant has been used as a reference compound. In order to check the systemic absorption after local administration of MEN16132, its effect on BK-induced hypotension was also determined.
Materials and Methods

Experiments were performed in male Dunkin Hartley guinea-pigs weighing 350-400 g (Charles River, Italy) in accordance with the principles and guidelines of the italian Government, the European Union regulations and the local ethical committee.

Bronchoconstriction and hypotension induced by i.v. bradykinin

Guinea-pigs were anesthetized with urethane (1.5 g/kg s.c.). The left jugular vein and the carotid artery were cannulated for drugs administration and blood pressure recording, respectively. The pressure signal was recorded by means of a pressure transducer. The animals were mechanically ventilated (10 ml/kg room air, 50 strokes/min) and pulmonary insufflation pressure was measured by a transducer connected to the tracheal cannula. The pressure transducers (Transpac IV, Abbott, Italy) were connected to a Mac Lab/8S ML 780 data acquisition system (ADInstruments UK). The body temperature was kept constant at 37°C by a thermoregulated heating lamp.

A dose-response curve to i.v. BK was first determined to select a dose suitable for the evaluation of B₂ receptor antagonists activity.

After a 15 min stabilization period from the surgical operation, two control responses to BK (10 nmol/kg i.v.) were obtained, whereupon MEN16132, Icatibant or their vehicle were administered by i.v. route, or into the airways, through i.t. instillation or aerosol delivery in the afferent limb of the respiratory pump for 5 min by means of an ultrasonic nebulizer (Micrò, Markos-Air Liquide). The vehicle received by the control group was saline, for i.v. and aerosol administration, and saline with 30% dmos for i.t. administration. The challenge with i.v. BK was performed 5 min after the antagonists or the vehicle administration, then repeated every 30 min up to 210 min. In another
series of experiments, aiming to check the duration of action of i.v. MEN 16132 on BK-induced bronchoconstriction, the observation period was prolonged to 8h. BK (10 nmol/kg i.v.) was administered every 1h in order to avoid possible tachyphylaxis.

In order to check the possibility of antagonist systemic absorption after intranasal application, MEN16132 or its vehicle (saline, 30 µl/nostril) were instilled in both nostrils of unanesthetized guinea-pigs. After 15 min the animals were anesthetized with urethane (1 g/kg i.p.). The trachea and carotid artery were cannulated for mechanical ventilation and blood pressure recording, respectively, as described above; 45 min after antagonist administration, BK (10 nmol/kg i.v.) was given and repeated twice at 30 min interval.

Nasal mucosa microvascular leakage induced by i.n. bradykinin

MEN16132, Icatibant or their vehicle were instilled in a volume of 30 µl in both nostrils of unanesthetized guinea-pigs. After 10 min, the animals were anesthetized with sodium pentobarbital (40 mg/kg i.p.), the jugular vein was cannulated for drugs administration and the animals were mechanically ventilated through a tracheal cannula (10 ml/kg room air, 50 strokes/min). Guinea-pigs were pretreated (5 min before) with captopril (1 mg/kg i.v.) then, 30 min after antagonist, Evans blue (30 mg/kg i.v.) and BK (100 nmol/nostril) or its vehicle (saline, 30 µl/nostril) were administered.

A dose-response curve to i.n. BK was first obtained to select a dose suitable for evaluation of the antagonists activity.

After 15 min, the chest was opened, a cannula was inserted into the left ventricle and the circulation was perfused with 100 ml of saline containing heparin (180 IU/ml) in order to flush out the dye; the right atrium was opened to allow the expulsion of the
perfusion medium. The nasal mucosa was removed and weighed. The Evans blue extravasated from the microcirculation was quantified by measuring the optical density of the formamide extracts (for 6h at 60°C) at 630 nm wavelength with a spectrophotometer (CERES UV900C, Biotek Instruments).

In order to determine the time-course of MEN16132 inhibition on BK-induced nasal mucosa PPE, the agonist was administered i.n. 3, 6, 9 or 15 h after i.n. antagonist.

