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ABSTRACT 

 The tumor suppressor protein, p53, is currently a target of emerging drug 

therapies directed towards neurodegenerative diseases, such as Alzheimer’s and 

Parkinson’s and side effects associated with cancer treatments.  Of this group of drugs, 

the best characterized is pifithrin-α, a small molecule that inhibits p53-dependent 

apoptosis through an undetermined mechanism.  In this study, we have used a number of 

molecular approaches to test the hypothesis that pifithrin-α acts as an AhR agonist and in 

this manner, inhibits the actions of p53.  Towards this end, we have found that pifithrin-α 

is a potent AhR agonist as determined by its ability to bind the AhR, induce formation of 

its DNA binding complex, activate reporter activity and upregulate the classic AhR target 

gene, CYP1A1.  However, examination of its ability to inhibit p53-mediated gene 

activation and apoptosis revealed that these actions occurred via an AhR-independent 

manner.   The significance of this study is based on the fact that activation of the AhR is 

typically associated with an increase in phase I and phase II metabolizing enzymes and 

adverse biological events such as tumor promotion that may contribute to untoward 

effects of pifithrin α.  Hence, this work will aid in the future design of more specific 

members of this important class of p53 inhibitors for use in a clinical setting. 
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The tumor suppressor protein, p53, is a transcription factor that functions as a 

cellular gatekeeper and is often deregulated in human tumors (Hofseth 2004).  While lack 

of functional p53 expression is associated with the development of cancers, its 

upregulation of the intrinsic apoptotic pathway is implicated in the cell death that occurs 

during the progression of a number of neurodegenerative diseases, such as Alzheimer's 

and Parkinson’s disease (Waldmeier 2003) and during chemo- and radiotherapies in the 

normal tissue surrounding the tumors (Gudkov and Komarova, 2003).   

Given the therapeutic potential of p53 inhibitors, a chemical screen was employed 

to identify pifithrin-α ([2-(2-imino-4,5,6,7-tetrahydrobenzothiazol-3-yl)-1-p-

tolyethanone] hydrobromide) as an effective inhibitor of p53-mediated gene activation 

and apoptosis that was capable of protecting mice from lethal genotoxic stress elicited by 

gamma irradiation (Komarov et al., 1999).  Further developments in the design of p53 

inhibitors have identified a series of pifithrin-α analogues that display potent 

neuroprotective effects and show promise in their potential as therapeutic agents to be 

used to reduce or prevent neurodegeneration and protect the cancer patient from the 

dehabilitating effects that occur during current chemo- and radiotherapies (Zhu et al., 

2002).  In addition to its promise as a clinical tool, pifithrin-α has also proven to be 

effective in the laboratory using a variety of cell types and apoptotic inducing agents to 

characterize p53-mediated events (Chramostova et al., 2004; Kaji et al., 2003; Lorenzo et 

al., 2000; Schafer et al., 2003; Wang et al., 2004; Zhu et al., 2002).   

  An important consideration of all clinical and laboratory tools, is the specificity 

with which the therapeutic agent interacts with its intended target.  With this in mind, we 

noted the structural similaries between pifithrin-α and ligands of the aryl hydrocarbon 
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receptor (AhR, Fig. 1), as well as recent observations that ligand activation of the AhR 

can inhibit apoptosis (Schrenk et al., 2004) and senescence (Ray and Swanson, 2003; Ray 

and Swanson 2004), two p53-mediated events, and questioned whether pifithrin-α may 

act as an AhR agonist.   

The AhR is best characterized as a transcriptional activator of phase I and phase II 

metabolizing enzymes (Rushmore and Kong, 2002).  This basic helix-loop-helix PAS 

protein is a ligand-activated receptor that resides in the cytoplasm as part of a chaperone 

complex that includes two HSP90 molecules, the immunophilin-like protein 

ARA9/XAP2/AIP, and the co-chaperone p23 (reviewed in Denison and Nagy, 2003).  

