6/19/04 Version

THE PREPARATION AND CHARACTERIZATION OF NOVEL PEPTIDE ANTAGONISTS TO THROMBIN, FACTOR VIIa AND ACTIVATION OF PROTEASE ACTIVATED RECEPTOR1[§]

Marvin T. Nieman, Mark Warnock, Ahmed A.K. Hasan, Fakhri Mahdi, Benedict R. Lucchesi, Nancy J. Brown, Laine J. Murphey, Alvin H. Schmaier

From Thromgen, Inc. Ann Arbor, MI 48104 (MTN, MW, AAAK, AHS) and the University of Michigan Medical School, Division of Hematology and Oncology, Department of Internal Medicine[‡] (MTN, MW, FM, AHS) and Department of Pharmacology (BRL), Ann Arbor, MI, 48109-0640 and the Division of Clinical Pharmacology, Departments of Medicine and Pharmacology, Vanderbilt University, Nashville, TN (NJB, LJM)

Copyright 2004 by the American Society for Pharmacology and Experimental Therapeutics.

Running Title: Novel Thrombostatins

Address Correspondence to:

Alvin H. Schmaier University of Michigan Division of Hematology and Oncology 5301 MSRB III 1150 West Medical Center Drive Ann Arbor, MI 48109-0640

734 647-3124 (tel) 734 647-5669 (fax) aschmaie@umich.edu

Text pages: 23

Tables: 2

Figures: 8

References: 33

Words: 6,379 (total)

Abstract: 237

Introduction: 440

Discussion: 1,002

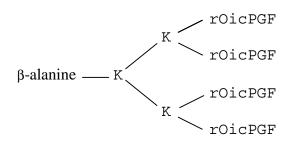
List of non-standard abbreviations:

TH146: rOicPGF; MAP4-TH146: βAK2K4(rOicPGF); APTT: activated partial thromboplastin time; PT: prothrombin time; TCT: thrombin clotting time; PAR1: protease activated receptor 1; PAR3: protease activates receptor 3; PAR4: protease activated receptor 4; HOE140: a bradykinin B2 receptor antagonist;

Section assignment: Cardiovascular

ABSTRACT

Thrombin and PAR1 activation antagonists were prepared based upon the peptide, RPPGF, the angiotensin converting enzyme breakdown product of bradykinin. A library of 72 peptides consisting of D and/or synthetic amino acids was designed with various substitutions in positions one to five in RPPGF. Two compounds rOicPGF (TH146) and BAK2K-4(rOicPGF) (MAP4-TH146) were characterized further. TH146 or MAP4-TH146 completely inhibits threshold γ thrombin induced platelet aggregation at a concentration of 142±0.05 µM or 19±0.06 µM, respectively. TH146 completely inhibits threshold α -thrombin-induced washed platelet aggregation at 444+0.04 μ M. TH146 or MAP4-TH146 blocks 2 nM α -thrombin-induced fibroblast calcium mobilization with an IC₅₀ of 110 or 18 μ M, respectively. Furthermore, significant prolongation of the APTT, PT, or TCT occurs at 31, 62, or 7.8 µM TH146 and 0.4, 6.25, or 1.56 μ M MAP4-TH146, respectively. TH146 and MAP4-TH146 inhibit both α thrombin with K_i of 97 and 49 μ M, respectively, and factor VIIa with K_i of 44 and 5 μ M, respectively. Both TH146 and MAP4-TH146 specifically bind to the exodomain of recombinant PAR1. Two hundred µM MAP4-TH146 completely blocks thrombocytin, a PAR1 activating snake venom protease, without inhibiting the enzyme's active site. TH146 inhibits γ -thrombininduced aggregation of mouse platelets, prolongs mouse bleeding times, and delays the time to mouse carotid artery thrombosis. TH146 and MAP4-TH146, inhibit human and mouse platelet aggregation and mouse thrombosis. Analogs of RPPGF are model compounds to develop PAR1 activation antagonists as well as direct inhibitors to thrombin and factor VIIa.