Drugs and Chemicals

MEN16132 or (4-(S)-Amino-5-{4-[2,4-dichloro-3-(2,4-dimethyl-8-quinolyloxymethyl)phenylsulfonylamido]-tetrahydro-2H-4-pyranyl(carbonyl)piperazino}-5-oxopentyl)(trimethyl)ammonium chloride hydrochloride) and Icatibant (or HOE140, H-DArg-Arg-Pro-Hyp-Gly-Thi-Ser-DThi-Oic-Arg-OH tris trifluoroacetate) were synthesized at the Chemistry Departments of Menarini Ricerche, Florence and Pomezia (Italy).

Bradykinin (NeoMPS, Strasbourg, France), formamide (Merck, Darmstadt, Germany), captopril, dimethylsulfoxide, Evans blue, sodium pentobarbital and urethane (Sigma-Aldrich) were purchased.

Evaluation of data

The bronchoconstriction was calculated as amplitude of the response over the basal value of insufflation pressure, and the hypotension as the difference of the diastolic pressure before and after the BK challenge. For each different time-points, the effects of the antagonists were expressed as percent inhibition of the responses to BK obtained before drugs administration. The data were compared by means of
factorial two-way analysis of variance followed by Fisher’s least-significant difference test. The differences were considered statistically significant at a level of P<0.05.

For the dose-response curve in bronchoconstriction experiments, in order to quantify the potency and duration of antagonists effect with a single value, the total inhibition during 210 min was expressed as the summation of the percent inhibition recorded at each time, and then as percent of maximal inhibitory effect achievable. Data were analysed by sigmoidal non linear regression fit by Prism 4.0 (GraphPad, San Diego, CA) to determine ID$_{50-\Sigma}$ as dose inhibiting the 50% of agonist produced maximal effect.

For the PPE experiments, the levels of Evans blue were expressed in ng per mg of tissue. Statistical analysis was performed by one-way analysis of variance followed by Dunnett’s multiple comparison test, and the differences were considered significant at a level of P<0.05.
Results

Effect of systemic and local administration of MEN16132 on BK-induced bronchoconstriction and hypotension

The i.v. administration of BK (0.01-100 nmol/kg, n=16, data not shown) induced a dose-dependent bronchoconstriction and hypotension. The dose of 10 nmol/kg i.v., producing an increase in pulmonary insufflation pressure of 10.3±1.4 mmHg (+110±14% of the basal value) and 21±3 mmHg decrease in diastolic blood pressure (54±5% inhibition, n=8), was selected to test the inhibitory activity of B2 receptor antagonists.

Both MEN16132 and Icatibant, exerted a dose-dependent inhibition of BK-induced bronchoconstriction and hypotension when administered by the i.v. route (Fig. 2 and 3).

The lowest effective dose of MEN16132 on bronchoconstriction was 3 nmol/kg i.v. reaching about 50 % inhibition within 5 min with a recovery to 20 % inhibition within 60 min. At 10 and 30 nmol/kg i.v. the block became complete for 150 min and 210 min, respectively (Fig. 2A). The ID$_{50}$ was 4.6±1.9 nmol/kg i.v. (Fig 4A). MEN 16132 (30 nmol/kg i.v.), 8h after administration, still showed a strong (88±4%, n=4) inhibition of BK-induced bronchoconstriction. In control animals no significant tachyphylaxis was observed, the BK response being about 75% of the basal value at the end of the experiment (n=4, data not shown).