Once activated, this complex translocates into the nucleus and dissociates, allowing the 

AhR to dimerize with its DNA-binding partner, ARNT.  Gene regulation that ensues 

following the recognition of the AhR/ARNT heterodimer to its DNA recognition 

elements (DREs, TNGCGTG) has been best characterized using the target gene CYP1A1 

(Whitlock 1999).  In addition to drug/xenobiotic metabolism, the AhR is increasingly 

implicated in roles that include crosstalk with other nuclear transcription factors such as 

the estrogen receptor (Safe and Wormke, 2003) and NF-κβ (Tian et al., 2002), regulation 

of the cell cycle (Puga et al., 2002), senescence (Ray and Swanson, 2004) and embryonic 

processes such as the development of the hepatic vascular architecture (Lahvis et al., 

2004).  Thus, ligand-induced activation of the AhR/ARNT pathway has the potential to 

alter myriad events that have important toxicological and pharmacological endpoints. 

 In this report, we have characterized pifithrin-α as a potent AhR agonist.  

However, the ability of pifithrin-α to inhibit p53 gene activation and p53-mediated 

apoptosis does not appear to require its interaction with the AhR.  Thus, while the AhR 
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does not appear to be involved in the desired effects of pifthrin-α, it is likely to initiate 

many possible side effects, including alterations in drug metabolism that may be 

associated with the clinical use of this drug.   
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METHODS 

Chemicals 

 TCDD and TCDF were obtained from Dr. Stephen Safe (Texas A&M, College 

Station, TX).  MNF (3’-methoxy-4’-nitroflavone) were gifts from Dr. Stephen H. Safe 

(Texas A & M University, College Station, TX) and Dr. Thomas A. Gaseiwicz 

(University of Rochester, Rochester, New York).  High grade DMSO (>99.9% purity) 

was purchased from AMRESCO Inc. (Solon, OH).  β-naphthoflavone was purchased 

from Sigma (St. Louis, MO).  Pifithrin-α was purchased from both Sigma and Tocris 

Cookson Inc. (Ellisville, MO).  Pifithrin-α from the two companies induced similar 

luciferase activities when analyzed in the CYP1A1-luc/HepG2 cells.  [3H]-TCDD was 

obtained from ChemSyn Laboratories (Lenexa, KS).  Apigenin, kaempferol and all other 

chemicals were obtained from Sigma (St. Louis, MO). 

 

Cell culture and treatment 

 Hepa-1 (i.e., Hepa-1c1c7) and the AhR- and ARNT-deficient Hepa-1c1c7 cell 

lines, AhR-D and ARNT-D (also referred to as LA-I and LA-II), were generated by Dr. 

James P. Whitlock, Jr. (Stanford University) as previously described (Miller et al., 1983).  

The human hepatoma cell line, HepG2, was obtained from Dr. Christopher A. Bradfield 

(University of Wisconsin, Madison).  The HaCaT cell line was obtained from Dr. Mitch 

Denning (Loyola University).  All cells were maintained in Dulbecco's Modified Eagle’s 

Media with glucose and glutamine (Mediatech, Herndon, VA) supplemented with 10% 

fetal bovine serum and 100 units/ml penicillin-streptomycin (Invitrogen Life 

Technologies Corp., Carlsbad, CA) at 37 °C and 5% CO2. 
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Oligonucleotides 

The oligonucleotides that contained either the consensus DRE (Swanson et al., 1995) or 

mutated sequence were purchased from Integrated DNA Technologies (Coralville, IA) 

and are: HIS17, TCGAGCTGGGGGCATTGCGTGACATAC; HIS18, 

TCGAGGTATGTCACGCAATGCCCCCAGC; HIS 108, 

TCGAGCTGGGGGCATTGATTGACATAC; and HIS 109, 

TCGAGGTATGCAATCAATGCCCCCAGC. 

 

Plasmids 

 The conDRE/Luc and mutDRE/Luc were generated via inserting two copies of 

the corresponding annealed oligonucleotides, HIS 17/18 or HIS 108/109, into the pGL3-

Promoter vector (Promega, Madison, WI).  The luciferase reporter plasmid that contains 

the human CYP1A1 gene promoter (-1612 to +292), pLUC1A1, was obtained from Dr. 

