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Abstract 

Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), the principal receptor for oxidized 

low-density lipoprotein (ox-LDL) in vascular endothelial cells (ECs), has recently been suggested to 

exert a pivotal role in atherogenesis, possibly by mediating ox-LDL-evoked endothelial dysfunction. 

On the other hand, LOX-1 expression seems to strongly correlate with the oxidative stress occurring in 

the vascular wall of experimentally injured blood vessels. Here we investigated LOX-1 expression and 

superoxide generation during neointima formation in a balloon injury rat carotid artery model. To test 

this, we employed M40401 [a manganese(II) complex with a bis(cyclo-hexylpyridine-substituted) 

macrocyclic ligand], a synthetic superoxide dismutase mimetic that is a selective scavanger of 

superoxide. The injury was performed inserting the balloon catheter through the rat common carotid 

artery and after 14 days a histopatological analysis revealed a significant re-stenosis with smooth 

muscle cell proliferation and neointima formation that was associated with an enhanced expression of 

LOX-1, nitrotyrosine (the footprint of peroxynitrite) staining and lipid peroxidation as assessed by 

malondialdehyde (MDA) formation. Pre-treatment of rats with M40401 (0.5-10 mg/Kg i.p. daily) 

reduced neointima formation, MDA accumulation, nitrotyrosine staining and LOX-1 expression. Here 

we show that removal of superoxide formation occurring in injured arteries reduces both neointima 

formation and LOX-1 expression and this may represent a novel therapeutical approach in the 

treatment of vascular disorders in which proliferation of vascular smooth muscle cells and ox-LDL-

related endothelial cell dysfunction occur. 
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Introduction 

Vascular injury is accompanied by proliferation of sub-endothelial vascular smooth muscle cells 

(SMCs) and neointima formation leading to vascular occlusion and restenosis (Carter et al., 1994; 

Indolfi et al., 1995). Indeed, there is evidence that proliferation of SMCs is crucially involved in 

restenosis after procedures such as angioplasty (Holmes et al., 1984; McBride et al., 1988; Leimgruber 

et al., 1986; Guiteras et al., 1987) and arterial stenting (Hoffmann et al., 1996; Roubin et al., 1992). 

Many factors have been implicated in the proliferation of SMCs subsequent to vascular injury 

including the disruption of the endothelial cell layer (Harker et al., 1974; Asahara et al., 1995), the 

release of growth factors via activation of circulating leukocytes and macrophages (Serrano et al., 

1997; Kastrati et al., 2000; Danenberg et al., 2002; Ross, 1999) and the overproduction of reactive 

oxygen species (ROS), which activate redox-sensitive signalling pathways (for a review see ref. 

Griendling et al., 2000).  All these steps lead to the remodelling of vascular architecture via induction 

of both cell proliferation and apoptosis (Nishio et al., 1997; Brown et al., 1999). However, the 

molecular and cellular mechanisms underlying these processes still remain to be elucidated. 

ROS such as superoxide (O2
-), hydrogen peroxide (H2O2), and hydroxyl radicals (OH.) can 

directly cause cell damage, induce the expression of proinflammatory genes, enhance the catabolism of 

nitric oxide (NO) via the formation of peroxynitrite (ONOO-), and accelerate the oxidative 

modification of low-density lipoprotein (LDL) (see ref. Griendling et al., 2000). In particular, evidence 

exists that ox-LDL, induces endothelial expression of adhesion molecules, monocyte chemotactic 

protein-1 (MCP-1), E and P-selectin, V-CAM, I-CAM and SMC growth factors, and impairs 

endothelium-dependent vasorelaxation (Cushing et al., 1990; Li and Mehta, 2000). These events occur 

via the activation of LOX-1, which is the most relevant receptor for ox-LDL in vascular endothelial 

cells (ECs) (Sawamura et al., 1997), macrophages and activated SMCs (Yoshida et al., 1998; Chen et 

al., 2002). LOX-1 is a type II membrane protein with a C-type lectin-like structure at the C-terminus. It 
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is not constitutively expressed, but previous in vitro studies revealed that the expression of LOX-1 is 

highly induced by stimuli relevant to atherosclerosis, such as cytokines, mechanical forces, angiotensin 