MEN16132 achieved a complete inhibition of BK-induced hypotension at 5 min from administration, at a dose of 30 nmol/kg i.v., but subsequently a time-dependent recovery of the BK response was observed; the lowest effective dose on BK-induced hypotension (producing 40% inhibition) was 10 nmol/kg i.v. (Fig. 2B).
Icatibant produced a transient but deep (about 80%) inhibition of BK-induced bronchoconstriction at 10 nmol/kg i.v. At 30 nmol/kg i.v., Icatibant produced a complete inhibition of BK-induced bronchoconstriction, but this effect showed a strong tendency to reduce after 30 min from administration. A substantial recovery of the bronchoconstrictor response to BK was still evident at 300 nmol/kg i.v. (Fig. 3A). The calculated ID$_{50-\Sigma}$ for Icatibant was 56.1 ± 18.7 nmol/kg i.v. (Fig 4A). Icatibant exerted about 80%, 40% and 20% inhibition of BK-induced hypotension at the doses of 300, 10 and 3 nmol/kg i.v., respectively. Also this effect was subjected to time-dependent recovery of basal response, which was even more prominent than for bronchoconstriction (Fig. 3B).

After application into the airways by i.t. route, MEN16132 and Icatibant were able to inhibit the BK-induced bronchoconstriction in a dose-dependent manner (Fig. 2 and 3). MEN16132 produced a complete inhibition of bronchoconstriction at the dose of 100 nmol/kg i.t.. At the lower doses, 10 and 30 nmol/kg i.t., about 40% and 80% inhibition was observed, respectively, with an ID$_{50-\Sigma} = 18\pm2$ nmol/kg (Fig 4B). Independently from the dose, the inhibitory effect lasted for at least 210 min (Fig. 2C). MEN16132 (10-100 nmol/kg i.t.) produced a significant inhibitory effect (55\pm13%) on BK-induced hypotension only at the highest dose tested and at 210 min the recovery of control response was almost complete (Fig. 2D).

Icatibant, at 30, 100 and 300 nmol/kg i.t., inhibited by about 40%, 80% and 100% the BK-induced bronchoconstriction, respectively; a slow recovery of BK response was observed starting at 30 min from antagonist administration (Fig. 3C). The ID$_{50-\Sigma}$ was 130 ± 21 nmol/kg (Fig. 4B). At 100 and 300 nmol/kg i.t., Icatibant exerted similar inhibitory effect on BK-induced hypotension: a maximal inhibition of about 45% was
recorded at 5 min from its administration but the effect disappeared within 150 min. At the lowest dose, 30 nmol/kg i.t., only a weak (20-30%) and transient inhibitory effect was observed (Fig. 3D).

Aerosol administration of MEN16132 or Icatibant, produced a dose-dependent inhibition of BK-induced bronchoconstriction, without affecting the hypotension (Fig. 2 and 3).

The inhalation of aerosolized 0.1 mM solution of MEN16132 for 5 min, reduced by about 80% the BK-induced bronchoconstriction for the whole experimental period, whereas 0.01 or 0.03 mM solution of MEN16132 produced inhibitory effects of about 20% and 40%, respectively (Fig. 2E). The corresponding value of ID$_{50}$ was 0.07±0.03 mM (Fig 4C). Aerosolized MEN16132 did not exert any significant inhibitory effect on the BK-induced hypotension, at all concentrations (0.01-0.1 mM) tested (Fig. 2F).

After inhalation of aerosolized 0.3, 1 or 3 mM solution of Icatibant for 5 min, a maximal inhibition on BK-induced bronchoconstriction of about 40%, 60% and 80%, was achieved in the first 30 min, respectively. An almost complete recovery of the basal response to BK was observed at the end of the experimental period (Fig. 3E). The ID$_{50}$ was 1.4±0.3 mM aerosol for 5 min (Fig 4C). The effect of aerosolized Icatibant on BK-induced hypotension did not exceed 30% inhibition at the highest concentration tested (Fig. 3F).

Effect of intranasal MEN16132 on topical BK-induced nasal mucosa PPE

The i.n. instillation of BK (50-200 nmol/nostril, n=5) induced Evans blue PPE in the nasal mucosa in a dose-dependent manner. The effect produced by 50 nmol/nostril (35±1 ng/mg tissue) was about 30% of the maximal response observed at 100
nmol/nostril (62±5 ng/mg tissue), the basal value being 24±2 ng/mg tissue in the control group. The dose of 100 nmol/nostril was selected to test the activity of the B2 receptor antagonists.