Robert Tukey (University of California, San Diego).  The human and murine AhR 

plasmids, phuAhR and pmuAhR, and human ARNT plasmid, phuARNT, were obtained 

from Dr. Christopher A. Bradfield (Dolwick et al., 1993a; Dolwick et al., 1993b).  The 

plasmids bearing the wild-type and mutated forms of p53 were obtained from Dr. Dan 

Tai (College of Pharmacy, University of Kentucky).  The luciferase plasmid containing 

p53 response elements (pp53-TA-luc) was obtained from Clontech. 

 

Real Time PCR 

The level of CYP1A1 mRNA was measured by real-time PCR following reverse-

transcription of mRNA. Cells were plated for 48 hours and then treated for 4 hours with 
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the appropriate drug(s). Total RNA was collected using Trizol reagent (Invitrogen Corp., 

Carlsbad, CA). One ug of RNA was primed with random hexamers to synthesize cDNA  

using the Omniscript RT kit (Qiagen, Valencia, CA) as per the manufacturer's guidelines. 

Real-time PCR amplification was carried out using the Mx3000P Real-Time PCR System 

(Stratagene, La Jolla, CA) and its associated Brilliant SYBR Green QPCR master mix 

(Stratagene, La Jolla,CA) using 1/80th of the RT reaction as template. After an initial 10 

min. at 95°C cycling parameters were as follows: 95° for 30 sec., 55°C for 1 min., 72°C 

for 1 min for 40 cycles. Cycle threshold (CT) values were assigned using the 

manufacturer's defaults and background fluorescence was corrected for by the use of a 

supplied reference dye.  Sample loading was controlled by normalizing all values to 

GAPDH. Specificity of the CYP1A1 and GAPDH primer pairs was confirmed by the use 

of disassociation (melting curve) profiles available with this system. Primer sequences 

can be supplied upon request.   

 

Western blot analysis 

 Western blot analysis was performed as previously described (Ray and Swanson, 

2003).  Total cellular extracts were prepared from cells by homogenization in F-buffer 

(10 mM Tris, 50 mM NaCl, 30 mM sodium pyrophasphate, 50 mM NaF, 5 µM ZnCl2, 

0.1 mM Na3VO4, 1% Triton X-100, 1 mM PMSF, 5 units/ml α2-macroglobulin, 2.5 

units/ml pepstatin A, 2.5 units/ml leupeptin, 150 µM benzamidine, 2.8 µg/ml aprotinin; 

pH 7.05) in a Kontes Duall 1 mL Tissue Grinder (Fisher, Pittsburg, PA).  Homogenates 

were centrifuged at 14,000 RPM at 4 ºC for 10 min, the supernatant removed, and protein 

concentrations were determined using BCA Protein Assay Reagents (Pierce, Rockford, 
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IL).  Sample buffer was added to the aliquots (50 µg total protein) and applied to a 10% 

SDS-polyacrylamide gel and subjected to western blotting procedures using the rabbit 

anti-CYP1A1 antibody (H-70, Santa Cruz Biotechnology, Santa Cruz, CA), mouse anti-

p21 antibody (556431, BD Biosciences Pharmingen, San Diego, CA), mouse anti-p53 

antibody (3076, Abcam, Cambridge, MA), or rabbit anti-β-actin antibody (A-2668, 

Sigma) as primary antibodies and the corresponding anti-species IgG-HRP (Sigma) as the 

secondary antibodies. 

 

Transient transfections 

 Transient transfections were performed using Lipofectamine 2000 (Invitrogen) 

according to the manufacturer's protocol.  After an overnight incubation, the cells were 

treated with the indicated chemicals for either 18 or 24 hr.  The Firefly and Renilla 

luciferase activities were determined with a TR 717 Microplate Luminometer from 

Applied Biosystem (Foster City, CA) using either the Luciferase Assay System kit or the 

Dual-Glo Luciferase kit from Promega according to the manufacturer's protocol.   

 

Electromobility shift assay 

 The electromobility shift assays (EMSA) were performed as previously described 

(Heid et al., 2000).  Nuclear lysates were prepared from HepG2 cells that had been 

treated for 1 h with the indicated compounds using the NucBuster Protein Extraction Kit 

from EMD Biosciences Novagen (San Diego, CA).  Samples were 6 µg each and the 

consensus DRE (annealed HIS 17/18) was used as the probe.  For super-shift analysis, the 

appropriate samples were incubated for 10 min at room temperature with 2 µg of mouse 
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anti-AhR (RPT1, Abcam), 0.2 µg of goat anti-ARNT (sc-8076, Santa Cruz 

Biotechnology), or 2 µg of anti-rabbit IgG (Sigma) following the addition of the probe.   