(Ang) II, and ox-LDL itself, hemodynamic stress and oxidative stress (Kume and Kita, 2001; Mehta 

and Li, 2002). Furthermore, LOX-1 has been shown to be upregulated in animal and human 

atheromatous lesions (Kume and Kita, 2001; Chen et al., 2002; Mehta and Li, 2002). These findings 

suggest a pivotal role for LOX-1 in atherogenesis, possibly by mediating ox-LDL-evoked ROS-

generation and endothelial dysfunction, which in turn leads to uncontrolled proliferation of vascular 

SMCs. 

Recent studies have demonstrated that gene expression of LOX-1 is upregulated by superoxide 

anions, H2O2, Ang II and homocysteine in in vitro and the in vivo settings (Nagase et al., 2001). The 

enhanced expression of LOX-1 can be inhibited by antioxidants, indicating that restoring the 

antioxidant defenses in vascular tissues may be relevant in endothelial dysfunction associated with 

oxidative stress and enhanced LOX-1 expression (Nagase et al., 2001). However the clinical use of free 

radical scavengers such as recombinant human superoxide dismutase (SOD) and catalyse enzyme has 

shown limited effect, perhaps due to their short half life and to their very low penetration in vascular 

tissues (Flaherty et al., 1994). Recently, a class of stable, non peptidyl low-molecular weight molecules 

proven to possess selective catalytic rate towards superoxide comparable to the native SOD has been 

reported (Riley et al., 1996; Salvemini et al., 1999; Muscoli et al., 2003). These new SOD mimetics 

(SODm) represent a breakthrough in chemical design since they are stable in vivo, penetrate cells 

readily, have wide tissue distribution in rats, is excreted intact with no detectable dissociation and is 

recovered in urine and feces intact (Salvemini et al., 1999) and do not interact with other free radicals 

such as peroxynitrite (Muscoli et al., 2003). The use of the SODm has been suggested for treatment of 

diseases characterized by superoxide overproduction (Muscoli et al., 2003; Salvemini et al., 2002). In 

particular, evidence has been presented that M40401, a SODm (Figure 1) exerts protective effect in 
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many disease states, including ischemia/reperfusion injury and neurodegenerative disorders such as 

Parkinson and AIDS dementia complex (Mollace et al., 2002; Mollace et al., 2003a; Mollace et al., 

2003b). The present study was designated to evaluate 1) the relationship between carotid artery injury, 

ROS formation, expression of LOX-1 receptor and SMC proliferation and 2) the effect of novel 

selective SOD mimetic M40401 on both LOX-1 expression and neointina formation subsequent to 

vascular injury.  
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Methods 

 

Male Wistar rats (350-400 g, Charles River, Italy) were used for these studies. All animals were 

housed and cared for in accordance with the guidelines of the Institutional Animal Care and Use 

Committee of the University of Catanzaro “Magna Graecia”and in accordance with NIH guidelines on 

laboratory animal welfare. All rats were maintained under identical conditions of temperature (21 ± 

1°C), humidity (60 ± 5%) and light-dark cycle and chow and water were available ad libitum. 

 

Vascular injury induced by balloon angioplasty  

The rats were anaesthetized with intramuscular 100 mg/kg ketamine (Sigma Chimica, Milan, 

Italy) and 5 mg/kg xylazine (Sigma Chimica). Carotid artery was injured using a balloon embolectomy 

catheter, as previously described and validated (Indolfi et al., 1995). In brief, the balloon catheter (2F 

Fogarty, Baxter Corporation, USA, Santa Ana, California) was introduced through the right external 

carotid artery into the carotid artery and the balloon was inflated at 1.5 atmosphere pressure using a 

calibration device (Indeflator Plus 20, Advanced Cardiovascular System, Inc., Temecula, California), 

and pulled three times. To keep the duration of the injury that might influence the vascular SMC 

proliferation constant, we maintained constant the time of balloon inflation to 18 s. In an additional 

group of rats (Sham, n=10), the effects of the anaesthesia and the surgical procedure (without the 

balloon injury) were also assessed. 

