Sumanirole, a Highly Dopamine D₂–Selective Receptor Agonist: In Vitro and In Vivo Pharmacologic Characterization and Efficacy in Animal Models of Parkinson’s Disease

ROBERT B. MCCALL, KEITH J. LOOKINGLAND, PAUL J. BÉDARD, and RITA M. HUFF

Pfizer, Inc., Kalamazoo, Michigan (R.B.M., R.M.F.); Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan (K.J.L.); and Centre de Recherche en Neurosciences, Laval University Hospital, Sainte-Foy, Québec, Canada (P.J.B.)
RUNNING TITLE: Sumanirole, a selective D₂ agonist

CORRESPONDING AUTHOR:

Robert B. McCall, Ph.D.

Pfizer

301 Henrietta Street

7251-209-305

Kalamazoo, MI 49007

(616) 833-0923 (phone); (616) 833-2525 (fax)

Robert.B.McCall@pfizer.com

Total Pages: 36

Tables: 3

Figures: 10

References: 40

Abstract Word Count: 249

Introduction Word Count: 423

Discussion Word Count: 1,113

Section Recommendation: Neuropharmacology

ABBREVIATIONS: SNPC, substantia nigra pars compacta; AMPT, α-methyl-paratyrosine; MEM, minimal essential medium; EGTA, ethylene glycol-bis(β-aminoethyl ether); EDTA, ethylenediaminetetraacetic acid; HEPES, (N-[2-hydroxyethyl]piperazine-N’-[2-ethanesulfonic acid]); MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.
ABSTRACT

The purpose of these studies is to demonstrate that sumanirole is a novel dopamine receptor agonist with high \textit{in vitro} and \textit{in vivo} selectivity for the D_2 receptor subtype. Sumanirole, (R)-5,6-Dihydro-5-(methylamino)-4H-imidazo[4,5,1-ij]quinolin-2(1H)-one (Z)-2-butenedioate (1:1), is unique: it has greater than 200-fold selectivity for the D_2 receptor subtype versus the other dopamine receptor subtypes in radioligand binding assays. In cell-based assays, sumanirole is a fully efficacious agonist, with EC_{50} values between 17 and 75 nM. In animals, sumanirole elicits many physiological responses attributed to D_2-like receptor function. In rats, sumanirole is a full agonist for elevation of striatal acetylcholine levels (ED_{50} 12.1 μmol/kg i.p.). Sumanirole s.c. dose-dependently decreased plasma prolactin levels and depressed dopamine neuron firing rates in the substantia nigra pars compacta with an ED_{50} of 2.3 μmol/kg i.v. This high selectivity for D_2 receptors translates into excellent locomotor stimulant activity in animal models of Parkinson’s disease. In reserpinized, α-methyl-para-tyrosine–treated rats, sumanirole caused a significant and sustained increase in horizontal activity at doses \geq 12.5 μmol/kg s.c. In unilateral 6-hydroxydopamine–lesioned rats, sumanirole caused profound, sustained rotational behavior and was substantially more efficacious than any other agonist tested. Sumanirole-stimulated rotational behavior was blocked by the dopamine receptor antagonist haloperidol. Sumanirole dose-dependently improved disability scores and locomotor activities of two of three 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine–lesioned monkeys. In summary, sumanirole is the first published selective D_2 receptor agonist. The compound has activity in animal models of dopamine hypo function and has a high level of efficacy in animal models of Parkinson’s disease.
INTRODUCTION

Parkinson’s disease results from degeneration of the dopaminergic cells in the substantia nigra and is characterized by bradykinesia, tremors, and muscular rigidity. Several dopamine receptor agonists have been used as anti-parkinsonian therapy including bromocriptine, cabergoline, pergolide, pramipexole, and ropinirole (Hagan et al., 1997). Pramipexole, cabergoline, and ropinirole are effective as monotherapy in early-stage Parkinson’s disease and their use significantly delays the initiation of L-dopa therapy (Inzelberg et al., 2003; Bracco et al., 2004). Dopamine agonists are also used as adjuncts to L-dopa. The combined treatment enables lower doses of L-dopa, which decreases the incidence of response fluctuations and dyskinesias. However, currently available dopaminergic therapy, including agonists and L-dopa therapy, can elicit side effects including psychiatric complications and somnolence (Lieberman et al., 1995). Thus, there is a need for new compounds with fewer side effects (Etminan et al., 2003; Hobson et al., 2002).

There are at least five subtypes of dopamine receptors, grouped into two subfamilies, D₁-like and D₂-like, based on pharmacological and amino acid sequence similarities (Civelli et al., 1993). The dopamine agonists bind at D₂-like dopamine receptors (Montastruc et al., 1993). The D₂-like subfamily includes D₂, D₃, and D₄ receptors. Based on mRNA distributions, it has been suggested that D₂ receptors are more abundant in basal ganglia than in mesolimbic/mesocortical areas, whereas the D₃ and D₄ receptors are relatively more abundant in the limbic/cortical areas than in the striatum (Bouthenet et al., 1991; Van Tol et al., 1991). Because of the neuroanatomical distribution of these receptors, it has been suggested that D₃ and D₄ receptors may
contribute to the psychiatric disturbances that accompany dopamine agonist and L-dopa therapeutics. In fact, clozapine, a dopamine receptor blocker with high affinity for the D4 subtype, has been used to ameliorate the psychoses accompanying anti-parkinsonian treatment (Friedman, 1995) suggesting that this may be a D4 mediated side effect. Additionally, dopamine agonists such as pramipexole and ropinirole, demonstrate daytime hypersomnolence in Parkinson’s disease patients, along with other sleep-related problems (Razmy et al., 2004). The receptor subtype involved in this response has not been delineated. Eliminating D3- and D4-activating properties of dopamine receptor agonists has the potential to reduce certain side effects of Parkinson’s disease therapy.