Investigations from a number of laboratories indicate that platelet receptors for thrombin are anti-platelet targets. Hanson and Harker showed that treatment of baboons with Phe-Pro-Arg-Chloromethylketone, a potent direct acting thrombin inhibitor, prolongs the bleeding time (Hanson & Harker, 1988). More recently, knockout mice of protease-activated receptor (PAR)-3 or -4, mouse platelet thrombin receptors, independently prolong bleeding times and are protected against ferric chloride-induced thrombosis (Weiss EJ et al., 2002). Cook et al. (1995) showed that an IgG raised to a peptide of the hirudin-anionic binding region on the exosite of human PAR1 reduces or abolishes cyclic flow variations (CFV) in the carotid artery of monkeys. A non-peptide mimetic (RWJ-58259) directed to the cleaved PAR1 activation site after a 3 mg/kg intravenous bolus followed by a constant infusion of 0.123 mg/kg/min significantly prolongs the time to carotid artery thrombosis in monkeys (Derian et al., 2003). Furthermore, another nonpeptide mimetic at 1 mg/kg directed to the SFLLRN activation site on PAR1 delays the time to guinea pig carotid artery thrombosis (Kato et al., 2003). These combined studies indicate that inhibition of thrombin, thrombin binding to PAR1, and/or PAR1 activation prolongs the bleeding time and delays the time to thrombosis in various animals models.

The plasma protein high molecular weight kininogen blocks thrombin-induced platelet activation (Puri *et al.*, 1991; Meloni & Schmaier, 1991). The thrombin inhibitory region on kininogen is contained within the angiotensin converting enzyme breakdown product of bradykinin, Arg-Pro-Pro-Gly-Phe (RPPGF) (Hasan *et al.*, 1996). RPPGF inhibits thrombininduced platelet activation, but not that induced by ADP, collagen, or U46619 (Hasan *et al.*, 1996). It inhibits thrombin-induced platelet aggregation two ways. RPPGF is a weak direct thrombin inhibitor (K_i =1.75±0.03 mM) with its amino terminal arginine interacting with H⁵⁷,

D¹⁸⁹, and S¹⁹⁵ and its prolines interacting with W^{60d} and W²¹⁵ on thrombin (Hasan *et al.*, 2003). RPPGF also binds to LDPR⁴¹ and PRSF⁴³ on PAR1 with a K_d of 20 µM to prevent thrombin cleavage at this site and PAR1 activation (Hasan *et al.*, 2003). RPPGF infusion delays the time to occlusion in a canine model of the electrolytically injured coronary artery similar to that of aspirin (Hasan *et al.*, 1999). Further, a multi-antigenic peptide form of RPPGF (MAP4-RPPGF) reduced canine coronary artery cyclic flow variations similar to aspirin or clopidogrel (Hasan *et al.*, 2001b). MAP4-RPPGF also reduces platelet adhesion and activation of balloon-injured canine coronary arteries *ex vivo* like aspirin (Prieto *et al.*, 2002). These combined studies indicate that RPPGF is a novel thrombin inhibitor. The present investigations report the preparation and characterization of modified forms of RPPGF, referred to as ThrombostatinTM, consisting of peptides containing various D- and synthetic amino acid substitutions.

MATERIALS AND METHODS

Peptides and reagents. The abbreviations used for synthetic amino acids are (2S, 3aS, 7aS)octahydroindol-2-carboxilic acid (Oic), 4-hydroxyproline (Hyp), α -(2-indanyl)glycine (Idg), and β -(2-thienyl)-L-alanine (Thi). Standard single letter abbreviations are used for L amino acids and lowercase letters are used to designate D amino acids. Peptides Arg-Pro-Pro-Gly-Phe (RPPGF), scrambled RPPGF, FPRPG, D-Arg-Oic-Pro-Gly-Phe (rOicPGF, TH146, or Dargininyl, octahydroindole-2-carboxylic acid, prolinyl, glycyl, phenylalanine), scrambled TH146 (FOicrPG), D-Arg-Oic-Pro-Gly-Idg (rOicPGIdg or TH34), D-Arg-Oic-Hyp-Gly-Thi (rOicHypGThi or TH37), D-Arg-Oic-Hyp-Gly-Idg (rOicHypGIdq or TH40), D-Arg-Oic-Pro-Gly-Thi (rOicPGThi or TH26), D-Arg-Oic-Oic-Gly-Idg (rOicOicGIdg or TH46), D-Arg-Oic-Oic-Gly-Thi (rOicOicGThi or TH43), and a four branched, multiple antigenic peptide of β-Ala-Lys-2Lys-4(D-Arg-Oic-Pro-Gly-Phe) [[β-A-K-2K-4(rOicPGF)] (MAP4rOicPGF, MAP4-TH146), or beta-alaninyl, lysyl, 2 lysyl, 4 D-argininyl, octahydroindole-2carboxylic acid, prolinyl, glycyl, phenylalanine] were synthesized by Multiple Peptide Systems, Inc., San Diego, CA (Table I). For MAP4-rOicPGF, β-alanine was attached to a resin core by its carboxyl group followed by the attachment of a lysine via its carboxyl group to the free amine group on the β -alanine. Two additional lysines were attached via their free carboxyl group to the two free amine groups of the first lysine residue. Finally, four rOicPGF peptides were attached via the carboxyl groups of the phenylalanines to each of the four available free amine groups of the two lysine residues following activation with 2-(1-H-benzotriazole-1-YL)-1,1,3,3tetramethyluroniumhexo-fluorophosphate (HBTU) and 1-hydroxybenzotriazole (HOBt). The final structure of MAP4-TH146 is:

All peptides used in these studies were >95% pure by reverse-phase HPLC. The purified peptides were characterized by analytical HPLC, amino acid analysis, and mass spectrometry for homogeneity. The peptides were colorless, odorless, and soluble in water. HOE140, a bradykinin B2 receptor antagonist (D-Arg-Arg-Pro-Hyp-Gly-Thi-Ser-D-Tic-Oic-Arg), was generously provided by Hoechst Aktiengesellschaft, Frankfurt, Germany.

Platelet aggregation. Each peptide initially was assayed for its ability to inhibit γ-thrombininduced platelet aggregation. Fresh whole blood was collected from normal human donors directly into 3.8 % sodium citrate (1:9 citrate/blood). Platelet rich plasma (PRP) was prepared by centrifugation of whole blood at $180 \times g$ (Beckman GRP Centrifuge, Schaumburg, IL) for 10 min at room temperature as previously reported (Hasan *et al.*, 1996). Platelet poor plasma (PPP) was prepared by centrifugation of the sample of PRP at $1000 \times g$ for 20 min at room temperature. Prior to all platelet aggregation studies, the platelet count of the PRP was determined on a Coulter counter (Model Z, Coulter Electronics, Hialeah, FL) and adjusted to 2.2- 2.5×10^8 platelets/ml. When mouse platelets were studied, a pool of PRP from 10 mice was prepared in an identical fashion as above for human platelet aggregation studies. Platelet aggregation was assayed by a Chronolog dual-channel aggregometer (Havertown, PA) by recording the increase in light transmittance through a stirred suspension of PRP maintained at 37° C in the cuvette. PRP was treated with variable concentrations of γ-thrombin (3000 U/mg, JPET Fast Forward. Published on June 21, 2004 as DOI: 10.1124/jpet.104.069229 This article has not been copyedited and formatted. The final version may differ from this version.

JPET #69229

Haematologic Technologies, Essex Junction, VT) to determine the threshold concentration for platelet aggregation. γ -Thrombin was used for these studies because screening platelet aggregation studies were performed in PRP and γ -thrombin, unlike α -thrombin, will not clot fibrinogen. Platelet aggregation was measured in arbitrary units as the initial rate of change in light transmittance in the first minute after the addition of γ -thrombin; samples were standardized between PPP (100%) and PRP (0%). The effect of each peptide on platelet aggregation was assayed by adding peptides at various concentrations to the cuvette, allowing the baseline to stabilize, and then adding threshold amounts of γ -thrombin (10-70 nM for human platelets, 250-500 nM for mouse platelets). The aggregation was allowed to proceed for 5 min. The minimal concentration of each peptide to achieve full inhibition of platelet aggregation was determined. Platelet aggregation data were expressed as percent inhibition of the extent of chart deflection of a peptide-treated platelet sample compared to an untreated sample ×100.

