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Abstract 

In a rat model of myocardial ischemic infarction, sodium orthovanadate rescued cells from 

ischemia/reperfusion injuries. Rats underwent 30 min of myocardial ischemia by occluding 

the left coronary artery followed by 24 hours of reperfusion. Post-treatment with 

orthovanadate reduced infarct size in a dose-dependent manner.  Orthovanadate treatment 

also ameliorated contractile dysfunction of the left ventricle 24 hours after reperfusion. The 

cytoprotective action of orthovanadate treatment was closely associated with inhibition of 

fodrin breakdown. Since orthovanadate is a potent inhibitor for protein tyrosine phosphatases, 

thereby activating tyrosine kinases and phosphatidylinositol 3-kinase (PI3K) pathways, we 

investigated activities of protein kinase B (Akt), a downstream target of PI3K in 

cardiomyocytes. Orthovanadate-induced cytoprotection was associated with partial 

restoration of reduced Akt activity following myocardial infarction.  Restoration of Akt 

activity by orthovanadate treatment correlated positively with increased phosphorylation of 

GSK-3β and Bad in cardiomyocytes.  Furthermore, orthovanadate treatment inhibited 

caspase-3 activation induced by ischemia. Taken together, orthovanadate post-treatment 

rescued cardiomyocytes from ischemia/reperfusion injuries via Akt activation and inhibition 

of fodrin breakdown, thereby inhibiting apoptosis. 
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Introduction 

In order to restore coronary flow, percutaneous transluminal coronary angioplasty, 

percutaneous transluminal coronary recanalization or stenting has been applied to patients 

with acute myocardial infarction (Michels and Yusuf, 1995; Stone et al., 1993). However, the 

prognosis is not always excellent even if coronary reperfusion is completely achieved. In 

some cases, reperfusion itself causes myocardial dysfunction, which has been recognized as 

ischemia/reperfusion injury, based on findings from animal experiments (Braunwald and 

Kloner, 1985; Kloner, 1993). Ischemia-induced cardiac dysfunction reflects a combination of 

cell death and myocardial dysfunction. Myocardial cell death itself occurs through both 

apoptotic and necrotic cell death, although indistinct cell death is also seen based on 

morphological and biochemical features (Matsui et al., 2001; Ohno et al., 1998). Several 

lines of evidence suggest that progressive loss of cardiomyocytes by apoptosis significantly 

contributes to development of heart failure (for a recent review, Haunstetter and Izumo, 

1998).  

The ability of trophic factors to promote survival have been partly attributed to 

PI3K/protein kinase B (Akt) signaling (Datta et al., 1999).  Akt exerts antiapoptotic 

properties either by activating antiapoptotic targets or inactivating proapoptotic factors. Akt 

targets include the bcl-2-family member Bad (Bcl-associated death promoter) (Datta et al., 

1997.), procaspase-9 (Cardone et al., 1998), glycogen synthase kinase (GSK)-3β (Pap and 

Cooper, 1998), and the transcription factors such as nuclear factor-κB (NF-κB) 

(Romashkova and Makarov, 1999) and members of the Forkhead family (Brunet et al., 1999; 

Kawano et al., 2002). Orthovanadate (Na3VO4) is a phosphate analog generally thought to 

bind as transition state analog to phosphoryl transfer enzymes. Orthovanadate inhibits 

ATPases such as Na+/K+-ATPase and Ca2+/Mg2+-ATPase at the high concentration (mM) and 

phosphoprotein tyrosine phosphatases at the low concentration (nM-µM range) (Simons, 

1979).  Recent study also showed that vanadate directly activates PI3K through an increased 

H2O2 production in human prostate cancer cell line (Gao et al., 2002).  The PI3K/Akt 

activation by vanadate accounted for induction of hypoxia-inducible factor 1α and vascular 

endothelial growth factor in the cell line.  Furthermore, like insulin-like growth factor-I 

(IGF-1), vanadate activates tyrosine kinases and increases intracellular tyrosine 
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phosphorylation levels via inhibition of non-selective protein tyrosine phosphatases (PTPs) 

(Swarup et al., 1982), thereby activating both Akt and MAPK (Zhao et al., 1996; Wijkander 

et al., 1997). 