The data in this study demonstrate a sumanirole, (5R)-5,6-Dihydro-5-(methylamino)-4H-imidazo[4,5,1-ij]quinolin-2(1H)-one (2Z)-2-butenedioate (1:1), is a novel dopamine agonist with high affinity and efficacy at D2 dopamine receptors and a substantial degree of selectivity for the D2 receptor over other dopamine receptor subtypes. The in vitro and in vivo properties of sumanirole described here suggest that the compound may have utility in treating Parkinson’s disease.

METHODS

The chemical structure of the compound under investigation—sumanirole—is shown in Figure 1 and the synthesis is previously described (Heier et al., 1997). The drug has been tested as either of two salt forms: the monohydrochloride salt with a molecular weight of 239.71 g/mol and the maleate salt with a molecular weight of 319.32 g/mol.
Cell Growth. Chinese hamster ovary (CHO) cells expressing human D2, D3, or D4 receptors or transfected with the 3C vector alone were grown in minimal essential medium (α modification [α-MEM]) supplemented with 10% fetal calf serum, 2 mM glutamine, 10 U/ml of penicillin, and 100 µg/ml of streptomycin. Media contained 1 mg/ml of G418 for growth of CHO-3C (mock transfected), D2-L6, D2-S8, and D3-3 cells. HEK 293 cells expressing human D4 receptors were grown in Dulbecco’s modified Eagle’s medium high glucose supplemented with 10% fetal bovine serum, 4 mM glutamine, 100 U/ml penicillin G, 100 µg/ml streptomycin, and 100 U/ml hygromycin B. D2-L6 cells express 3.5 pmol/mg human D2A receptors measured with [³H]spiroperidol, and 1.0 pmol/mg protein measured with [³H]U-86170, an agonist ligand. D2-S8 cells express 3.0 pmol/mg human D2B receptors measured with [³H]spiroperidol. D3-3 cells express D3 receptors at 2.5 pmol/mg protein measured with [³H]spiroperidol (Chio et al., 1994a). HEK293 cells express D4.2 receptors at a density of 0.74 pmol/mg protein measured with [³H] spiroperidol (Chio et al., 1994b).

Receptor-Binding Methods. Radioligands used were [³H]SCH23390 (D1-dopamine, 70 Ci mmol, 1 nM), [³H]U-86170, (Lahti et al., 1991), (D2-dopamine, 62 Ci/mmol, 2 nM), [³H]spiperone (D3 and D4-dopamine, 96 Ci/mmol, 0.2 nM). Rat striatal membranes were the source of D1 receptors. CHO Cells and HEK 293 cells expressing D2, D3, and D4 receptors were rinsed with ice-cold Ca²⁺/Mg²⁺-free phosphate-buffered saline and harvested in the same buffer. Cells were pelleted (500 × g, 5 min), resuspended in 25 mM Tris, 5 mM EDTA, 5 mM EGTA, pH 7.5 and frozen in liquid nitrogen. After thawing, the cells were homogenized and centrifuged at 1000 × g to remove nuclei and unbroken cells. The supernatant was centrifuged at 47,000 × g; the
membrane pellet was washed once with Tris, EGTA, EDTA, resuspended in 20 mM (N-
[2-hydroxyethyl]piperazine-N’-[2-ethanesulfonic acid]) (HEPES), pH 7.5, 150 mM NaCl, 10 mM MgCl₂, 1 mM EDTA, and frozen in liquid nitrogen. Membrane aliquots were stored at –70°C. For the receptor-binding assays, the membranes were thawed and diluted into 20 mM HEPES, pH 7.4, 150 mM NaCl, 10 mM MgCl₂, or 1 mM EDTA, 10 mM MgSO₄. Nonspecific binding was determined using 3 µM SCH23390 (D₁ receptor antagonist), or 3 µM haloperidol (D₂, D₃, and D₄ receptor antagonist). Binding reactions were carried out in 0.9 ml total volume for 1 hour (h) at room temperature. Reactions were stopped by vacuum filtration. Competition binding experiments employed 11 concentrations of test compound run in duplicate. IC₅₀ values were determined by fitting the data to a one-site model by nonlinear least squares minimization. Kᵢ values were calculated with the Cheng-Prusoff equation (Cheng and Prusoff, 1973).

cAMP Measurements. cAMP accumulation was measured in intact CHO cells plated at a density of 15,000 cells/well in a 24-well plate 48 h before the experiment. The cells were incubated in serum-free medium 1 h before the experiment. Fresh medium (0.5 ml) containing 100 µM forskolin, 100 µM isobutyl methylxanthine, and varying concentrations of drugs was added to each well, and cAMP was allowed to accumulate for 15 min at room temperature. The reactions were terminated by the removal of the medium and the addition of 100 µl of cold 7.5% trichloracetic acid. The samples were diluted by the addition of 1.0 ml of 50 mM sodium acetate, pH 6.2, and aliquots were assayed by radioimmunoassay using the Biomedical Technologies Incorporated (Stoughton, MA) cAMP radioimmunoassay kit.
Mitogenesis Assays. CHO cells were seeded into 96-well plates at a density of 5000 cells/well and were grown at 37°C in a α-MEM, with 10% fetal calf serum for 48 h. The wells were rinsed three times with serum-free α-MEM. Ninety microliters of fresh α-MEM were added along with 10 µl of drug (diluted in sterile water and filtered through 0.2-µm filters) or sterile water alone. Eight wells of every plate received 100 µl of α-MEM with 10% fetal calf serum. After culture for 16–17 h, [3H]thymidine (1 µCi/well) was added for 2 h. The cells were trypsinized and harvested onto filter mats with a Skatron cell harvester (Molecular Devices Corporation, Sunnyvale, CA). The filters were counted in a Betaplate counter (PerkinElmer Inc., Boston, MA).