In other experiments, the ability of TH146 to inhibit threshold α -thrombin-induced washed platelet aggregation was determined. Human α -thrombin (3000 U/ml), the physiologic form of thrombin, was purchased from Haematologic Technologies. Human platelets in PRP were separated from plasma by gel filtration over Sepharose 2B columns in HEPES-carbonate buffer (137 mM NaCl, 3 mM KCl, 12 mM NaHCO₃, 14.7 mM HEPES, 5.5 mM dextrose containing 0.2% bovine serum albumin, pH 7.4) (Hasan *et al.*, 1996). The peak tubes were pooled and the platelet count was adjusted to 2.25 X 10⁸ platelets/ml before proceeding with platelet aggregation studies. When the platelet aggregation was performed, the platelet suspension was made 200 µg/ml with human fibrinogen (Kabi, Stockholm, Sweden) prior to the addition of the agonist. The aggregation studies were performed as described above. For each platelet donor, the threshold α -thrombin concentration was obtained that initiated full platelet

8

aggregation. Usually, the threshold of α -thrombin-induced platelet aggregation was 1-2 nM (0.125-0.25 U/ml).

Calcium mobilization. Each peptide was assayed for its ability to inhibit α -thrombin-induced calcium mobilization in fibroblasts. Normal human lung fibroblasts were purchased from Clonetics (San Diego, CA) and were cultured according to supplier's instructions. The cytoplasmic free calcium concentration ($[Ca^{2+}]_i$) was determined with the Ca²⁺ indicator Fura-2 (Molecular Probes, Eugene, OR). Suspensions of fibroblasts in HEPES-carbonate buffer alone or supplemented with 100 mM Ca²⁺ and Mg²⁺ were loaded with Fura-2 by incubation at 37°C with 5 µM fura-2/acetoxymethyl ester for 60 min as reported previously (Fisher et al., 1989; Hasan et al., 1996). Excess probe was removed by washing the cells three times. Aliquots of the labeled cells were transferred to a quartz cuvette which was placed in a thermostatically controlled chamber at 37°C in a fluorescence spectrophotometer (Perkin-Elmer LS50B spectrofluorometer, Chicago, IL). Cells were treated with 0.25-4.0 nM of α-thrombin (3000-3250 U/mg stock concentration, Haematologic Technologies) to determine the minimal amount needed to produce the maximal response. The concentration of α -thrombin necessary to stimulate intracellular Ca²⁺ mobilization varied 1 order of magnitude depending upon the presence or absence of extracellular Ca^{2+} and Mg^{2+} . The effect of each peptide was determined by adding variable concentrations of peptide to the cells followed by threshold levels of α thrombin and readings taken as described below. The excitation wavelengths varied between 340 and 380 nm and fluorescence was measured by recording light emitted at 510 nm as described by Fisher *et al.* (1989). The degree of inhibition of α -thrombin induced Ca²⁺ flux for each peptide was determined by calculating the area under the curve by Winlab software (Perkin

Elmer, Torrence, CA) and is expressed as percent activity; samples without peptide (thrombin alone) were set to 100%.

Clotting assays. The effect of TH146 or MAP4-TH146 on the activated partial thromboplastin time (APTT), prothrombin time (PT), and thrombin clotting time (TCT) was determined. APTT and PT were performed as previously described in the presence or absence of increasing concentrations of peptide (Hasan *et al.*, 1999; Hasan *et al.*, 2001b; Hasan *et al.*, 2003). Thrombin clotting time was determined by incubating 100 μ l pooled normal human plasma (George King, Inc., Overland Park, KS) in the absence or presence of peptide at 37°C for 5 min. At the end of the incubation, 8 nM human α -thrombin (Haematological Technologies, Essex Junction, VT) was added and the time to clot was measured. All the coagulant assays were performed in Amelung KC4 coagulation analyzer (Sigma, St. Louis, MO). Values were considered significantly prolonged when the mean result at each concentration of the inhibitor was *p*<0.05 from the control on a nonpaired T-test.