At about 60 min from their administration, MEN16132 and Icatibant, at 0.3 and 10 nmol/nostril, respectively, abolished the BK-induced PPE; at 0.03 and 3 nmol/nostril for MEN16132 and Icatibant, a significant inhibition of BK response by about 55% and 70%, respectively, was still observed (Fig. 5).

MEN16132 (0.3 nmol/nostril), at 3h from its i.n. administration, produced a still significant inhibitory effect (60%). At this time the i.n. application of MEN16132 (1 and 3 nmol/nostril), exerted a complete inhibition of BK-induced nasal mucosa PPE; this inhibitory effect was maintained at about 80% after 6h. At 10 nmol/nostril, MEN16132 blocked the PPE for 6h; a small recovery was observed after 9h, however at 15h the inhibitory effect was still about 60% (Fig. 6).

Effect of intranasal MEN16132 on BK-induced hypotension

The local inhibitory effect exerted by MEN16132 (1 nmol/nostril) on nasal mucosa PPE, was not accompanied by systemic effects since no inhibition of hypotension induced by BK (10 nmol/kg i.v.) was observed. At the highest dose tested (10 nmol/nostril), MEN16132 showed only a weak systemic effect, exerting about 25% inhibition of BK-induced hypotension after 75 min from antagonist administration (Fig. 7).
Discussion

MEN16132 is a new potent and selective non-peptide kinin B$_2$ receptor antagonist whose structure was designed for optimal pharmacological profile starting from known non-peptide ligands (LF16-0335C; Pruneau et al., 1999a). The key structural features of MEN16132 are the conformationally constrained 4-amino-4-carboxytetrahydropyran and the basic charged N-δ-trimethyl-ornithine moiety (Fig 1). The combination of the above elements led to high affinity and potency at the human B$_2$ receptor expressed in CHO cells with a pKi value of 10.5±0.05 and to a strong selectivity, its affinity at human B$_1$ transfected receptor being with a pKi value < 5 (Cucchi et al., submitted). Furthermore MEN16132 is characterized by a potent and long lasting inhibitory activity on BK-induced responses in the guinea-pig airways, with poor systemic effects after local administration.

After i.v. administration, MEN16132 resulted about three fold more potent than Icatibant in inhibiting the BK-induced bronchoconstriction. These data are in agreement with the affinity data of the two antagonists (pK$_B$ = 10.1 and 9.5 for MEN16132 and Icatibant, respectively) for guinea-pig B$_2$ receptors (Meini et al., 2000; Cucchi et al., submitted). However, if we consider the total inhibitory effect on bronchoconstriction during 210 min, the corresponding ID$_{50-\Sigma}$ value is about ten fold lower for MEN16132 than Icatibant, a difference greater than expected on the basis of their relative in vitro affinity for guinea-pig B$_2$ receptors. This finding cannot be explained by a different type of competition, since both compounds exerted an insurmountable antagonism (Meini et al., 2000; Cucchi et al., submitted), but it could be attributed to a better metabolic/kinetic profile of the non-peptide vs peptide structure of the two antagonists. We have verified that Icatibant was degraded when incubated with guinea-pig liver or lung homogenates (Tramontana et al., 2001),
whereas preliminary results on metabolic stability of MEN16132 indicate absence of metabolites in plasma, urine and bile and unchanged plasmatic levels up to 180 min from its administration (Lecci, personal communication). The interesting profile of MEN16132, in terms of long duration of action, is confirmed by the evidence that a dose of 30 nmol/kg is able to block the bronchoconstriction by BK up to 8h from i.v. administration.

The non-peptide B2 receptor antagonists FR173657 (Griesbacher et al., 1997) and LF16-0687 (Pruneau et al., 1999b) showed a rapid decay of their inhibitory effect on BK-induced bronchoconstriction after i.v. or i.t. administration (Tramontana et al., 2001). Therefore, among the non-peptide B2 receptor antagonists, the long lasting activity is a peculiar feature of MEN 16132.