Measurement of [3H]Arachidonic Acid Release. Cells were plated in 24-well plates at a density of 15,000 cells/well 48 h before use. Cells were labeled by incubation with [3H]arachidonic acid (210 Ci/mmol, 0.4 µCi/ml, Amersham Biosciences, Arlington Heights, IL) in α-MEM (1 ml) supplemented with 10 mM HEPES, pH 7.5, and 0.5% fatty acid-free bovine serum albumin for 2 h at 37°C. The cells were then washed twice with 1 ml of the same buffer. Drugs were added in 1 ml of the same buffer, and the cells were incubated at 37°C for 30 min. Samples (0.5 ml) from each well were counted by liquid scintillation spectroscopy.

In Vivo: General Methods, Rat. Unless otherwise stated, the following generalizations apply to all in vivo rat testing. Animals were male Sprague-Dawley rats from Harlan Sprague Dawley, Inc. (Indianapolis, IN), and were maintained in a temperature-controlled environment at 22 ± 1°C, with a 12:12 h light:dark cycle (lights on from 0600–1800 h). They were group-housed, and received food (Rodent Laboratory Chow #5001, Purina Mills Inc., Richmond, IN) and water ad libitum. All rodent testing
was in compliance with the Animal Welfare Act Regulations, 9CFR Parts 1, 2, and 3, and also with the Guide for the Care and Use of Laboratory Animals (National Academy Press, National Academy of Sciences, 1996).

Electrophysiology. Rats weighing between 280–330 g were anesthetized with chlora hydrate (400 mg/kg i.p.). The femoral artery and vein were catheterized for monitoring blood pressure and administration of drugs, respectively. Glass microelectrodes filled with pontamine sky blue in 2 M NaCl used for extracellular recordings were lowered through a small hole burred through the calvarium by means of a hydraulic microdrive. Stereotaxic coordinates for placement of recording electrodes were AP –4.8 to –5.0, L +2.0, and V –6.8 to –7.8 mm, relative to bregma (Paxinos and Watson, 1986). Substantia nigra pars compacta (SNPC) neurons were identified by waveform and firing patterns (Bunney et al., 1973). Histological localization of iontophoresed pontamine sky blue dye spots verified electrode locations. Drug solutions were made in distilled water with equimolar citric acid added as needed. Drug effects were measured as changes in firing rates monitored by an integrated rate meter.

Plasma Prolactin. Male Long Evans rats weighing 200–225 g from Harlan Sprague Dawley Inc. were used in this assay. Sumanrole was dissolved in saline and administered s.c. in a volume of 1 ml/kg at various times. 30–minutes following drug or vehicle administration, animals were killed by decapitation, and trunk blood was collected and plasma was stored. Plasma prolactin was measured by a double-antibody radioimmunoassay utilizing the reagents and procedures of the NIDDK assay kit (kindly supplied by Drs. A.F. Parlow and S. Raiti, NIDDK National Hormone and Pituitary Program, Torrance, CA). NIDDK rat prolactin (RP-3) was used as the standard. Using a
100-µl aliquot of plasma, the lower limit of sensitivity for prolactin was 0.1 ng/ml. The intra-assay coefficient of variation is usually about 8.6%.

Striatal Acetylcholine Concentration. 130-150 g rats (Charles River Laboratories, Wilmington, MA) were used in this study. Solutions of sumanirole and ropinirole were prepared in 0.25% carboxymethylcellulose. Drug treatments were given i.p. and control rats received an equal volume of vehicle (2 ml/kg). Thirty minutes after treatment, animals were killed by decapitation; the brain was quickly removed from the skull and placed in ice-cold 0.32 M sucrose. Bilateral striata were dissected and homogenized in 0.05 N perchloric acid containing ethylhomocholine as an internal standard. Acetylcholine concentration was determined by high-pressure liquid chromatography. Each point represents 5–6 animals, and statistical analysis was done by a one-way ANOVA, followed by Student’s *t* test.

Locomotor Activity Measurements in Reserpinized Rats. Rats pretreated with reserpine and the dopamine synthesis inhibitor, α-methyl-para-tyrosine (AMPT) are akinetic and cataleptic. These effects can be reversed by L-dopa (Carlsson, 1957). Reserpine/AMPT-treated rats have been used as a model of dopamine depletion to mimic parkinsonian conditions. Rats weighing 200–250 g were used in this assay. Reserpine and haloperidol were purchased from RBI (Natick, MA). Sumanirole was dissolved in physiological saline (0.9% NaCl), while haloperidol was dissolved in a few drops of glacial acetic acid and further diluted with 5.5% glucose solution. All compounds were administered s.c. in a volume of 5 ml/kg. Animals were pretreated with reserpine (5 mg/kg s.c., 18 h prior) and AMPT (100 mg/kg s.c., 1 h prior) before the experiment. The animals were injected with sumanirole or saline, and locomotor activity was measured.
using animal activity monitors (Digiscan® model RXYZM TAO; Omnitech Inc., Columbus, OH). Data are presented as horizontal counts expressed as percent of saline-treated controls (means ± S.E.M.) and comparisons were done at discrete 10-minute (min) intervals, comparing vehicle to individual doses of drug. Statistical analysis was done by one-way ANOVA, followed by an unpaired t test; on a point-by-point basis, any data differing from vehicle at $P \leq 0.05$ were considered an increase in activity.