 

Drug dosage and administration 

The SOD mimetic M40401 used in this study was synthesized as previously described  

(Salvemini et al., 1999) and was dissolved in buffered saline (pH 7.4). M40401 (0.5-10 mg/kg) or 
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saline was given daily intraperitoneally (i.p.; 0.3 ml) for 14 days after balloon injury. The same drug 

administration protocol was performed in sham animals.  

 

Morphological evaluation of the carotid artery  

At the indicated time, animals were anesthetized with an intramuscular injection of 100 mg/kg 

ketamine and 5 mg/kg xylazine, and the carotid arteries were fixed by transcardiacal perfusion at 120 

mm Hg with 100 ml of phosphate-buffered saline (PBS, pH 7.2), followed by 150 ml 4% 

paraformaldehyde (pH 7.2). The carotid arteries were removed and six cross sections were cut (each 6 

micronm thick) from the approximate mid-portion of the artery. Three sections were stained with 

hematoxylin-eosin to demarcate cell types; and the remaining three sections were stained with aldehyde 

fuchsin and counterstained with Van Gieson’s solution to demarcate the internal elastic lamina. The 

sections were photographed under low power, videodigitized and stored in the image analysis system 

(Mipron, Kontron Electronics, Eching, Germany) in a 512 3 512 matrix with an eight-bit gray scale and 

a 12-field view. The media, neointima and vessel wall were traced carefully, and the ratios between the 

neointima and media were calculated as previously shown (Indolfi et al., 1995). The intraobserver 

variability was minimal (Indolfi et al., 1995). 

 

Malondialdehyde Determinations 

Malondialdehyde (MDA; used as a biochemical marker for lipid peroxidation) was measured by 

a method previously described (Salvemini et al, 2002). MDA was measured 3,7 and 14 days after 

induction of balloon injury in carotid artery of either untreated or M40401-treated rats. Briefly, injured 

carotid artery of rat was surgically identified, removed and then frozen in liquid nitrogen, and 

homogenized in potassium chloride (1.15%). Chloroform (2 ml) was then added to each homogenate 
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and then spun for 30 min. The organic layer of the sample was removed and dried under nitrogen gas 

and re-constituted with 100 µl of saline. MDA generation was evaluated by the assay of thiobarbituric 

acid (TBA)-reacting compounds. The addition of a solution of 20 µl of sodium dodecyl sulphate (SDS; 

8.1%), 150 µl of 20% acetic acid solution (pH3.5), 150 µl of 0.8% TBA and 400 µl of distilled water, 

produced a chromogenic product which was extracted in n-butanol and pyridine. Then, the organic 

layer was removed and MDA levels read at 532 nm and expressed as nmol MDA/g wet tissue. 

 

Immunohistochemistry 

Immunohistochemistry for LOX-1 and nitrotyrosine was carried out as described previously 

(Mehta et al, 2002). After transcardiacal perfusion, the carotid arteries were fixed in 4% 

paraformaldehyde. Cryosections (8 µm thick) were incubated with the primary anti-mouse LOX-1 

(1:2000; gifted by Professor T. Sawamura, Osaka, Japan) and anti-nitrotyrosine antisera (1:2000; 

Cayman Chemicals) overnight at 4°C, treated with the secondary biotinylated goat anti-mouse IgG 

antibody (Chemicon) 1h at RT, followed by peroxidase-conjugated avidin-biotin-complexes 

(Vectastain Elite ABC-Peroxidase kit; Vector Laboratories). The reaction was visualized using a metal 

enhanced DAB kit (Pierce). Quantitation of staining was then performed by densitometry using 

ImageQuant 5.2 software by Molecular Dynamics (Molecular Dynamics, CA). 