The BK-induced hypotension is less affected by the B2 receptor antagonists than bronchoconstriction: a comparable inhibition of hypotensive response and bronchoconstriction was reached with a dose 3 and 30 fold higher for MEN16132 and Icatibant, respectively. These data are encouraging in terms of the opportunity to achieve a selective block of BK-induced responses at bronchial level, reducing possible systemic adverse effects due to the blockade of the protective cardiovascular effects of BK. In fact an important drawback for the clinical use of kinin B2 receptor antagonists has been hypothesized because BK exerts beneficial effects on the cardiovascular system via B2 receptors. Some evidence suggests that BK contributes to the antihypertensive and cardioprotective effects of ACE inhibitors as a consequence of the block of BK major degrading enzyme in plasma (Gainer et al., 1998; Campbell et al., 2005). Moreover, BK exerts a protective effect against the reperfusion-induced injuries in ischaemic heart (Ito et al., 2003; Driamov et al., 2004) and the kinin B2 receptor antagonists can produce acute cardiovascular effects such
as hypertension (Carini et al., 2002). The effects of BK at cardiovascular and respiratory level, are produced by the B₂ receptor activation. Based on the insensitivity to B₂ antagonists, the existence of B₃ kinin receptor subtype in guinea-pig trachea, has been suggested (Farmer et al., 1989), although it has been not confirmed by molecular cloning of B₂ receptor protein variants (Regoli et al., 1998, for a review). In our experimental conditions, the i.t. administration of MEN 16132 produces a complete and long lasting inhibition of bronchoconstriction therefore there is no evidence bringing to hypothesize a role for the kinin B₃ receptor in BK-induced bronchoconstriction in guinea-pig. Since at present there is no evidence of the existence of different kinin B₂ receptor subtypes in the same species, the only possibility to exert airways-selective effects consists in limiting the systemic absorption of kinin B₂ receptor antagonist by local administration. This study demonstrated that MEN16132 is effective after local administration both in the lower airways, by intratracheal or aerosol administration, and in the upper airways after intranasal application, with absent or reduced systemic effects. Aerosolized MEN16132 showed an ID₅₀,Σ value, for the total antibronchoconstrictor effect, 20 fold lower than Icatibant, against a 10 fold difference observed for i.v. and i.t. administration. The increased antagonist potency of MEN16132 vs Icatibant, after aerosol delivery, could be likely ascribed to a greater stability of MEN16132 to local metabolism. Interestingly, Icatibant reaches its maximal inhibition of bronchoconstriction after 5 min from intratracheal or aerosol administration, whereas the peak effect of MEN16132 is recorded at about 30 min; likewise Icatibant and MEN16132 achieved the maximal inhibitory effect on hypotension after 5 and 60 min, respectively. Therefore the peptide antagonist is more quickly absorbed at systemic level following
local administration as compared to non-peptide antagonist. The ultra-thinness of the alveolar epithelium is a peculiar feature of the lung that can facilitate systemic delivery of peptides via pulmonary administration. MEN16132, being a quaternary ammonium compound, has an intrinsic positive charge that might limit the systemic absorption following inhalation. Moreover, cationic lipophilic drugs can accumulate in the lungs consequently to their alignment with anionic phospholipids in the surfactant (Upton and Doolette, 1999). On the basis of these considerations we can suppose that the lungs could act as a reservoir for MEN16132; this effect, together with metabolic stability, could explain the long lasting inhibition of BK-induced bronchoconstriction following topical administration.

In a clinical study on inhibition of responses to nasal provocation with BK, Icatibant at 650 nmol/nostril has shown a short duration of action that could severely limit its utility in chronic rhinitis treatment (Proud et al., 1995). MEN16132, as observed on BK-induced bronchoconstriction after aerosol administration, exerts a long lasting inhibition of BK-induced nasal mucosa PPE, being 30 fold more potent than Icatibant and maintaining an almost complete inhibitory effect up to 9 h at 10 nmol/nostril dose. This high potency, associated with a long duration of action, could be a favourable characteristic for clinical studies i.e. in rhinitis and in bronchoconstriction related to asthma.