Turning in 6-hydroxydopamine (6-OHDA) Lesioned Rats. Unilateral 6-OHDA injections into the substantia nigra cause selective destruction of dopamine neurons, leading to supersensitivity of the dopamine receptors in the caudate-putamen on the injected side. In these animals, dopamine receptor agonists cause contralateral turning (Ungerstedt, 1971).

Rats (225–280 g) were pretreated with desmethylimipramine 25 mg/kg i.p. 1 h before surgery. They were anesthetized with Chloropent® (Sigma Chemical Co., St. Louis, MO) given at 3 ml/kg i.p. and placed in a stereotaxic apparatus with the incisor bar raised to 4 mm (smaller rats) or 5 mm (larger rats). A small hole was drilled through the skull and a 30-gauge stainless tubing was lowered to the right substantia nigra using the following coordinates: smaller rats, AP –1.5 mm, L+1.8mm, V – 8.0 mm; larger rats, AP –2.8mm, L +2.0 mm, V –8.0 mm (Pellegrino *et al*., 1979). 6-OHDA, hydrogen bromide solution was injected into the substantia nigra at 12 µg/2 µl free base) in 0.9% saline/0.1% ascorbic acid at 1 µl/min, using a Hamilton® syringe pump (Hamilton Co., Reno, NV). Following surgery, the scalp incision was closed with stainless steel wound clips, and Mycitracin Plus® (Johnson & Johnson, Skillman, NJ) ointment containing
lidocaine and antibiotics (bacitracin, neomycin, and polymyxin B) was applied to the incision area. Rats were replaced in group housing, and clips were removed after 1 week.

Two weeks after surgery, the effects of the lesions were tested by monitoring the turning rate of rats given 0.5 mg/kg s.c. apomorphine HCl in 0.9% saline/0.1% ascorbic acid. Total turns were recorded at 10-min intervals in automated monitors (Rotoscan®, Omnitech Inc., Columbus, OH). Each rat was connected by a lightweight harness and tether to a rotometer at the top of a clear plastic cylindrical cage (11” diameter). The cage floor paper was changed for each animal. Rats were used for sumanireole experiments if they had at least 30 turns/10 min (range 30–160 turns/10 min) in this screen. Whenever possible, animals were balanced across treatment groups to accord each treatment a similar mix of animals from within this range. Groups were compared statistically by an F-test for variance of means, followed by a one-way analysis of variance and Student’s t test for individual data points and area under the curve (AUC). Analysis was done using RS/1 software (Brooks Automation Inc., Chelmsford, MA), customized in-house.

MPTP-Lesioned Monkeys. Three female cynomolgus monkeys (*Macaca fascicularis*), weighing approximately 3 kg each, were treated with MPTP i.v. at different dosages until variable, but stable, parkinsonian features appeared. The monkeys were used to previously screen a number of dopamine agonists. Sumanireole was injected s.c. During the period of peak drug effect, behavioral responses were scored every 30 min using an MPTP monkey disability scale (Gomez-Mancilla et al., 1993) and locomotor activity was recorded every 15 min by photocells mounted in the cages. Results obtained
with L-dopa:benserazide 50:12.5 mg/kg (Prolopa; Roche Mississauga, Ontario, Canada) and 0.1 mg/kg apomorphine were used as reference standards.

RESULTS

Studies with Cloned Receptors. Sumanirole is an agonist selective for the D₂ subtype of dopamine receptors (Table 1). In order to measure high-affinity, guanine nucleotide–sensitive agonist interactions at D₂ receptors, an agonist ligand, [³H]U-86170, was used (Lahti et al., 1991). The affinity of sumanirole for D₂ receptors is 9.0 ± 1.0 nM. This is similar to the affinity of D₂ receptors for ropinirole and slightly higher and lower than the receptor affinities for bromocriptine and pergolide, respectively, all agents used clinically for the treatment of Parkinson’s disease (Eden et al., 1991; Rascol et al., 1996; DeKeyser et al., 1995). The affinity of D₃, D₄, and D₁ receptors for sumanirole was calculated to be at least 200-fold lower than at D₂ receptors. In contrast, ropinirole, bromocriptine, and pergolide all showed high affinity for D₃ receptors; pergolide also showed high affinity for the D₄ receptor subtype.