In vitro synthesized AhR and ARNT were synthesized using the pmuAhR and 

phuARNT plasmids and the TNT Coupled Reticulocyte Lysate System from Promega 

according to the manufacturer's protocol.  The AhR and ARNT proteins (2.5 µl of each 

reaction) were incubated in MENG (25 mM MOPS, 1 mM EDTA, 3.8 mM NaN3, 10% 

glycerol, pH 7.5) buffer containing the indicated ligands at a final volume of 16.5 µl.  

The mixtures were incubated at 30 ºC for 2 h.  The KCl concentration was adjusted to 

120 mM, 45 ng poly dIdC was added, and the mixture was incubated for 15 min at room 

temperature.  The EMSA samples were then analyzed via gel separation as described 

above.  

 

Ligand binding assays 

 The ligand binding competition assays were performed essentially as previously 

described (Denison et al., 1986).  Cytosolic cell extracts from Hepa-1 cells were 

generated by resuspension of the cell pellets in HEDG buffer (25 mM Hepes, 1 mM 

EDTA, 1 mM DTT, 10% (v/v) glycerol, pH 7.5) containing 0.4 mM leupeptin, 4 mg/ml 

aprotinin, and 0.3 mM PMSF, homogenization, and centrifugation at 100,000xg for 45 

min.  Aliquots of the supernatant (120 µg) were incubated at room temperature for 2 h 

with the indicated concentrations of pifithrin-α in the presence of 3 nM [3H]-TCDD in 

HEDG buffer.  After incubation on ice with hydroxyapatite for 30 min, HEDG buffer 

with 0.5% Tween 80 was added.  The samples were centrifuged, washed twice, 

resuspended in 0.2 ml scintillation fluid, and subjected to scintillation counting.  
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Nonspecific binding was determined using a 150 fold molar excess of TCDF and 

subtracted from the total binding to obtain the specific binding.  The specific binding is 

reported relative to [3H]-TCDD alone.    

 

Analysis of apoptosis 

 The analysis of apoptosis was conducted using the Cell Death Detection ELISA 

PLUS kit from Roche (Indianapolis, IN) according to the manufacturer's protocol.  After 

washing twice with PBS, the cells were treated with 30 J/m2 ultraviolet light (254 nm) 

using an FLX-20M ultraviolet light source from Enprotech (New York City, NY).  

Complete media that contained either 0.1% DMSO or 10 µM pifithrin-α was then added.  

After a 24 hr incubation, apoptosis was determined by measuring POD enzymatic activity 

via spectrophotometric determination.  The data was analyzed using one-way ANOVA 

and Tukey's Multiple Comparison Test analyses using the GraphPad Prism 3.0 software. 
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RESULTS 

Pifithrin-α  induces CYP1A1 protein levels and promoter activity 

 A classic marker of activation of the AhR pathway is upregulation of CYP1A1, a 

xenobiotic metabolizing enzyme that contains dioxin response elements (DREs) 

recognized by the AhR and its DNA binding partner, ARNT (aryl hydrocarbon receptor 

nuclear translocator)(Whitlock 1999).  Thus, as a first test of whether pifithrin-α may 

function as an AhR agonist, we questioned whether it was capable of upregulating 

CYP1A1.  As shown in Figure 2A, increasing doses of either TCDD, the prototypical 

AhR agonist, or pifithrin-α resulted in corresponding increases in the CYP1A1 mRNA 

levels.  However, analysis of the EC50 values generated from these experiments revealed 

that the potency of pifithrin-α is considerably less than that of TCDD (i.e., 1.1 X 10-6 

versus 8.7 X 10-11 for pifithrin-α and TCDD, respectively).  Further,  a 24 h treatment of 

either murine (Hepa-1) or human (HepG2) hepatoma cells with 10 µM pifithrin-α was 

sufficient to induce CYP1A1 protein expression to a level comparable to that induced 

with 1 nM TCDD.   