In order to check the possibility of systemic absorption after local intranasal application of MEN16132, we have investigated the degree of inhibition on BK-induced hypotension. Considering the highest dose tested (10 nmol/nostril), which produces a strong and long lasting inhibitory effect on BK-induced nasal mucosa PPE and assuming that all the compound is absorbed at the same time, we could obtain an available dose in the blood of 20 nmol/animal. This dose is very close to
the full active i.v. dose of 30 nmol/kg, corresponding to 10-15 nmol/animal. However we have observed only weak inhibitory effects on hypotension induced by i.v. BK, indicating poor systemic absorption. Notably at the dose of 1 nmol/nostril there is a full antagonism of BK-induced PPE in nasal mucosa and no inhibition of BK-induced hypotension. Therefore MEN16132 can be considered a selective B₂ receptor antagonist suitable for local administration in the airways and devoid of significant systemic effects.

In conclusion MEN16132 when topically applied into the airways exerts a more potent and long lasting inhibitory activity on BK-induced responses as compared to the other non-peptide and peptide kinin B₂ receptor antagonists; furthermore, at fully effective doses, the systemic absorption of MEN16132 is negligible. Therefore this molecule shows good pharmacokinetic and pharmacodynamic properties for its potential use in the treatment of chronic airways diseases involving the proinflammatory activity of BK.
References

Footnotes

This work was supported by grants from Italian Ministry of University and Research (RIF.506/DSPAR 98).
Legends for figures

Figure 1
Chemical structure of MEN16132, (4-(S)-Amino-5-(4-{4-[2,4-dichloro-3-(2,4-dimethyl-8-quinolylloxymethyl)phenylsulfonamido]-tetrahydro-2H-4-pyranylcarbonyl}piperazino)-5-oxopentyl][trimethyl)ammonium chloride hydrochloride).

Figure 2
Effect of i.v. (A and B; 1 ●, 3 □, 10 ■, 30 ◊ nmol/kg), i.t. (C and D; 10 ●, 30 □, 100 ■ nmol/kg) or aerosol (E and F; 0.01 ●, 0.03 □, 0.1 ■ mM/5 min) administration of MEN16132 on bronchoconstriction (left panels A, C and E) and hypotension (right panels B, D and F) induced by BK (10 nmol/kg i.v.). Results are expressed as percent of basal response to BK recorded before treatment. Vehicles (○) are: i.v., saline, 100 µl/kg; i.t., saline containing 30% dimethylsulfoxide, 100 µl/kg; aerosol, saline, for 5 min. Each value is the mean±S.E.M. of 5-7 experiments. *P<0.05 significantly different from the respective value in the vehicle group.

Figure 3
Effect of i.v. (A and B; 3 ●, 10 □, 30 ■, 300 ◊ nmol/kg), i.t. (C and D; 30 ●, 100 □, 300 ■ nmol/kg) or aerosol (E and F; 0.3 ●, 1 □, 3 ■ mM/5 min) administration of Icatibant on bronchoconstriction (left panels A, C and E) and hypotension (right panels B, D and F) induced by BK (10 nmol/kg i.v.). Results are expressed as percent of basal response to BK recorded before treatment. Vehicles (○) are: i.v., saline, 100 µl/kg; i.t., saline containing 30% dimethylsulfoxide, 100 µl/kg; aerosol,
saline, for 5 min. Each value is the mean±S.E.M. of 5-7 experiments. *P<0.05 significantly different from the respective value in the vehicle group.

Figure 4

Dose-response curves of MEN16132 and Icatibant inhibitory effect on BK-induced bronchoconstriction after i.v. (A), i.t. (B) and aerosol (C) administration. Each value represents the total inhibitory effect during 210 min calculated as summation of the percent inhibition at various time-points, then percentualized to the maximal inhibitory effect achievable. Data are the mean of 5-7 experiments.