We next examined whether sumanirole is an agonist or antagonist at the D₂ receptor using three measures: cAMP, arachidonic acid release, and mitosis. Forskolin-stimulated cAMP accumulation is inhibited by sumanirole and ropinirole in CHO cells (Figure 2). Both compounds caused near maximal inhibition of forskolin-stimulated cAMP at the highest concentrations. Sumanirole had no effect on forskolin-stimulated cAMP levels in CHO-3C cells (transfected with vector alone) at concentrations up to 1 µM suggesting that the response in L6 cells occurs via the transfected D₂ receptor. Table 2 compares the potencies of sumanirole, ropinirole and dopamine in two assays for
activation of D₂ receptors in CHO-L6 cells: cAMP inhibition and potentiation of ATP-stimulated arachidonic acid release (Lajiness et al., 1993). Sumanirole is approximately three times less potent than ropinirole at each measurement (Table 2). Both compounds were as efficacious as dopamine at maximal concentrations, indicative of high levels of intrinsic activity. Sumanirole activated D₂ receptor stimulated mitogenesis with an EC_{50} of 4.6 nM, but had no activity at D₃ and D₄ receptors in measurements of receptor activated mitogenesis at concentrations up to 1 µM; this was consistent with the very low affinity of these receptors for this compound. In comparison, ropinirole was very potent at activation of both D₂ and D₃ receptors; EC_{50} values of 12 ± 1.0 nM (n = 5) and 7.5 ± 2.9 nM (n = 5) in D₂ and D₃ receptor stimulated mitogenesis, respectively.

Studies in Animals. Dopamine agonists that activate the D₂-like subfamily of dopamine receptors inhibit the release of prolactin from anterior pituitary cells (Ho and Thorner, 1988). The effects of four doses of sumanirole on plasma prolactin levels in male Sprague-Dawley were tested. Sumanirole decreased plasma prolactin at all doses studied with significant decreases at all doses (Table 3). The effects at 31 µmol/kg lasted at least 120 min post injection.

Dopamine agonists depress dopamine neuron firing rates in the substantia nigra pars compacta (SNPC) by activation of presynaptic dopamine receptors of the D₂-like subfamily. As demonstrated by population dose-response curves, sumanirole resulted in inhibition of SNPC dopamine neuronal firing with an ED_{50} ± S.E.M. of 2.3 ± 0.9 µmol/kg i.v. (n = 6) (Figure 3). Complete inhibition of basal firing rate was seen at 16.8 µmol/kg i.v. The inhibition of cell firing was reversed by haloperidol.
Activation of striatal postsynaptic D2-like receptors decreases acetylcholine release and raises striatal acetylcholine concentrations (Sethy, 1979). Administration of both ropinirole and sumanirole to rats caused a dose-dependent increase in striatal acetylcholine levels (Figure 4). The maximal effects of both compounds were similar, with a near doubling of striatal acetylcholine concentration. The ED50 values for the effects (calculated as the fitted half maximal response ± S.E.M. of the fit using the dose-response fit equation of Sigma Plot (Jandel Corporation, San Rafael, CA) were 6.0 ± 8.2 µmol/kg i.p. for ropinirole and 12.1±4.1 µmol/kg i.p. for sumanirole.

Effects in Animal Models of Parkinson’s Disease. Sumanirole increased locomotor activity in reserpine/AMPT-pretreated rats with pronounced effects at 12.5 µmol/kg s.c. (Figure 5). The onset of this effect was approximately 30 min post injection and the duration of the 12.5 µmol/kg dose was at least 2.5 h. Even greater locomotor activation was observed in reserpinized/AMPT-treated rats at 42 µmol/kg s.c. and the activation was completely blocked by 0.3 mg/kg haloperidol. These data suggest that, sumanirole induces strong behavioral activation through a D2 dopamine receptor.

Sumanirole was also highly efficacious at causing contralateral turning in unilateral 6-OHDA lesioned rats after either oral or s.c. administration. A dose-response and time-course study of sumanirole given orally at 4.2, 12.5, or 42 µmol/kg showed turning activity in substantia nigra-lesioned rats, with significant effects seen at the two higher doses (Figure 6). Maximal turning behavior was reached at 2–3 h following oral administration. Additionally, in this assay, sumanirole had a long duration of action as 12.5 and 42 µmol/kg still showed near-maximal efficacy at 4.5 h post injection.
Ropinirole also caused dose-dependent increases in contralateral turning in the 6-OHDA–lesioned rats (Figure 7). Significant turning behavior was measured at 19 \(\mu\text{mol/kg} \), s.c. A maximally effective dose of ropinirole was not as efficacious as sumanirole, as measured by the degree of turning. In the same set of rats, sumanirole (12.5 \(\mu\text{mol/kg} \) s.c.) induced approximately three times as many turns per 10-min interval than 19 \(\mu\text{mol/kg} \) s.c. of ropinirole. Note that the effects of 12.5 \(\mu\text{mol/kg} \) sumanirole s.c. (Figure 6) are equivalent to the effects produced by 42 mol/kg sumanirole administered orally (Figure 7). Thus, the oral potency is approximately one-third the potency of the parenteral route. The peak response of sumanirole was also greater than the maximally effective doses of the following drugs given s.c.: 0.37 \(\mu\text{mol/kg} \) apomorphine, 4.6 \(\mu\text{mol/kg} \) bromocriptine, 9.5 \(\mu\text{mol/kg} \) pergolide, 13 \(\mu\text{mol/kg} \) quinpirole, and 11.7 \(\mu\text{mol/kg} \) SKF 38393. The turning activity induced by sumanirole is completely blocked by the co-administration of 0.27 or 2.7 \(\mu\text{mol/kg} \) haloperidol (Figure 8), indicating that turning is mediated by a D_2-like dopamine receptor.