Enzymatic assays. The ability of 142 μ M TH146 and 200 μ M MAP4-TH146 to inhibit the hydrolytic activity of human α -thrombin (1 nM) or γ -thrombin (1 nM) was measured in 10 mM Tris-HCl, 0.15 M NaCl, pH 7.6 containing 0.1% bovine serum albumin, using 0.6 mM Sar-Pro-Arg-paranitroanilide (Sigma) (K_m =138 μ M) (Hasan *et al.*, 2003). Additional studies determined the ability of these compounds to inhibit 3 nM factor XIa (FXIa) (Haematologic Technologies) in the same buffer hydrolysis of 0.6 mM L-pyro-Glu-Pro-Arg-paranitroanilide (Diaphram, Franklin, OH) (Hasan *et al.*, 2001b). Inhibition of 1 nM factor Xa (FXa) (Enzyme Research Laboratories) in 100 mM triethanolamine, 100 mM NaCl, pH 8.0, supplemented with 0.1% polyethyleneglycol (MW 8000) and 0.2% bovine serum albumin was determined using 0.4 mM

JPET Fast Forward. Published on June 21, 2004 as DOI: 10.1124/jpet.104.069229 This article has not been copyedited and formatted. The final version may differ from this version.

JPET #69229

N-(p-Tosyl)-Gly-Pro-Arg-paranitroanilide (Schmaier et al., 1995). Inhibition of 50 nM factor VIIa (FVIIa) (Haematologic Technologies) in a preformed complex with 70 nM soluble recombinant tissue factor, amino acids 1-219 (sTF₁₋₂₁₉), provided by Dr. Tom Girard, Monsanto, St. Louis, MO in 0.02 M Tris-HCl, 0.14 M NaCl, pH 7.4 containing 0.1% bovine serum albumin and 5 mM CaCl₂ was determined by hydrolysis of 1.25 mM methoxycarbonyl-Dcyclohexylglycyl-glycyl-arginine-p-nitroanilide (Spectrozyme fXa) (K_m=0.284 mM) (Mahdi et al., 2000). Additional experiments were performed by incubation at 142 µM TH146 or 20 µM MAP4-TH146 with 50 nM FVIIa before the addition of 70 nM sTF₁₋₂₁₉. In these experiments, hydrolysis of the substrate was measured as described above. Last, investigations determined of TH146 and MAP4-TH146 inhibited factor IXa (FIXa). Inhibition of 3 nM FIXa was determined indirectly by measuring the activation of FX to FXa by measuring the hydrolysis of 0.4 mM N-(p-tosyl)-Gly-Pro-Arg-paranitroanilide in the presence of phospholipids vesicles and thrombinactivated factor VIIIa (5 U/ml) in 0.2 M Hepes, 0.15 NaCl, pH 7.4, supplemented with 5 mM CaCl₂ 0.1% polyethyleneglycol (MW 8000) and 0.2 mg/ml bovine serum albumin as previously reported (Schmaier *et al.* 1995). In all experiments, the initial rate of hydrolysis of the substrate in the absence or presence of the peptide inhibitor was obtained over 20 min by continuous monitoring the absorbance at 405 nm and taking a reading at 2 min intervals. Equilibrium inhibition constants were calculated by determining the $K_{i,app}$ and then the K_i according to the procedure of Bieth (1984) as previously reported (Schmaier et al., 1995).

Inhibition of RPPGFK-biotin binding. Recombinant PAR1 exodomain (rPAR1_{EC}) was prepared as described previously (Hasan *et al.*, 2003). rPAR1_{EC} (1 μ g/well) in 0.1 M Na₂CO₃, pH 9.6, was bound to microtiter plate wells (F96 CERT.MAXISORP, #439454, Nunc-Immuno Plate, Fisher Scientific, Chicago, IL) by incubation at 4°C overnight. Following incubation, wells were

washed three times with 10 mM NaH₂PO₄, 150 mM NaCl, pH 7.4 containing 0.05% Tween 20 (PBS-Tween). After blocking with 1% gelatin, the bound rPAR1_{EC} was incubated with 20 μ M RPPGFK-biotin (Multiple Peptide Systems, Inc., San Diego, CA) in the presence or absence of various peptides 2 h at 37°C. Following incubation, the wells were washed three times with PBS-Tween and the bound RPPGFK-biotin was detected by using Immune-Pure streptavidin horseradish peroxidase conjugate (Pierce Chemical Co., Rockville, IL) and peroxidase-specific fast reacting substrate, turbo-3, 3',5, 5'-tetramethylbenzidine (turbo-TMB, Pierce) as previously described (Hasan *et al.*, 1994). The color reaction was stopped by the addition of 1 M phosphoric acid and the reaction was quantitated by measuring the absorbance at 450 nm in a Microplate auto reader EL311 (Bio-Tek, Winooski, VT).