 As a first step in determining the role of the AhR in eliciting the actions of 

pifithrin-α, we determined whether cotreatment with known AhR antagonists (Lu et al 

1995; Henry et al 1999; Allen et al., 2001; Zhang et al 2003) would inhibit the ability of 

pifithrin-α to induce CYP1A1 mRNA levels.  As shown in Figure 3, the AhR 

antagonists, MNF, apigenin and kaempferol inhibited induction of CYP1A1 mRNA 

levels by both TCDD and pifithrin-α.  Given that some actions of the AhR are thought to 

occur in an ARNT- independent manner, we also questioned whether induction of 

CYP1A1 mRNA required ARNT (Fig 3B).  The idea that the ability of pifithrin-α to 
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regulate CYP1A1 mRNA levels requires formation of the AhR/ARNT heterodimer is 

supported by its induction of CYP1A1 mRNA in the wild-type Hepa-1 cells, but not in 

those lacking expression of ARNT.  Similarly, a role of the AhR/ARNT DNA response 

element (DRE) in eliciting these actions of pifithrin-α is indicated by the ability of 

pifithrin-α to induce reporter activity of constructs regulated by either the  CYP1A1 

promoter that contains multiple DREs or a consensus DRE, but not by that containing 

mutated DREs (Fig 3C).   

 

Pifithrin-α  induces DNA-binding of the AhR/ARNT heterodimer 

 Our next objective was to determine whether the ability of pifithrin-α to activate 

gene transactivation was associated with an increase in the formation of the AhR/ARNT 

DNA binding complex.  Towards this end, we analyzed DNA binding of nuclear extracts 

prepared from HepG2 cells incubated with DMSO, TCDD, or pifithrin-α (Fig. 4A).  

Using the consensus DRE as the probe (conDRE), treatment with either TCDD (Fig. 4A, 

Lane 2) or pifithrin-α (Fig. 4A, Lane 8) was found to result in an increase in the 

formation of a DNA/protein complex.  Specificity of this complex was determined by 

competitive displacement with unlabelled oligonucleotides that contained the consensus 

DRE (Fig. 4A, Lanes 3 and 9), but not with that containing a mutated DRE (Fig. 4A, 

Lanes 4 and 10).  The presence of both the AhR and ARNT proteins in the protein/DNA 

binding complexes induced by either TCDD or pifithrin-α was demonstrated using super-

shift analysis.  Incubation with either the anti-AhR antibody (Fig. 4A, Lanes 5 and 11) or 

anti-ARNT antibody (Fig. 4A, Lanes 6 and 12), but not the nonspecific IgG antibody 
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(Fig. 4A, Lanes 7 and 13), shifted the formation of the respective DNA binding 

complexes. 

 We next questioned whether pifithrin-α is able to directly activate DNA-binding 

by AhR and ARNT by performing additional EMSA analysis using in vitro transcribed 

and translated AhR and ARNT (Fig. 4B).  Incubation of the murine AhR protein with 

pifithrin-α, β-napthoflavone, or TCDD induced formation of the AhR/ARNT DNA 

binding complex.  As we have previously observed (Swanson et al., unpublished results), 

β-napthoflavone appears to be a more potent AhR agonist in this assay as compared to 

TCDD, presumably due to the high lipophilic nature of TCDD that may allow it to be 

sequestered by the rabbit reticulocyte lysate.   

 

Pifithrin-α  competitively displaces [3H]-TCDD specific binding 

 In order to determine whether pifithrin-α directly activated the AhR via an 

interaction with its ligand-binding domain, we performed ligand-binding assays using 

cytosolic extracts prepared from Hepa-1 cells.  As shown in Figure 5, increasing 

concentrations of pifithrin-α decreased the specific binding of [3H]-TCDD.  The relative 

binding affinity of pifithrin-α to AhR was determined to be 1.56 x 10-7 M.  