 We previously showed that orthovanadate treatment rescues neurons from delayed neuronal 

death in the CA1 region of the hippocampus after transient forebrain ischemia via activation 

of both PI3K/Akt and MAPK pathways (Hasegawa et al., 2003; Kawano et al., 2001). We 

therefore asked whether orthovanadate elicits cytoprotective activity in ischemic infarction 

of peripheral organs. Here we show for the first time that orthovanadate rescues 

cardiomyocytes from ischemia/reperfusion injury in the rat heart.  Furthermore, in addition 

to activation of Akt, we show that inhibition of fodrin breakdown promoted by orthovanadate 

is closely associated with its myocardial protective action. 
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 Materials and methods 

Materials 

  Anti-fodrin breakdown products antibody was a gift of Dr. Y. Shirasaki (Daiichi 

Pharmaceutical Co., LTD, Tokyo, Japan) (Sato et al., 1999). The following reagents and 

antibodies were obtained from respective sources; sodium orthovanadate,2,3,5-triphenyl 

tetrazolium chloride TTC and Evan’s blue from Sigma (St Louis, MO. U.S.A.), 

anti-caspase-3 antibody (Santa Cruz, CA, USA), anti-phospho-GSK-3α/β antibody (Cell 

Signaling), anti-Akt antibody and anti-phosphor-Akt antibody (Ser-437) (Upstate 

Biotechnology, Lake Placid, NY, USA), anti-rabbit antibody (Amersham Biosciences, NJ, 

USA), anti-sheep antibody (Jackson Immuno Research, PA, USA), anti-goat IgG (Chemicon 

International, CA, USA), and horseradish peroxidase (HRP)-conjugated streptavidin (Zymed 

Laboratories, CA, USA). Other reagents were of the highest quality available (Wako, Osaka, 

Japan).  

Animals  

Male Sprague-Dawley rats (10 to 12 weeks old) were obtained from Japan SLC (Hamamatsu, 

Japan). Rats were housed under climate-controlled conditions with a 12-hour light/dark cycle 

and provided with standard food and water ad libitum. An acclimation period of at least 1 

week was provided before initiating the experimental protocol. All procedures for handling 

animals were approved by the Animal Experimentation Committee of Tohoku University 

Graduate School of Pharmaceutical Sciences. 

Myocardial ischemia and reperfusion in rats 

To induce myocardial infarction, the myocardial ischemia/reperfusion model was established 

according to a method reported by Aihara et al. (2000) with minor modifications. Briefly, rats 

were anesthetized with sodium pentobarbital 40 mg/kg, i.p.. The trachea was intubated, and 

the animal was artificially ventilated with room air by an animal respirator (SN-480-7, 

Shinano, Tokyo) with a frequency of 54 strokes/min and a tidal volume of 1.5 ml/100 g, and 

the tail vein was injected for drug administration. Left thoracotomy at the fifth intercostal 

space and pericardiotomy were performed, a 6/0 braided silk suture was placed around the 

left anterior descending coronary artery and the coronary artery was occluded by pulling on 

the suture. A standard limb lead II electrocardiogram ECG was monitored with a cardiograph 

(Power lab, AD Instruments, Otago, NZ). After thoracotomy of the left side, the proximal 
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portion of the left anterior descending (LAD) artery was surgically occluded for 30 min with 

a suture (size 6-0, Neskosuture, Azwell, Osaka, Japan). The onset of ischemia was confirmed 

by development of cyanosis and typical elevation of the ST segment in the electrocardiogram. 

At 30 min after occlusion, the heart was reperfused by releasing the ligature and the 

thoracotomy was closed. 

Drug administration 

Sodium orthovanadate was dissolved in 0.9% saline. Vehicle (0.9% saline) or sodium 

orthovanadate was infused by means of a syringe infusion pump (0.005 ml/min/100 g B.W. 

over 20 min, i.v.) 10 min before reperfusion or 30 min after reperfusion for post-occlusion 

treatment. 