Drug-experienced cynomolgus monkeys rendered parkinsonian with MPTP-induced lesions of the substantia nigra were treated with different dosages of sumanirole and tested for improvement in scores using a MPTP monkey disability scale (Figure 9). Two monkeys (A and B) had dose-dependent reductions in the disability scores following sumanirole, especially at the 12.5 \(\mu\text{mol/kg} \) dose. Monkey A had a dramatic recovery at 2.5 \(\mu\text{mol/kg} \) s.c. lasting for 5–6 h following a delay of 0.5–1 h. This monkey also had a dyskinesia accompanying the recovery. Monkey B required 12.5 \(\mu\text{mol/kg} \) sumanirole to show a dramatic response, and the response also lasted for 5–6 h following a 0.5–1 h delay. No dyskinesias were observed in Monkey B to either sumanirole or other
dopamine agonists. Monkey C did not show dramatic improvement even with the 12.5 μmol/kg dose; however, this monkey was unresponsive to apomorphine as well. In locomotion measurements, sumanirole at 12.5 μmol/kg s.c. increased the activity of Monkeys A and B more than Prolopa. Monkey C did not increase locomotion with sumanirole or with apomorphine, although this monkey did respond to Prolopa.

DISCUSSION

The striking difference between sumanirole and the other examined dopamine agonists (ropinirole, bromocriptine, and pergolide) lies in sumanirole’s lack of affinity for D₃ and D₄ receptors, whereas the other dopamine agonists all showed high affinity for D₃ and/or D₄ receptors. Sumanirole is an imidazoquinolinone and the first compound described as a highly selective agonist for D₂ receptors over the other D₂-like subtypes, D₃ and D₄. The selectivity of this compound was demonstrated in radioligand binding assays, where it has at least 200-fold higher affinity for D₂ receptors than for the other dopamine receptor subtypes. The other dopamine agonists examined did not demonstrate D₂ receptor-selectivity. Sumanirole has been shown to be inactive in over 80 enzyme and receptor assays. The compound does have moderate affinity at the 5-HT₁A receptor (Ki=95 nM; unpublished observations).

D₂ receptors are abundant in motor areas such as the basal ganglia and, therefore, their activation may be associated with therapeutic efficacy of dopamine agonists in Parkinson’s disease. In contrast, D₃ and D₄ receptors are located in limbic and cortical areas and may contribute to the psychiatric disturbances that accompany dopamine agonist and L-dopa therapeutics. In support of this hypothesis, clozapine, a dopamine
receptor blocker with higher affinity for the D₄ subtype, has been used to ameliorate the psychoses accompanying anti-parkinsonian treatment (Friedman, 1995). D₃ receptor agonists have also been shown to decrease locomotor activity (Lagos, 1998). This suggests that sumanireole’s unique selectivity may confer beneficial effects in the treatment of Parkinson’s disease. Eliminating D₃- and D₄-activating properties of dopamine receptor agonists may potentially reduce nonmotor side effects and improve tolerability. Whether the unique selectivity of sumanireole translates into a clinical advantage over other dopamine agonists remains to be determined.

The unique selectivity of sumanireole allows the compound to be used to characterize D₂-specific activity in the central nervous system that had previously been only inferred by using nonselective D₂-like receptor agonists. Sumanireole inhibits prolactin release. D₂ receptor mRNA but not D₃ receptor mRNA is found in the pituitary gland (Bunzow et al., 1988; Sokoloff et al., 1990), and D₂ receptors inhibit prolactin release from lactotrophs (Missale et al., 1991). Thus, it is not surprising that the D₂ selective agonist sumanireole can mediate the prolactin inhibition response, but these results provide evidence that sumanireole has anticipated in vivo D₂ activity. D₂-like receptors inhibit the firing rates of SNPC dopamine neurons (Pinnock, 1984; Piercey et al., 1986a; Piercey et al., 1986b). Both mRNA for D₂ and D₃ receptors have been localized to these dopaminergic neurons (Meador-Woodruff et al., 1989; Bouthenet et al., 1991). Sumanireole inhibited the firing rate of these cells in a similar dose range as the doses shown to inhibit prolactin release. These findings support a role for the molecularly defined D₂ receptors as autoreceptors that regulate the firing rates of SNPC neurons. Furthermore, activation of D₂-like receptors decreases acetylcholine release (Consolo et
al., 1987). Changes in acetylcholine content in the striatum were used as an in vivo measure of D2-like receptor activation. By this measurement, sumanirole is equally efficacious in vivo as other compounds used as antiparkinsonian agents. In three animal models of Parkinson’s disease, sumanirole was shown to have good locomotor stimulant properties, including reserpine/AMPT-treated rats, 6-OHDA–lesioned rats, and MPTP monkeys. Reserpine treatment of rats to deplete catecholamine stores results in a hypokinetic animal that can be activated by L-dopa and provides an animal model for Parkinson’s disease (Carlsson et al., 1957). Reserpine-induced akinesia was dose-dependently reversed by sumanirole and the activation effect was blocked by haloperidol. The mechanism for this locomotor activation is likely to be direct stimulation of postsynaptic D2 dopamine receptors.

Sumanirole was highly efficacious at causing contralateral turning in unilateral 6-OHDA–lesioned rats after either oral or s.c. administration, demonstrating superior efficacy over other dopamine agonists tested in this model. Ropinirole was slightly more potent but equally efficacious as sumanirole in assays of D2 receptor activation in cell-based assays, and at D2-like receptor activation in other in vivo responses. However, even maximally effective doses of ropinirole did not produce the same degree of response as sumanirole on rotational behavior. Furthermore, sumanirole was more efficacious than other agonists (bromocriptine, pergolide, apomorphine) tested at maximally effective doses in this model. The enhanced efficacy of sumanirole in the 6-OHDA–lesioned rat model could be a result of other undiscovered activities of this compound; however, turning was completely blocked by the dopamine receptor antagonist
haloperidol. This suggests the enhanced efficacy in this model resulted from sumanirole’s unique D2-receptor selectivity.