 

Pifithrin-α  inhibits p53-dependent gene regulation and apoptosis in an AhR-

independent manner 

 We then hypothesized that the ability of pifithrin-α to inhibit p53-mediated gene 

regulation and p53-mediated apoptosis requires the AhR.  Towards this end, we first 

performed reporter assays using a luciferase reporter that is regulated by p53-response 
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elements.  To ensure that the observed effects were specific to activation of p53, the 

values obtained from the cells transfected by the wild-type p53 expression plasmid were 

normalized to those transfected with that containing a mutated form of p53.  Our initial 

data performed using varying concentrations of pifithrin-α indicated that a concentration 

of 1 X 10-5 was optimal for inhibiting p53-regulated reporter activity (data not shown).  

As shown in Figure 6A, pifithrin-α, but not TCDD or the AhR antagonist MNF, inhibited 

p53-mediated reporter activity.  Further, cotreatment with both MNF and pifithrin-α 

yielded results similar to that of pifithrin-α alone, indicating that the AhR does not play a 

role in this action of pifithrin-α.  Additional experiments performed in a cell line that 

lacks expression of the AhR (AhR-D) indicated that the ability of pifithrin-α to inhibit 

p53-mediated induction of p21 levels following exposure to ultraviolet light was not 

compromised by the absence of the AhR (Fig 6B).   

 Finally, we sought to determine whether the ability of pifithrin-α to inhibit p53-

dependent apoptosis requires the AhR/ARNT signaling pathway (Fig 6C).  Treatment 

with ultraviolet light resulted in an approximately 10-fold increase in apoptosis in the 

Hepa-1 cells.  The addition of pifithrin-α immediately following exposure to ultraviolet 

light inhibited the induction of apoptosis within all three cells lines in a manner that was 

significantly enhanced within the AhR-D and ARNT-D cells, 55% and 48%, respectively, 

as compared to 33% in wild-type Hepa-1 cells.   
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DISCUSSION 

 In this study, we report that pifithrin-α is a potent AhR agonist that is capable of 

upregulating AhR target genes, such as CYP1A1.  We also report that pifithrin-α inhibits 

the p53 pathway via an AhR-independent mechanism.  The AhR signaling pathway has 

been associated with many events including alterations in cell viability, oxidative stress, 

and crosstalk with other transcription factors such as nuclear factor kappaB, 

retinoblastoma protein and the estrogen receptor (Nebert et al., 2000; Puga et al., 2002; 

Tian et al., 2002; Carlson and Perdew 2002).  Thus, pifithrin-α, via its activation of the 

AhR, has the potential of impacting on a number of p53-independent pathways.  

 Like many drugs in the early stages of development, two problems currently 

hinder further progress of this exciting new class of therapeutics; 1) the unknown 

mechanism(s) by which pifithrin-α and its analogues inhibit p53 and 2) the uncertainty as 

to whether the actions of these small molecules are specific to p53 inhibition.  From the 

data available thus far, it appears that the inhibitory actions of pifithrin-α occur at a step 

subsequent to nuclear translocation of p53 (Murphy et al., 2004).  A more controversial 

issue pertains to the specificity of the actions of pifithrin-α.  Although it was previously 

found that the actions of pifithrin-α include suppression of the heat shock transcription 

factor and glucocorticoid signaling pathways (Komarova et al., 2003), these findings 

have been recently challenged by others (Murphy et al., 2004) who have failed to detect 

inhibition of either GR-mediated gene induction or the function of the chaperone 

machinery by pifithrin-α.   In fact, because pifithrin-α has been shown to alter 

glucocorticoid signaling as well as the heat shock response (Komarova et al., 2003), it is 

possible that pifithrin-activation of AhR may play a role in mediating these effects of 
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pifithrin-α.  An additional putative role that the AhR may play in the actions of pifithrin-

α  is in the ability of pifithrin-α to induce NF-κβ activity in neurons (Culmsee et al 2003) 

and is based on the observations that in some cell types, ligand activation of the AhR can 

enhance the NFκβ pathway (Sulentic et al 2004). 

 With respect to the potency of pifithrin-α  as an AhR agonist (i.e., an EC50 of 1 X 

10-6 M), pifithrin-α  is to be considered a moderate AhR agonist that would exert 

activities similar to that of the indole-derived pigment, indigo, but less than that of 

agonists such as TCDD and ITE (Denison and Nagy, 2003; Song et al., 2002).   The 

concentrations of pifithrin-α  used in the current study to induce the CYP1A1 protein 

levels and CYP1A1 promoter activities (≤ 10 µM, Fig. 2 and 3), induce formation of the 

AhR/ARNT DNA binding complex (Fig. 4), and displace TCDD specific binding (Fig. 