 

Western blot analysis  

Carotid artery lysates from each experiment (30 µg per lane) were separated by 10% SDS–

PAGE and transferred to nitrocellulose membranes. After incubation in blocking solution (4% dry non-

fat milk, Sigma, St. Louis, MO), membranes were incubated with anti-LOX-1 (1:10.000, gifted by 

Professor T. Sawamura, Osaka, Japan) overnight at 4°C. Membranes were rinsed and then incubated 
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with anti-mouse IgG antibody (Amersham) for 1 h at RT, and the specific complex was detected by an 

enhanced chemiluminescence detection system (ECL, Amersham) and relative intensities of protein 

bands were analyzed by MSF-300G Scanner. 

Statistical analysis 

Results are shown as mean ± s.e.m. for n animals. Unless specified, statistical analysis was done 

using ANOVA followed by post hoc Tukey’s test. A P value ≤0.05 was considered significant 
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Results  

In rats undergoing balloon injury of left carotid artery, a significant proliferation of sub-

endothelial vascular SMCs occurred when compared to sham operated animals (Figure 2). Indeed, the 

mechanical injury, was accompanied by disruption of EC layer of injured blood vessels with active 

proliferation of SMCs and subsequent neointima formation (Figure 2). In particular, cross sectional 

area of vessel wall increased significantly 7 days after injury, reaching its maximum 14 days after 

balloon angioplasty (n= 20; Figure 3), an effect accompanied by similar changes occurring in the 

intima/media ratio (Figure 2). Early phases of neointima formation were characterized by an intense 

production of MDA and nitrotyrosine staining in vascular tissues of injured rats (Figure 4 and 5; n=20), 

indicating overproduction of ROS in carotid arteries with balloon injury. In particular, both MDA 

accumulation and nitrotyrosine staining in proliferating tissue occurred early in the post-injury period 

(day 3) and remained at high levels during development of neo-intima (day 7 and 14 ; Fig. 4 and 5). A 

similar effect was found when LOX-1 expression in neointima of injured carotid artery was examined. 

Indeed, both immunohistochemical staining of LOX-1 and Western blot analysis revealed significant 

expression of LOX-1 receptor in proliferating SMCs by day 3 after injury (Figure 6; n=20). This effect 

was also found on days 7 and 14 after injury, suggesting that an active expression of LOX-1 receptor  

accompanied the process of  restenosis (Figure 6). 

Treatment of rats with M40401 (0.5-10 mg/Kg given i.p. daily after balloon injury) significantly 

antagonized balloon-induced neointima formation (n= 10 for each dose; Figure 2 and 3). Indeed, both 

cross sectional area of injured carotid artery and intima/media ratio (data not shown) were reduced 

dose-dependently by daily administration of the M40401 SOD mimic.  In addition, treating rats over 

the post-injury period with M40401 (0.5-10 mg/Kg given i.p. daily after angioplasty; n = 10 for each 

dose) significantly reduced MDA formation, nitrotyrosine staining and LOX-1 expression in vascular 

tissue (Figure 4, 5 and 6; Table 1). Treatments with M40401 (10 mg/kg given i.p. daily after 
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angioplasty, n = 10) did not modified the serum cholesterol and triglyceride levels or the serum 

lipoproteins such as HDL, LDL, IDL and VLDL (data not shown). All these effects occurred by day 3, 

indicating that oxidative stress and LOX-1 expression are early events in the biochemical changes 

which can be found in vascular tissue after induction of injury, and that restoring antioxidant status by 

treating rats with M40401 antagonized both free radical formation and LOX-1 expression and, finally, 

neointima formation.  
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Discussion 

The present data show that balloon injury of the rat carotid artery is accompanied by 

proliferation of sub-endothelial SMCs and that this effect is associated with oxidative stress and 

overexpression of ox-LDL receptor LOX-1. Furthermore, balloon-induced vascular injury, SMC 

proliferation and expression of LOX-1 and nitrotyrosine are all inhibited by M40401, a novel non 

peptidyl SOD mimic, suggesting that removal of superoxide generated in the injured vascular tissues 

leads to potent protective effect against SMC proliferation following angioplasty.  