MPTP-lesioned monkeys represent another animal model for Parkinson’s disease. The toxin MPTP causes selective destruction of dopaminergic neurons resulting in behavioral deficits similar to those observed in diseased humans (Burns et al., 1983). L-dopa and dopamine agonists reverse the behavioral deficits in MPTP-treated monkeys. Chronic L-dopa can also cause dyskinesias in monkeys as it does in patients with Parkinson’s disease (Bedard et al., 1986). Sumanirole has only been tested to a limited extent in the MPTP-lesioned monkey model and only in monkeys tested extensively with other dopaminergic agents. Sumanirole caused improvement in Parkinson’s disability scores in two of the three monkeys. Sumanirole also increased the locomotion of the two responding monkeys to a greater extent than Prolopa. This is consistent with the high efficacy effects of sumanirole in the rat 6-OHDA turning model. The studies in the MPTP-lesioned monkey suggest that sumanirole is efficacious in this model but are too limited to draw solid conclusions about the relative efficacy or the dyskinetic potential of this compound. The current issue of JPET reports results of a subsequent study in MPTP-treated monkeys in which sumanirole shows antiparkinsonian effects comparable to existing dopaminergic therapies without inducing dyskinesias using both behavioral and pathological assessments (Stephenson et al., submitted).

CONCLUSION

Sumanirole represents the first dopamine agonist with high selectivity for the D2 receptor subtype over the other closely related D3 and D4 receptor subtypes. In vitro
studies demonstrate that sumanirole is a selective D₂ receptor agonist and can therefore be used to evaluate the importance of the D₂ receptor in the physiological effects of dopamine agonists. The D₂-selective nature of sumanirole is assumed to allow for the assessment of D₂ agonist effects on locomotor activity in the absence of D₃ and D₄ receptor co-activation. Studies presented here suggest that, in animals, many of the physiological responses thought to be mediated via the D₂ receptor subtype—namely prolactin release, regulation of striatal acetylcholine content, and autoreceptor-mediated inhibition of nigrostriatal firing rates—are indeed mediated by the molecularly defined D₂ receptor subtype, since sumanirole was fully efficacious at in vivo concentrations expected to selectively activate D₂ receptors. Sumanirole thus represents a potential tool for studying D₂ receptor subtype specificity both in vitro and in vivo.
REFERENCES

Cheng YC and Prusoff WH (1973) Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 percent inhibition (I50) of an enzymatic reaction. *Biochem Pharmacol* **22**:3099–3108.

FOOTNOTES

This work was supported by Pharmacia and Pfizer Inc.

We appreciate the following people for their contribution to the research which is the focus of this manuscript: Nanette F. Nichols, Peggy J.K.D. Schreur, Kjell A. Svensson, Philip F. VonVoigtlander, Martin W. Smith, and Vimala H. Sethy.
FIGURE LEGENDS

Figure 1. Chemical structure of sumanirole. (R)-5,6-Dihydro-5-(methylamino)-4H-imidazo[4,5,1-ij]quinolin-2(1H)-one (Z)-2-butenedioate (1:1).

Figure 2. Dose-dependent inhibition of forskolin-stimulated cAMP in CHO cells expressing recombinant D2A receptors by sumanirole and ropinirole. Each point is a mean ± S.E.M. of triplicate determinations expressed as percentage of the 100 µM forskolin response. Concentration of drug given as nM. (●), ropinirole; (○), sumanirole.

Figure 3. Dose-dependent inhibition of the firing rate of dopamine cells in the substantia nigra pars compacta by sumanirole. The population dose-response curve for depression of rat SNPC dopamine neurons (n = 8) by sumanirole i.v. is shown. The ordinate is the firing rate relative to predrug control (mean ± S.E.M.); the abscissa is the cumulative i.v. doses in µmol/kg.

Figure 4. Dose-dependent increases in striatal acetylcholine concentration by ropinirole and sumanirole. Striatal acetylcholine was measured in rats 30 min following i.p. injections of ropinrole or sumanirole, with doses listed in µmol/kg. (■), ropinirole; (●), sumanirole.

Figure 5. Increases in locomotor activity in reserpinized rats treated with sumanirole s.c.
Horizontal locomotor activity was measured as described in Methods; rats were pretreated with reserpine (5 mg/kg s.c., 18 h) and α-methyl-para-tyrosine (100 mg/kg s.c., 1 h). Sumanirole or vehicle was injected s.c. at time 0, and locomotor activity was recorded at discrete 10-min intervals. (●), saline, 5 ml/kg, N = 4. Sumanirole doses: (■), 1.25 µmol/kg, N = 4; (□), 4.2 µmol/kg, N = 4; (○), 12.5 µmol/kg, N = 4.

Figure 6. Effects of oral sumanirole on turning behavior in rats with unilateral 6-OHDA lesions of the substantia nigra. Turning behavior of rats with unilateral 6-OHDA lesions of the substantia nigra was measured following injections of vehicle (○), N = 5; 4.2 µmol/kg sumanirole (▲), N = 4; 12.5 µmol/kg sumanirole (■), N = 7; and 42 µmol/kg sumanirole (●), N = 6. *, P <0.05 significance when compared with controls by F-test for variance of means followed by one-way ANOVA with t test for individual points.