Assessment of myocardial infarct size 

The infarct size and ischemic risk area were determined by methods described previously 

(Watanabe et al., 1995). After 24-hours reperfusion, rats were anesthetized and their hearts 

excised and quickly hung on a Langendorff apparatus. After the heart was perfused with PBS 

to wash out blood from coronary vessels, the coronary artery was religated.  Then 1.5 ml 

Evan’s blue dye (1% w/v) was injected into the aorta and coronary arteries to demarcate the 

ischemic risk (nonstained) or non-risk (stained) area of the heart. Heart tissue was sliced on a 

slicer (RBS-2, Zivic Miller Lab, Zelienople, PA, USA) and 1.5-mm thick transverse slices 

were incubated with a 1% triphenyltetrazolium chloride (TTC, Sigma-Aldrich, St. Louis, 

MO, USA) solution for 10 min at 30 °C. The viable myocardium was stained with brick red 

(Michael et al., 1995, 1999). Tissue samples were then fixed in 10% formalin solution for 4-6 

hours. The cumulative sizes of the left ventricle (LV), risk area (nonstained with Evans Blue) 

and infarct area (nonstained with TTC) of each slice were quantified by an image analyzer 

(Image Gauge Software, Fuji Film, Tokyo, Japan). The LV size and risk and infarct areas of 

four sections were multiplied by the slice thickness.  Risk area and infarct size were defined 

as [Total risk area]/[Total LV] x 100% and [Total infarct area]/[Total ischemic risk area] x 

100%, respectively (Michael et al. 1995, 1999; Hutter et al. 1996). Left ventricular pressure 

was monitored using a polyethylene catheter (PE-50, CRAY-ADAMS, Parsippany, NM, 

USA) inserted through the right carotid artery and advanced to the left ventricle. Left 

ventricular contractility (±dP/dt) and left ventricular developed pressure (LVDP) were 

measured with a cardiotachometer (AT-601G, Nihon Kohden, Tokyo, Japan). Arterial blood 
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pressure was measured via a polyethylene catheter (PE50) inserted into the right carotid 

artery with a pressure transducer (AP-601G, NihonKohden, Tokyo, Japan). 

Western blot analysis  

At 12 hours after reperfusion, the LV isolated was divided into the risk and non-risk areas 

with a razor blade. LV tissue samples were then rapidly frozen in liquid nitrogen and stored at 

-80°C before use. For assays, each frozen sample was homogenized with a homogenizer in a 

solution (350 µL) containing 50 mmol/L Tris-HCl (pH 7.5), 0.5% Triton X-100, 4 mmol/L 

EGTA, 10 mmol/L EDTA, 150 mmol/L NaCl, 1 mmol/L Na3VO4, 30 mmol/L sodium 

pyrophosphate, 50 mmol/L NaF, 50 µg/ml leupeptin, 25 µg/ml pepstatin A, 50 µg/ml trypsin 

inhibitor, 1 mmol/L dithiothreitol (DTT) and 100 nmol/L caliculin A. Insoluble materials 

were removed by a 10-minute centrifugation at 15,000 x g. Protein concentrations of each 

supernatant fraction were determined by the Bradford method using bovine serum albumin 

as a standard. The supernatants were then boiled in Laemmli’s buffer at 100 °C for 3 min. An 

equal amount of protein for each sample (100 µg of total protein) was separated on 7.5-15% 

SDS-PAGE gels and transferred onto polyvinylidene difluoride (PVDF) membranes 

(Millipore Co., Billerica, MA, USA). The membranes were then incubated for 1 hour in 

TTBS supplemented with 4.5% nonfat dry milk (blocking solution) at room temperature. 

Blots were then incubated overnight with primary antibodies: anti-fodrin breakdown product 

antibody (1:1000, dilution), an anti-Akt antibody (1:2000), an anti-phospho-Akt antibody 

(1:1000), an anti-phospho-GSK-3α/β antibody (1:1000), or anti-caspase-3 antibody (1:500) 

in blocking solution. The membranes were washed three times in washing buffer (0.02 mol/L 

Tris-HCl, pH 7.5, 0.15 mol/L NaCl, 1% Tween20) and incubated for 90 min with anti-rabbit, 

anti-goat or anti-mouse IgG conjugated to horseradish peroxidase (Amersham Biosciences, 

Buckinghamshire, United Kingdom). After washing, peroxidase-labeled proteins were 

detected using the ECL detection system (Amersham Biosciences) and visualized on X-ray 

Film (Fujifilm, Tokyo, Japan). The autoradiographs were analyzed by densitometry. 