Digestion of recombinant $PAR1_{EC}$ by proteolytic enzymes. One µg of recombinant exodomain of human PAR1 (rPAR1_{EC}) in 10 mM Tris-HCl, 200 mM NaCl, pH 8.0 was incubated at 37°C for 15 min with 0.5 µg/ml (16.7 nM) thrombocytin in the absence or presence of various concentrations of MAP4-TH146 (0.05-0.5 mM) (Hasan *et al.*, 2003; Niewiarowski *et al.*, 1979; Santos *et al.*, 2000). Thrombocytin, a PAR1 activating enzyme, was a generous gift of the late Stefan Niewiarowski, Temple University, Philadelphia, PA (Santos *et al.*, 2000). The reaction mixture was separated on SDS-PAGE and stained with R-250 Coomassie Brilliant Blue (BioRad, Hercules, CA).

Ability of MAP4-TH146 to inhibit the enzymatic activity of thrombocytin. The chromogenic substrate H-D-Phe-Pip-Arg-paranitroanilide (1 mM) was incubated with thrombocytin (16.7 nM) in the absence or presence of MAP4-TH146 (0.2 mM) in 10 mM Tris-HCl, 150 mM NaCl, pH

7.6. The initial rate of hydrolysis of the substrate was determined by monitoring absorbance at 405 nm for 30 min.

Pharmacokinetic studies. All animal studies were in accordance with the Guide for the Care and Use of Laboratory Animals. Purpose-bred beagle dogs (9-11 kg) were anesthetized with intravenous administration of sodium pentobarbital (30 mg/kg) and anesthesia was maintained by intramuscular pentobarbital (90 mg) as needed. After tracheostomy, intubation, and positive pressure ventilation with room air using a Harvard respirator (Harvard Instruments, South Natick, MA), the right jugular vein and right femoral vein were cannulated for blood collection and drug administration, respectively. Arterial blood pressure was monitored from a cannulated right carotid artery with a blood pressure transducer (Gould Inc., Cardiovascular Product, Oxford, CA). Standard limb lead II of the electrocardiogram was recorded continuously and used to monitor heart rate. After a single intravenous administration of TH146 (4.63 mg/kg in 5 ml saline infused over 1 min to each of 5 dogs), blood samples were collected at 1, 5, 10, 15, 20, 25, 30, 40, 60, 90, and 120 min by withdrawing 5 ml blood into a syringe containing 3.8 % sodium citrate (1:9, citrate:blood). The blood was centrifuged at 12,000 xg for 2 min at room temperature to prepare platelet-poor plasma that was stored in small aliquots at -70°C until assay. The canine plasma samples in the pharmacokinetic studies were analyzed by a hydrophobic interaction chromatographic (HIC) method using a C4 column as previously reported (Hasan et al., 2001). The pharmacokinetics were calculated using non-compartmental methods of Rowland and Tozer (1989).

Measurement of RPPGF levels in mouse blood. Samples for measurement of mouse blood RPPGF were collected from untreated B6:129SF2/j mice (Jackson Laboratories, Bar Harbor,

ME) or the same mice treated with 2 mg/kg RPPGF IP 45 min before blood draw. Mouse whole blood was drawn from anesthetized mice by venepuncture in the inferior vena cava after celiotomy into a tuberculin syringe to a total volume of precisely 0.3 ml. Immediately after blood draw, the sample was mixed with 0.9 ml cold anhydrous ethanol to yield a final concentration of 25% in ethanol (v/v). After standing on ice for 30-60 min, tubes were centrifuged at 250 x g for 15 min at 4°C and the ethanolic plasma supernatant stored at -70°C until analysis.