Figure 7. Comparison of dose-response ropinirole s.c. to a single dose of sumanirole s.c. on turning behavior in unilaterally 6-OHDA–lesioned rats. Turning behavior of rats with unilateral 6-OHDA lesions of the substantia nigra was measured following injections of vehicle (○), N = 13; 0.38 µmol/kg ropinirole s.c. (●), N = 4; 3.8 µmol/kg ropinirole s.c. (■), N = 6; 19 µmol/kg ropinirole s.c. (▲), N = 8; and 12.5 µmol/kg sumanirole s.c. (●), N = 6. *, P <0.05 significance when compared with controls after F-test for variance of means, followed by one-way ANOVA with t test for individual points.

Figure 8. Haloperidol antagonism of sumanirole induced turning behavior in unilaterally 6-OHDA–lesioned rats. Turning behavior of rats with unilateral 6-OHDA lesions of the
substantia nigra was measured following injections of either vehicle or 12.5 µmol/kg sumanirrole and the indicated concentrations of haloperidol. Each bar is the total area under the curve ± S.D. (N ≥ 4) for turning behavior from 0–210 min post injection. *, P <0.05 significance when compared with controls after F-test for variance of means, followed by one-way ANOVA with t test for area under curve.

Figure 9. Dose-dependent changes in MPTP-induced disability symptoms in cynomolgus monkeys by sumanirrole. Using a disability scale for MPTP monkeys (Gomez-Mancilla *et al*., 1993), three monkeys were evaluated for changes in disability following s.c. injection of sumanirrole with doses listed in µmol/kg. During the period of peak drug effect, the behavioral responses were scored every 30 min. Each bar represents the score from Monkey A, B, or C at each dose, respectively.

Figure 10. Dose-dependent increases in locomotor activity in MPTP-lesioned cynomolgus monkeys by sumanirrole; comparisons with Prolopa. Changes in locomotor activity by sumanirrole and Prolopa were evaluated in the same three monkeys shown in Figure 9 via recordings made every 15 min by photocells mounted in the cages. Each bar represents the total locomotor activity counts per 8 h for each individual monkey.
TABLE 1

Binding affinities of agents at dopamine receptors

<table>
<thead>
<tr>
<th>Receptor</th>
<th>Sumanirele</th>
<th>Ropinirole</th>
<th>Bromocriptine</th>
<th>Pergolide</th>
</tr>
</thead>
<tbody>
<tr>
<td>D₂</td>
<td>9.0 ± 1</td>
<td>7.2 ± 0.8</td>
<td>27 ± 9</td>
<td>1 ± 0.2</td>
</tr>
<tr>
<td>D₃</td>
<td>1940 ± 142</td>
<td>22 ± 4</td>
<td>18 ± 2</td>
<td>0.4 ± 0.03</td>
</tr>
<tr>
<td>D₄</td>
<td>>2190</td>
<td>1450 ± 390</td>
<td>373 ± 15</td>
<td>9.3 ± 1</td>
</tr>
<tr>
<td>D₁</td>
<td>>7140</td>
<td>>7140</td>
<td>3420 ± 130</td>
<td>1300 ± 132</td>
</tr>
</tbody>
</table>

\(^a\)N = 3–6.
TABLE 2

In vitro D₂ potency of sumanirole and other agonists

Data are mean ± S.E.M. for N shown in parenthesis.

<table>
<thead>
<tr>
<th>Assay</th>
<th>Potency Measurements at D₂ Receptors (EC₅₀, nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sumanirole</td>
</tr>
<tr>
<td>cAMP Inhibition</td>
<td>17 ± 4.8 (4)</td>
</tr>
<tr>
<td>[³H]-Arachidonate</td>
<td>75 ± 16 (6)</td>
</tr>
<tr>
<td>Release</td>
<td></td>
</tr>
<tr>
<td>Mitogenesis</td>
<td>32 ± 6.4 (3)</td>
</tr>
</tbody>
</table>

ᵃ With permission from Lajiness et al., 1993.
TABLE 3

Sumanirole versus plasma prolactin levels in male rats

Data are mean ± S.E.M. for N shown in parenthesis. n.d. indicates below detection limits.

<table>
<thead>
<tr>
<th>Drug Dose (30 min)</th>
<th>Prolactin (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle</td>
<td>3.93 ± 0.88 (6)</td>
</tr>
<tr>
<td>Sumanirole 3.1 µmol/kg</td>
<td>0.77 ± 0.10* (6)</td>
</tr>
<tr>
<td>Sumanirole 9.4 µmol/kg</td>
<td>n.d. (8)*</td>
</tr>
<tr>
<td>Sumanirole 31 µmol/kg</td>
<td>n.d. (8)*</td>
</tr>
<tr>
<td>Sumanirole 94 µmol/kg</td>
<td>0.65 ± 0.03* (5)</td>
</tr>
</tbody>
</table>

*Indicates a significant decrease at $P = 0.05$. Statistical analysis was carried out using ANOVA.
Figure 1
Figure 2

- **Ropinirole**
 - EC$_{50}$ = 6 nM

- **Sumanirrole**
 - EC$_{50}$ = 17 nM

The graph shows the concentration of cAMP (% Forskolin) in relation to the concentration of Drug (nM).
Figure 3

Firing Rate, % Control

0.1 1 10
Sumanireole, µmol/kg i.v.
Figure 10

Locomotion, counts/8 hrs.

 Monkey A
 Monkey B
 Monkey C

Control Prolopa 0.25 2.5 12.5 25

Sumanirole, μmol/kg s.c.