Statistical analysis 

All data are expressed as means ± S.E.M. Multiple comparisons between experimental 

groups were made by two-way ANOVA followed by Dunnett’s test.  P<0.05 was considered 

significant. 
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Results 

Effects of orthovanadate on ischemia/reperfusion induced myocardial infarction 

We first investigated whether orthovanadate has a protective action against myocardial 

ischemia-reperfusion injuries in rats. Rats were subjected to a 30-min LAD ligation followed 

by 24 h of reperfusion (Fig.1). The area at risk was approximately 50 - 55% in the whole 

ventricle and did not differ between groups. The infarct size in the vehicle group was 76.7 ± 

2.7 %. Treatment with orthovanadate (75 and 100 µmol/kg) significantly reduced infarct size 

in a dose-dependent manner, (60.1 ± 2.4% and 46 ± 2.7% in 75 and 100 µmol/kg, 

respectively). This observation indicates that orthovanadate has cytoprotective effect on 

ischemia/reperfusion-induced myocardial infarction. To define clinical benefit in man, 

orthovanadate (75 µmol/kg) was infused 30 min after reperfusion.  As seen in treatment 10 

min before reperfusion, post treatment with orthovanadate also significantly reduced infarct 

size (Fig 1). 

 

Effects of orthovanadate on blood pressure 

 Orthovanadate is known to increase intracellular calcium concentration, thereby 

constricting vascular smooth muscle and elevating blood pressure. The alteration in blood 

pressure affects myocardial infarction size in ischemia/reperfusion. To examine effects of 

orthovanadate on blood pressure, we measured blood pressure during its administration 

(Fig.2). Intravenous administration of orthovanadate (50 µmol/kg and 75 µmol/kg) did not 

significantly affect blood pressure (2.13 ± 0.826, 4.88 ± 2.0 mmHg), but caused a significant 

elevation of blood pressure at a dosage of 100 µmol/kg (by 21.63 ± 7.94 mmHg. 

Orthovanadate treatment did not affect heart rate (data not shown). 

 

Effects of orthovanadate on left ventricular function (LVF)  

 Since treatment with orthovanadate at 75 µmol/kg ameliorated the infarct size following 

ischemia/reperfusion and had no adverse effect on blood pressure, we evaluated left 

ventricular function (LVF) following treatment at that dosage of orthovanadate. To measure 

of direct effect of orthovanadate on the heart, we infused orthovandate (75 µmol/kg) in 

sham-operated animals. Orthovanadate treatment did not affect LV diastolic pressure 

(LVDP) and LV ±dP/dt (Fig. 3).  Rats were subjected to 30 min of LAD ligation followed by 
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72 hours of reperfusion and LVF was measured.  At 72 hours after ischemia/reperfusion, 

LVDP was significantly higher in the orthovanadate group than that seen in the vehicle group 

(92.84  ± 9.30 versus 76.90 ± 5.54 mmHg/s) (Fig.3A). LV +dP/dt showed a marked 

depression in the vehicle group (3633.4 ± 326.52 mmHg) compared to sham-operated group 

(Fig. 3B), and the depression significantly restored in the orthovanadate treatment group 

(5136.4 ± 601.12 mmHg). The LV –dP/dt also showed an elevation in the vehicle group 

(-3277  ± 302.03 mmHg), whereas orthovanadate treatment significantly restored the 

elevated LV -dP/dt (-4780 ± 136.09 mmHg) (Fig.3B). These results demonstrate that 

orthovanadate treatment significantly rescued left ventricular function 72 h after reperfusion. 

Effect of orthovanadate on fodrin breakdown  

 Fodrin is a major cytoskeletal component and a target of calpains and caspase-3. Fodrin 

breakdown is associated with cell injury and subsequent apoptosis. Calpains and caspase-3 

cleave the 240-kDa fodrin into smaller fragments of 150 and 120 kDa, respectively. To define 

the cytoprotective mechanisms of orthovanadate, we tested its effect on 

ischemia/reperfusion-induced fodrin breakdown. The 150-kDa fodrin breakdown product 

was assessed by western blotting analysis using a specific antibody recognizing only the 

150-kDa breakdown product (Fig.4). Treatment with orthovanadate (75 µmol/kg) 

significantly inhibited breakdown of fodrin 12 h after ischemia/reperfusion compared to the 

vehicle group (627 ± 138.7% versus 1420 ± 113.3%, approximately 55% inhibition). 

Effects of orthovanadate on Akt signaling 

 We previously showed that orthovanadate activated the PI3K/Akt pathway in neurons, 

thereby eliciting a neuroprotective action in brain ischemia (Kawano et al., 2001). To 

determine whether the PI3K/Akt pathway functions in the cytoprotective effect of 

orthovanadate on myocardial ischemia, we assessed Akt activity and phosphorylation of its 

downstream targets using immunoblotting analysis with phospho-specific antibodies (Fig.5). 