This in vivo study indicates that superoxide anion generation is a crucial step in activating 

proliferation of sub-intimal SMCs, which follows vascular injury and that LOX-1 appears to be 

involved in this process, which leads to the reactive neointima formation. 

It is known that intracellular and extracellular production of ROS and the consequent activation 

of specific signaling pathways and induction of redox-sensitive genes coordinate several integrated 

physiological responses in vascular tissues, including growth of SMCs, induction of an inflammatory 

response, and impairment of endothelium-dependent relaxation (Griendling et al, 2000). In particular, 

production of superoxide is up-regulated by hormone-sensitive enzymes such as the vascular NAD(P)H 

oxidases, and its metabolism is kept under tight control by the endogenous antioxidant system such as 

SOD, catalase, and glutathione peroxidase. ROS serve as second messengers to activate multiple 

intracellular proteins and enzymes, including the epidermal growth factor receptor, c-Src, p38 mitogen-

activated protein kinase, Ras, and Akt/protein kinase B (Griendling et al, 2000). Activation of these 

signaling cascades and redox-sensitive transcription factors leads to induction of many genes with 

important functional roles in the pathophysiology of vascular cells (Griendling et al, 2000). Thus, ROS 

participate in vascular SMC growth and migration, modulation of EC function, expression of a 

proinflammatory phenotype, and modification of the extracellular matrix. All these events play 
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important roles in vascular diseases, such as hypertension and atherosclerosis, suggesting that ROS and 

the associated signaling pathways may represent important therapeutic targets. 

Our data indicate that LOX-1 may be a crucial link between ROS generation and activation of 

redox-sensitive genes involved in SMC proliferation. Previous in vitro studies have indicated that 

LOX-1 expression is upregulated by a host of stimuli including inflammatory cytokines, mechanical 

forces and ox-LDL (Kume et al., 1998; Aoyama et al., 1999; Kunsch and Medford, 1999). All these 

result in production of ROS, which have been shown to upregulate LOX-1 in the reperfused tissues (Li 

et al., 2003). In addition, evidence exists that ROS can activate redox-sensitive transcription factors 

such as NF-kB and AP-1 (Kunsch and Medford, 1999) and that the ROS-related activation of NF-kB 

and AP-1 leads to activation of the promoter region of the LOX-1 gene (Cominacini et al., 2000). 

Finally, it has recently been reported that ROS are generated upon stimulation of LOX-1 by ox-LDL, 

which subsequently activate the transcription factor NF-kB, which in turn upregulated Ang II type 1 

receptor with subsequent overexpression of LOX-1 receptor in a positive feedback fashion (Li et al., 

2000). Thus, it can be suggested that the resultant ROS would further upregulate LOX-1 expression, 

leading to the formation of a feedback loop (Fig. 7). 

This concept is in accordance with our data. Indeed, both generation of ROS, as shown by the 

nitrotyrosine staining, the footprint of the highly reactive peroxynitrite, in vascular tissues and LOX-1 

expression occurred earlier than the neo-intima formation, which reached its peak at two weeks after 

balloon injury. On the other hand, M40401, which selectively inhibits superoxide formation, reduced 