5), are similar to those doses typically used to inhibit p53-associated events, i.e., 10-30 

µM (Komarov et al., 1999; Wang et al., 1999; Chramostova et al., 2004).  Thus, in 

studies in which pifithrin-α  is commonly used to inhibit p53, it can be expected that the 

AhR/ARNT pathway will also be up-regulated. 

 Another aspect that should be considered is whether the presence of the AhR 

signaling pathway may decrease the efficacy of pifithrin-α  by enhancing its clearance via 

an increase in its metabolism.  This possibility is supported by the data shown in Figure 

6C.   Here, the ability of pifithrin-α  to inhibit ultraviolet light-induced apoptosis was 

significantly greater in cells that lacked either the AhR or ARNT as compared to that 

observed in the parental cell line.  At this time, it is not know whether drug/xenobiotic 

metabolizing genes that are regulated by the AhR pathway, such as CYP1A1 or CYP1B1, 

are capable of metabolizing pifithrin-α.   
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 In summary, we have demonstrated that pifithrin-α  activates the AhR signaling 

pathway, a pathway that mediates many clinically relevant effects including tumor 

promotion and altered responses to drugs and xenobiotics through changes in 

metabolism.  Future studies performed using pifithrin-α and new drugs formulated to 

similarly inhibit p53 should take this effect into consideration within experimental design 

and data interpretation.  
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LEGENDS FOR FIGURES 

Figure 1.  Comparison of pifithrin-α  to previously characterized AhR agonists.  

Pifithrin-α is structurally similar to previously characterized AhR ligands including β-

naphthoflavone, 2-(1’H-indole-3’-carbonyl)-thiazole-4-carboxylic acid methyl ester 

(ITE), and omeprazole, but not the AhR agonists 2,3,7,8-tetrachlorodibenzo-p-dioxin 

(TCDD) and indolo[3,2b]carbazole (ICZ)(Dension and Nagy, 2003; Guengerich et al., 

2004; Song et al., 2002). 

 

Figure 2.  Pifithrin-α  induces the mRNA and protein levels of CYP1A1.  A) 

Induction of CYP1A1 mRNA levels by TCDD and Pifithrin-α.  HepG2 cells were 

incubated with varying doses of either TCDD or pifithrin-α.  After 4 hrs, mRNA was 

isolated and analyzed by real time PCR as described in Materials and Methods.  The EC50 

values were determined using the Prism software.  The 95% CI were 1.53 X 10-11 to 5.02 

X 10-10 M (TCDD) and 2.8 X 10-7 to 4.0 X 10-6 M (pifithrin-α).  B) Induction of 

CYP1A1 protein levels by TCDD and pifithrin-α.  HepG2 and Hepa-1 cells were 

incubated with DMSO, 1 nM TCDD, or 10 µM pifithrin-α  for 24 h.  Total cellular 

extracts were prepared and analyzed for CYP1A1 and actin expression using western blot 

analysis as described in Materials and Methods.  The results shown are representative of 

two independent experiments performed each in triplicate.   

 

Figure 3.  Role of the AhR/ARNT and DRE in the induction of CYP1A1 by 

pifithrin-α.  A) Antagonists of the AhR block the ability of both TCDD and 

pifithrin-α  to induce CYP1A1 mRNA.  The induction of CYP1A1 mRNA levels was 
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determined as described in Figure 2A except that the HepG2 cells were incubated with 

either 1 nM TCDD or 1 µM pifithrin-α  in the absence or presence of MNF (10 µM), 

apigenin (10 µM) or kaempferol (10 µM).  B) Induction of CYP1A1 mRNA levels by 

pifithrin-α requires ARNT.  Either the wild-type Hepa-1 (left) or those lacking ARNT 

(right) were incubated with DMSO, TCDD (1 nM) or pifithrin-α (1 µM) and CYP1A1 

mRNA was determined as described in Figure 2 and Materials and Methods.  C) 

Induction of the CYP1A1 promoter by pifithrin-α  requires the DRE.  HepG2 cells 

were transiently transfected with luciferase constructs containing the CYP1A1 promoter 

(pLUC1A1), two copies of the consensus DRE (conDRE/Luc), or two copies of the 

mutated DRE (mtDRE/Luc).  After a 24 h incubation with either 10 µM pifithrin-α  or 

DMSO, the cells were harvested and analyzed for luciferase activities and Renilla 

activities.  The values are reported as fold change relative to DMSO treatment group and 

represent the mean ± SE of three experiments performed in duplicate.   