To evaluate Akt activity after myocardial ischemia, we measured phosphorylation of Akt at 

Ser-473, which is required for Akt activation. As seen in forebrain ischemia, myocardial 

ischemia resulted in dephosphorylation of Akt-Ser-473 12 h after ischemia without changing 

Akt protein levels (Fig. 5A).  Treatment with orthovanadate (75µmol/kg) significantly 

inhibited dephosphorylation of Akt (Fig.5A). To assess Akt activity in vivo, we measured 

phosphorylation of GSK-3β and Bad, which are in vivo substrates for Akt.  Consistent with 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on August 3, 2004 as DOI: 10.1124/jpet.104.070839

 at A
SPE

T
 Journals on A

pril 18, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


JPET #70839 

 11 

marked reduction of Akt phosphorylation, myocardial ischemia caused a significant decrease 

in GSK-3β phosphorylation without altering its protein levels. Treatment with orthovanadate 

(75µmol/kg) significantly restored GSK3β phosphorylation up to control levels (Fig.5B).  

Although Bad phosphorylation did not change following ischemia, its phosphorylation was 

significantly elevated in the orthovanadate-treatment group.  (Fig.5C). These results 

indicate that orthovanadate treatment activates Akt signaling pathways, thereby inhibiting 

apoptotic signaling through phosphorylation of GSK-3β and Bad. 

Effect of orthovanadate on cleavage of caspase-3 

Cardiomyocyte apoptosis has been reported in a variety of cardiovascular diseases, 

including myocardial ischemia/reperfusion (MacLellan and Schneider, 1997). Caspase-3, a 

key molecule in apoptotic signaling, is cleaved in response to activation by caspase-8 or 

caspase-9. We asked whether orthovanadate inhibits apoptotic signaling via inhibition of 

caspase-3 activation. Treatment with orthovanadate (75 µmol/kg) significantly blocked 

myocardial ischemia-induced cleavage of caspase-3 12h after ischemia/reperfusion (91.1 ± 

18.7% in the orthovanadate group versus 158 ±16.6% in vehicle groups) (Fig.6). These 

experiments support our hypothesis that orthovanadate-mediated activation of Akt signaling 

inhibits myocardial apoptosis. 
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Discussion 

This study demonstrates that orthovanadate treatment protects cells from myocardial 

infarction induced by ischemia/reperfusion with concomitant recovery of LV +dP/dt and 

-dP/dt, and LVDP. We previously reported that pretreatment with orthovanadate rescues 

neurons from ischemic injury in the gerbil hippocampus (Kawano et al., 2001). In the present 

study, treatment with orthovanadate protected cardiomyocytes against ischemia/reperfusion 

injury, even when administered 20 min after occlusion or 30 min after reperfusion.  The 

observation that post-treatment with orthovanadate significantly rescues decreased Akt 

activity following ischemia is particularly important in the clinical context of treating heart 

attacks in humans. Preservation of Akt activity possibly accounts for the 

orthovanadate-induced cytoprotective action in cardiomyocytes as well as neurons as 

previously described (Kawano et al., 2001). 

Fodrin breakdown is associated with loss of membrane integrity, thereby leading to necrosis 

in the myocardium. Consistent with our observation, loss of fodrin  (spectrin) from 

sarcolemmal membranes has been documented in ischemic myocardial infarction 

(Armstrong et al., 2001). Calpain activation following ischemia/reperfusion in the rat heart 

has also been reported by Kakkar et al., (2001). Although the precise mechanism underlying 

orthovanadate-induced inhibition of fodrin breakdown is unclear, the present study suggested 

that orthovanadate treatment prevents loss of membrane integrity though inhibition of fodrin 

breakdown in cardiomyocytes. 