Figure 5

Dose-dependent effect of MEN16132 (0.01-0.3 nmol/30 µl nostril) or Icatibant (1-10 nmol/30 µl nostril) i.n. instillation on nasal mucosa PPE induced by topical application of BK (100 nmol/nostril). Antagonists or the vehicle (saline 30 µl/nostril, for C and BK groups) were instilled in the nose of unanesthetized guinea-pigs. Data are mean±S.E.M. of 5-10 experiments. *P<0.05 and +P<0.05 significantly different from BK and control (C) group, respectively.

Figure 6

Time-course of MEN16132 inhibitory effect on BK-induced nasal mucosa PPE. MEN16132 (0.3 ●, 1 ○, 3 ■, 10 □ nmol/nostril) or its vehicle (saline 30 µl/nostril) were instilled in the nose of unanesthetized guinea-pigs. After 0.5, 3, 6, 9 or 15h, the animals were anesthetized and BK (100 nmol/nostril) was administered intranasally. The effect of MEN16132 was reported as percent inhibition of control BK-induced increase of Evans blue in nasal mucosa at each time-point, normalized to the
response obtained in vehicle-treated animals. Data are mean±S.E.M. of 4-8 experiments. *P<0.05 significantly different from control group.

Figure 7
Effect of MEN16132 i.n. administration on hypotension induced by i.v. administration of BK (10 nmol/kg) in guinea-pigs. MEN16132 (1 ●, 10 ○ nmol/nostril) or its vehicle (saline, 30 µl/nostril) for the control group, were instilled in the nose before anesthesia. BK was given at 45 min from i.n. administration of MEN16132 or the vehicle and repeated twice at 30 min interval.
Data are mean±S.E.M. of 6-8 experiments. *P<0.05 significantly different from control (vehicle) group.
Figure 1
Figure 3

[A] % of basal BK bronchoconstriction vs. time (min) for different Icatibant intravenous doses.

[B] % of basal BK hypotension vs. time (min) for different Icatibant intravenous doses.

[C] % of basal BK bronchoconstriction vs. time (min) for different Icatibant intratracheal doses.

[D] % of basal BK hypotension vs. time (min) for different Icatibant intratracheal doses.

[E] % of basal BK bronchoconstriction vs. time (min) for different Icatibant aerosol doses.

[F] % of basal BK hypotension vs. time (min) for different Icatibant aerosol doses.
Figure 4

[A] % inhibition on BK-induced bronchoconstriction during 210 min

[B] % inhibition on BK-induced bronchoconstriction during 30 min

[C] % inhibition on BK-induced bronchoconstriction during 15 min

<table>
<thead>
<tr>
<th>Treatment</th>
<th>ID50-Σ (nmol/kg)</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Icatibant</td>
<td>18 ± 2</td>
<td></td>
</tr>
<tr>
<td>MEN16132</td>
<td>4.6 ± 1.9</td>
<td></td>
</tr>
<tr>
<td>Icatibant</td>
<td>130 ± 21</td>
<td></td>
</tr>
<tr>
<td>MEN16132</td>
<td>56.1 ± 18.7</td>
<td></td>
</tr>
</tbody>
</table>

Note: The graph shows the concentration-response relationship for three different treatments: Icatibant and MEN16132 administered intravenously (A) and intrathecally (B, C). The ID50-Σ values indicate the effective concentration at which 50% inhibition is achieved, with SEM values showing the variability of the data.
Figure 5
Figure 6

Percentage inhibition of PPE over time for different concentrations of MEN16132:
- 0.3 nmol/nostril
- 1 nmol/nostril
- 3 nmol/nostril
- 10 nmol/nostril

Y-axis: % inhibition of PPE
X-axis: time (h)
Figure 7

The figure shows the percentage inhibition of hypotension over time for different concentrations of MEN16132. The data points indicate the effect of 1 nmol/nostril and 10 nmol/nostril on the percentage inhibition of hypotension over time (in minutes). The figure includes error bars and asterisks (*) to denote statistical significance.