RPPGF in the samples was analyzed by liquid-chromatography tandem massspectrometry by the method of Murphey *et al.*, 2001. Briefly, internal standard ([¹³C₂,¹⁵N-Gly⁴] RPPGF) was added to ethanolic plasma supernatant, dried under nitrogen at 37°C and extracted on a Nexus Abselut solid phase cartridge (Varian, Inc. Harbor City, CA). Gradient LC on an Eclipse XDB-C18 column (2.1 x 50 mm, 5 micron particle, Aligent, Palo Alto, CA) was coupled to a ThermoFinnigan TSQ Quantum triple quadrupole mass spectrometer (San Jose, CA) with an electrospray source. Precursor ions for RPPGF (m/z 287, [M+2H]²⁺) and [¹³C₂,¹⁵N-Gly⁴] RPPGF (m/z 288.5, [M+2H]²⁺) are collisionally activated at an energy of –8 eV and under 1.5 mT argon. The product ions for the transitions m/z 287 \rightarrow m/z 408 and m/z 288.5 \rightarrow m/z 411 were monitored for sample and standard, respectively. Quantification of RPPGF in plasma used the ratio of peak areas of product ions, m/z 408 to m/z 411. Concentrations in ethanolic supernatant were corrected for dilution by blood and reported as fmol per ml of blood (pM).

Mouse bleeding times. Tail bleeding times were measured by transecting the tails of anesthetized mice (50 mg/kg sodium pentobarbital) 5 mm from the tip. C57BL/6j mice from Jackson Laboratories were used for these studies. The tail was placed in 10 ml saline at 37°C

and the time to cessation of bleeding for 20 sec was determined with a stopwatch. Initial studies determined the time for maximal prolongation of the bleeding time after intraperitoneal (IP) injection of 44 mg/kg TH146. In those investigations, tail bleeding times were performed in separate mice at 15 min intervals 15-120 minutes after IP injection. Subsequently, all treated mice had their bleeding times performed at 45 min.

Mouse thrombosis studies. Mice 6 to 16 weeks of age were anesthetized by intraperitoneal injection with sodium pentobarbital and placed in the supine position on a dissecting microscope (Nikon SMZ-2T, Mager Scientific, Inc., Dexter, MI). A midline surgical incision was made to expose the right common carotid artery and a Doppler flow probe (Model 0.5 VB, Transonic Systems, Ithaca, NY) is placed under the vessel. The probe was connected to a flowmeter (Transonic Model T106) and was interpreted with a computerized data acquisition program (Windaq, DATAQ Instruments, Arkron, OH). Rose Bengal (4, 5, 6, 7-tetrachloro-3', 6-dihydroxy-2, 4, 5, 7-tetraiodospiro (isobenzofuran-1(3H), 9 [9H] xanthan)-3-1 dipotassium salt) (Fisher Scientific, Fair Lawn, NJ) at 50 mg/kg in 0.9% saline) was then injected into the tail vein in a 0.12 ml volume (Eitzman *et al.*, 2000). After injection into the tail vein, a green laser light (Melles Griot, Carlsbad, CA) at a wavelength of 540 nm was applied 6 cm from the carotid artery. Flow is monitored continuously from the onset of injury. The time to occlusion was determined only after the vessel remained closed with a cessation of blood flow for 20 min.

Mouse tail blood pressure measurements. Mice were anesthetized with 40 mg/kg sodium pentobarbital by IP injection. After 30 min, IP injections of saline or drug were given and the animals were placed into the restrainer (Model #84 mouse restrainers, IITC Life Science Inc., Woodland Hills, CA) in a heating chamber (Model #306 warming chamber, IITC Life Science

JPET Fast Forward. Published on June 21, 2004 as DOI: 10.1124/jpet.104.069229 This article has not been copyedited and formatted. The final version may differ from this version.

JPET #69229

Inc., Woodland Hills, CA) and kept at 28-30°C. An integrated sensor-cuff occluder (Model B60-1/4, IITC Life Science Inc., Woodland Hills, CA) was placed around the tail and operated to stop tail pulsation on inflation and to detect the return of tail pulsations (RTP) passing through the occluder cuff (Whitesall SE, *et. al.*, 2004). The RTP computerized blood pressure monitor and software (Model 6M 229 6 channel mouse system; Model 31 NIBP software, IITC Life Science Inc., Woodland Hills, CA) was set for 3 cycles per mouse and 9 seconds between cycles (Whitesall SE, *et al.*, 2004). The instrument was set for a maximum inflation pressure of 200 mm Hg. After 15 min in the chamber, the pressure cycles for each mouse were started and systolic pressure readings taken at 15, 30, 45, 60, and 75 minutes. Five animals (untreated or treated were examined simultaneously.