Like orthovanadate-induced neuroprotection (Fukunaga and Kawano 2003; Kawano et al., 

2001), preservation of Akt activity by orthovanadate treatment is likely the primary basis of 

its cytoprotective action in myocardial infarction. IGF-1, an endogenous growth factor 

activating PI3K/Akt signaling, is known to suppress myocardial apoptosis and improve 

myocardial function in various experimental models of cardiomyopathy, including 

ischemia/reperfusion (Lee et al., 1999; Buerke et al 1995). Activated Akt is believed to 

suppress apoptosis though phosphorylation of several substrates including the Bcl-2 family 

member Bad (Datta et al., 1997), caspase 9 (Cardone et al., 1998), Forkhead transcription 

factors (Burgering and Kops, 2002) and GSK-3β (Pap and Cooper, 1998). In the present 

study, we defined downstream targets of Akt in cardiomyocytes. For example, orthovanadate 

rescue of Akt activity blocked GSK-3β dephosphorylation and promoted Bad 
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phosphorylation. We previously did not find apparent dephosphorylation of Bad in brain 

ischemic infarction (unpublished observation). Although Bad dephosphorylation in the 

myocardium is not associated with decreased Akt activity following ischemia/reperfusion, its 

phosphorylation is, however, markedly potentiated in cardiomyocytes by orthovanadate 

treatment. By contrast, GSK-3β phosphorylation is closely correlated with decreased Akt 

activity following ischemia and, similar to its response to Akt activity, is potentiated by 

orthovanadate treatment. These results suggest that both Bad and GSK-3β are Akt targets 

and mediate its cytoprotective action in cardiomyocytes. In addition to inhibition of necrosis, 

orthovanadate inhibits apoptosis in cardiomyocytes following ischemic infarction.  

In ischemia/reperfusion injury, mitochondria-initiated apoptosis of cardiac cells may also 

contribute to cell death. This intrinsic pathway of apoptosis is initiated by release of 

cytochrome-c from the intermembrane space of mitochondria into the cytoplasm through 

mechanisms not entirely understood. In the cytoplasm, cytochrome-c interacts with apoptotic 

protease-activating factor-1 (Apaf-1), which recruits pro-caspase-9 and forms a 

macromolecular complex called the apoptosome. During this process, caspase-9 is cleaved 

into active subunits. Active caspase-9, in turn, cleaves downstream caspases, such as 

caspase-3 and caspase-7. Here we have shown that cleavage of caspase-3 occurs in the 

myocardial infarction. Our data clearly demonstrate that orthovanadate treatment inhibits 

ischemia-induced caspase-3 activation in addition to inhibition of calpain-mediated fodrin 

breakdown (Fig. 7). Accumulating evidence suggests that cross-talk between calpain and 

caspase is involved in ischemia-induced apoptosis, particularly in neurons (Neumar et al., 

2003; Rami, 2003). In this context, our observation that inhibition of fodrin breakdown and 

caspase-3 activation can rescue ischemia/reperfusion-induced myocardial infarction as well 

as ischemic brain injury is critical.  

In summary, here we show that orthovanadate protects cardiomyocytes against 

ischemia/reperfusion injury in the rat heart. Orthovanadate-induced cardiomyocyte 

protection was mainly elicited by Akt activation and/or preservation. Further studies are 

needed to define the mechanisms underlying cross-talk between calpain and caspase-3 

activation and rescue of myocardial dysfunction by orthovanadate treatment. The peripheral- 

and post-administration of orthovanadate is possible candidate for heart attack therapy in 

addition to surgical treatment.  
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Figure legends 

Fig.1. Effects of post-occlusion treatment with orthovanadate on 

ischemia/reperfusion-induced myocardial infarction in rats. (A) Representative images 

of heart slices from vehicle or orthovanadate-treated group (100 µmol/kg).  (B) Quantitation 

of effects of treatment with orthovanadate.  Orthovanadate at the indicated dose or vehicle 

(saline) was intravenously infused (3 ml/kg/h, 50、100µmol/kg over 20 min or 75µmol/kg 

over 30 min ) beginning 10 min before reperfusion or infused 75 µmol/kg beginning 30 min 

after reperfusion. The area at risk was not significantly different among the groups.  

Treatment at 75 or 100µmol/kg 10 min before reperfusion or 75 µmol/kg 30 min after 

reperfusion significantly reduced myocardial infarct size. Each bar represents the mean ± 

S.E.M. for four experiments. *P < 0.05, **P < 0.01 vs. the vehicle group. 

 

Fig.2. Effects of orthovanadate treatment on blood pressure. The drug at each dose or 

vehicle was intravenously infused (3 ml/kg/h, 50、100µmol/kg over 20 min or 75µmol/kg 

over 30 min). Administration of orthovanadate at 100 µmol/kg increased blood pressure. 

Changes in heart rate were not observed in any group. Each bar represents the mean ± S.E.M. 

for four experiments. 