 

Figure 4.  Pifithrin-α  induces DNA binding of AhR/ARNT complexes in cultured 

cells and in vitro.  A)  EMSA was conducted using nuclear extracts prepared from 

HepG2 cells treated with DMSO (Lane 1), 1 nM TCDD (Lanes 2-7), or 10 µM pifithrin-

α  (Lanes 8-13) for 1 h at 37 °C.  Aliquots were incubated with [32P]-labeled DRE 

oligonucleotide in the presence or absence of unlabeled consensus DRE (conDRE; Lanes 

3 and 9) or mutant DRE (mutDRE; Lanes 4 and 10).  Super-shift analysis was conducted 

using anti-AhR (Lanes 5 and 11), anti-ARNT (Lanes 6 and 12), or nonspecific IgG 

(Lanes 7 and 13) antibodies.  B)  EMSA was conducted using in vitro synthesized AhR 

and ARNT.  Reticulolysate expressed AhR and ARNT were incubated with DMSO, 10 
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µM pifithrin-α, 1 µM β-naphthoflavone, or 1 nM TCDD prior to EMSA. The data are 

representative of two independent experiments.   

 

Figure 5.  Pifithrin-α  specifically competes with [3H]-TCDD binding.  Cytosolic 

extracts prepared from Hepa-1 cells were incubated with 3 nM [3H]-TCDD and the 

indicated concentrations of pifithrin-α  for 2 h at room temperature.  The specific binding 

was separated from the nonspecific binding using hydroxyapatite as described in 

Materials and Methods.  The ordinate is Bx/Bo, specifically bound radioligand in the 

presence of a given amount of competitor (Bx) divided by specifically bound radioligand 

in the absence of competitor.  The values represent the mean ± SE of four experiments 

and are represented as percent of that obtained using [3H]-TCDD alone. 

 

Figure 6.  The ability of pifithrin-α to inhibit p53 transactivation and ultraviolet 

light-induced apoptosis is independent of the AhR.  A) Pifithrin-α, but not TCDD or 

MNF inhibits p53 transactivation.  Human keratinocytes that lack functional 

expression of p53 (HaCaT) were transiently transfected with a 53-regulated luciferase 

reporter plasmid and either the wild-type p53 or mutated p53 expression plasmids.  After 

24 hours, the cells were treated with the indicated chemicals and incubated for an 

additional 18 hours.  The cells were harvested and luciferase and Renilla activities were 

determined.  The values represent the means + S.E. of three independent experiments.  B) 

Impact of pifithrin-α on p53 and p21 expression in cells that vary in functional AhR 

and ARNT.  Wild-type Hepa-1 or AhR-D cells were harvested 8 h after treatment with 

30 J/m2 ultraviolet light and either 10 µM pifithrin-α  or DMSO.  Protein expression of 
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p21 and p53 were analyzed via western blot analysis as described within Materials and 

Methods.  The results shown are representative of two independent experiments 

performed each in duplicate.  C) Impact of pifithrin-α  on apoptosis in cells that vary 

in functional AhR and ARNT.  The cells were treated as in B) and apoptosis was 

measured via nucleasomal fragmentation analysis at 24 h after ultraviolet light treatment.  

The values represent the O.D. measured for the ultraviolet light + pifithrin-α  treated 

samples normalized to each of the ultraviolet light+DMSO treated samples and represent 

the mean ± SE of five independent experiments conducted in triplicate.  Statistical 

analysis determined that the level of apoptosis within the ultraviolet light+ pifithrin-α  

treated AhR-D and ARNT-D cells was significantly different from the respective 

ultraviolet light +DMSO treated cells (* = p < 0.01). 
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