ROS generation (as shown by the decrease in MDA formation and nitrotyrosine staining in injured 

vessels), LOX-1 expression and, finally, neo-intima formation suggesting that oxidative stress triggers 

the cascade of events which generates, via inflammation of vascular wall and LOX-1 expression, the 

proliferation of SMC which accompanied balloon injury. 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on June 25, 2004 as DOI: 10.1124/jpet.104.068205

 at A
SPE

T
 Journals on A

pril 10, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


  JPET#68205 

 15

In conclusion, our studies suggest that oxidative stress occurring in injured arteries triggers both 

LOX-1 expression and neointima formation, and this may be relevant in the treatment of vascular 

disorders in which proliferation of vascular smooth muscle cells and  ox-LDL-related EC dysfunction 

occur. 
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Figure 1- Chemical structure of M40401 
 

Figure 2. Balloon injury is accompanied by neointima formation of carotid artery, compared to sham 

operated rats. Cross sectional area (A) and neointima/media ratio (N/M ratio; C) are increased in 

injured vessel as shown by representative histological examination (B). M40401 (10 mg/Kg given i.p. 

daily in the post-angioplasty period (14 days), reversed this effect. * P<0.05 untreated vs M40401 

treated rats. 

 

Figure 3. The time-dependent  (3, 7 and 14 days; A) effect of balloon injury (BI) in cross sectional area 

of carotid artery is reversed by M40401 (0.5-10 mg/Kg given i.p. daily for 14 days), dose-dependently 

reversed the restenosis of the injured vessel (B). † P<0.001 when compared to sham; * P<0.05, ** 

P<0.001 treated vs M40401-untreated rats. 

 

Figure 4. Balloon injury (BI) is accompanied by malondialdehyde (MDA nmol/g –1wet tissue) 

accumulation in carotid artery 3, 7 and 14 days after injury, compared to sham operated rats. M40401 

(10 mg/Kg) was given given i.p. daily in the post-angioplasty period (A). M40401 (0.5-10 mg/Kg 

given i.p. daily in the post-angioplasty period (14 days), reversed this effect (B). * P<0.05, ** P<0.001 

untreated vs M40401 treated rats. 

 

Figure 5. Balloon injury (BI) is accompanied by time-dependent nitrotyrosine staining in carotid artery 

3, 7 and 14 days after injury, compared to sham operated rats. M40401 (10 mg/Kg given i.p. daily 

during the post-angioplasty period) reversed this effect. * P<0.05 untreated vs M40401 treated rats. 

 

Figure 6. Neo-intima formation in carotid artery 3, 7 and 14 days after balloon injury is accompanied 

by intense expression of LOX-1 receptor as shown by both immunohistochemical examination and 
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western blotting analysis. M40401 (10 mg/Kg given i.p. daily during the post-angioplasty period) 

reversed this effect. * P<0.05 untreated vs M40401 treated rats. 

 

Figure 7. LOX-1 expression, triggered by ROS after balloon injury, leads to furter generation of free 

radical species which, in turn, activate redox-sensotive genes which contribute in restenosis. M40401, 

via inhibition of superoxide anions selectively, blocks these LOX-1 mediated events which follow 

balloon injury in rats. 
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Table 1. The effects of M40401 on LOX-1 expression and nitrotyrosine staining after ballon injury. 

 
LOX-1 Nitrotyrosine staining 

Sham 0.130 ± 0.015 0.142 ± 0.012 

BI 14dd 0.503 ± 0.011† 0.638 ± 0.023† 

BI 14dd +M40401 0.5 mg/kg 0.424 ± 0.025* 0.416 ± 0.17 

BI 14dd +M40401 1 mg/kg 0.331 ± 0.018** 0.270 ± 0.014* 

BI 14dd +M40401 5 mg/kg 0.180 ± 0.021** 0.168 ± 0.018** 

BI 14dd +M40401 10 mg/kg 0.150 ± 0.022** 0.125 ± 0.020** 

Data are expressed as densitometry units and represent the mean ± sem of 6 independent experiments. 
† P<0.001 when compared to sham; * P<0.01, ** P<0.001 treated vs M40401-untreated rats. 
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