 

Fig.3. Effects of orthovanadate treatment on LVDP and LV dP/dt 72 hours after 

ischemia/reperfusion. Orthovanadate (OV) 75µmol/kg or vehicle was intravenously 

infused (3 ml/kg/h, over 30 min) beginning 10min before reperfusion. (A) In sham-operated 

animals, treatment with orthovanadate alone did not affect LVDP over 1 hour after treatment.  

LVDP was significantly reduced 72 hours after ischemia/reperfusion injury and partly 

restored by treatment with orthovanadate. (B) In sham-operated animals, treatment with 

orthovanadate alone did not affect ±dP/dt over 1 hour after treatment.  Treatment with 

orthovanadate improved ±dP/dt 72hours after ischemia/reperfusion. Heart rate was about 

400/min without differences between the groups, and mean blood pressure was about100 

mmHg in the sham-operated group or 80–90 mmHg in the vehicle and orthovanadate-treated 

group. Each bar represents the mean ± S.E.M. for six experiments (vehicle group) or five 

experiments (normal and orthovanadate group). *P < 0.05 vs. the IR + vehicle group. †P < 

0.05, ††P< 0.01 vs the sham-operated group. 
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Fig.4. Effect of orthovanadate treatment on fodrin breakdown 12 hours after 

ischemia/reperfusion. (Upper) Representative image of an immunoblot probed with a 

specific antibody recognizing a 150 kDa-fodrin breakdown product. (Lower) Quantitative 

analysis of the fodrin breakdown product (bdp) was performed by densitometric analysis of 

the blots. Data are expressed as percentage of value of sham-operated rats. Treatment with 

orthovanadate (OV) reduced fodrin breakdown 12hours after ischemia/reperfusion. Each bar 

represents the mean ± S.E.M. **P < 0.01 vs. the vehicle group. 

 

Fig.5. Effect of orthovanadate treatment on Akt, GSK3� and Bad phosphorylation 12 

hours after ischemia/reperfusion. Representative images of immunoblots using antibodies 

against phosphorylated Akt (Ser-473) (A), GSK-3β (Ser-9) (B) or Bad (Ser-136) (C) are 

shown in the upper parts of each panel. Total amounts of these three proteins were unchanged 

following ischemia as shown in the lower lanes of each immunoblot using conventional 

antibodies. Quantitative analyses of phospho- Akt, GSK3β or Bad levels performed by 

densitometric analyses are shown in the lower half of each panel. Data are expressed as 

percentage of value of sham-operated rats. Treatment with orthovanadate (OV) increased 

Akt, GSK3β and Bad phosphorylation 12hours after ischemia/reperfusion. Each bar 

represents the mean ± S.E.M. ##P<0.01 vs. the sham-operated animals; **P < 0.01 vs. the 

vehicle group. 

 

Fig.6. Effect of orthovanadate treatment on caspase-3 cleavage 12 hours after 

ischemia/reperfusion. (Upper panel) Representative image of an immunoblot probed with a 

specific antibody recognizing a 17-kDa caspase-3 cleavage product. (Lower panel) 

Quantitative analysis of the relative value of caspase-3 cleavage was performed by 

densitometric analysis. Data are expressed as percentage of value of sham-operated rats. 

Treatment with orthovanadate (OV) reduced caspase-3 cleavage 12hours after 

ischemia/reperfusion. Each column represents the mean ± S.E.M. *P < 0.05 vs. the vehicle 

group. 

 

Fig.7. Schematic representation of the specific cytoprotective actions of orthovanadate 
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on ischemia-reperfusion-induced myocardial infarction.  Binding of trophic/survival 

factors to tyrosine kinase receptors activate Akt through PI3k and 

phosphatidylinositol-dependent kinase-1 (PDK1) activation. Ischemia/reperfusion caused an 

inactivation of Akt thereby promoting apoptosis pathways such as GSK-3β, Bad and 

caspase-3 cascades. Ishcemic insults also induced calpain activation by Ca2+ mobilization.  

Orhtovanadate used in the present study inhibits protein tyrosine phosphatases (PTPs) or 

promotes PI3K activity by production of H2O2, thereby promoting or preserving the 

decreased Akt activity following ischemia. Therefore, GSK-3β and Bad is preferentially 

phosphorylated by Akt and these phosphorylation in turn inhibits the apoptosis signaling 

including caspase-3 activation. Calpain-induced fodrin breakdown production (BDP) also 

inhibited by treatment with orthovanadate. 
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