Statistical methods. Statistical comparisons between treatment groups utilized the unpaired Student's T test or the non-parametric Mann-Whitney signed rank test as appropriate. P values < 0.05 were considered significant.

RESULTS

The angiotensin converting enzyme breakdown product of bradykinin, RPPGF, inhibits thrombin-induced platelet aggregation, calcium mobilization and prolongs coagulant assays (Hasan *et al.*, 1996; Hasan *et al.*, 2003). Previous studies prepared a combinatorial library of compounds containing natural amino acids based on RPPGF, none of which were more significantly potent (Hasan *et al.*, 2001a). Using combinatorial libraries and empiric synthesis, a library of 72 compounds consisting of D and/or synthetic amino acids was prepared substituting various amino acids in positions one to five in RPPGF. The initial functional screening assay for all of these peptides was inhibition of γ -thrombin-induced platelet aggregation. The most potent linear peptides inhibitors of platelet aggregation when compared to RPPGF (0.68 ± 0.28 mM) are shown in Table 1. These compounds were effective at inhibiting platelet aggregation at concentrations 2.6-4.7 fold less than RPPGF (Table 1). The most potent overall inhibitor TH146 (rOicPGF) and its multiantigenic peptide form, MAP4-TH146, were chosen for further investigations.

In vitro characteristics of the RPPGF analogs. TH146 abolished threshold γ -thrombin-induced platelet aggregation at 142±20 µM whereas its multiantigenic form, MAP4-TH146 was 7.5-fold more potent, inhibiting γ -thrombin-induced platelet aggregation at 19±6 µM (Table 1). Using washed platelets, TH146 inhibited threshold α -thrombin-induced platelet aggregation 100% at 444±40 µM with an IC₅₀ of 240 µM (data not shown). TH146 and MAP4-TH146 produced 50% inhibition of threshold α -thrombin-induced calcium mobilization at a concentration of about 110 and 18 µM, respectively (Figure 1). Like inhibition of platelet aggregation, MAP4-TH146 was a more potent inhibitor than the single 5 amino acid linear peptide form, TH146.

JPET Fast Forward. Published on June 21, 2004 as DOI: 10.1124/jpet.104.069229 This article has not been copyedited and formatted. The final version may differ from this version.

JPET #69229

Additional studies were performed to determine if these compounds directly interacted with thrombin similar to RPPGF (Hasan *et al.*, 2003). There was significant prolongation (p < 0.05) of the APTT, PT, or TCT at 31, 62, or 7.8 μ M TH146, respectively (Figure 2A). Likewise, significant prolongation (p < 0.05) of the APTT, PT, or TCT occurred at 0.4, 6.25, or 1.56 μ M MAP4-TH146, respectively (Figure 2B). In these studies, the APTT and thrombin time were more sensitive to prolongation than the prothrombin time.

Since RPPGF and bradykinin interact with the active site of thrombin, investigations were performed to determine the kinetics of TH146 and MAP4TH146 inhibition of thrombin and to ascertain whether these peptides inhibit the enzymatic activity of any other coagulation enzyme(s) (Table 2) (Hasan *et al.*, 2003, Cleary *et al.*, 2003). TH146 and MAP4-TH146 inhibited human α -thrombin hydrolysis of Sar-Pro-Arg-pNA with a K_i of 9.7 ± 2.8 X 10⁻⁵ M and 4.9 ± 1.8 X 10⁻⁵ M, respectively (Table 2). In contrast, these peptides did not inhibit the enzymatic hydrolysis of Sar-Pro-Arg-pNA by human γ -thrombin. Further, these peptides did not inhibit hydrolysis of human FXIa, FIXa, or FXa (Table 2). Alternatively, peptides TH146 and MAP4-TH146, when incubated with FVIIa prior to the addition of tissue factor, inhibited FVIIa with a K_i of 4.5 ± 0.5 X 10⁻⁵ M and 5 ± 1.3 X 10⁻⁶ M, respectively (Table 2). However, if there was a preformed FVIIa-TF complex, these peptides did not block the FVIIa hydrolytic activity (Table 2).

Previous investigations indicated that RPPGF also inhibited PAR1 proteolysis via two mechanisms: first by interacting with the active site of thrombin and second by binding directly to the cleavage site of PAR1 to prevent proteolysis (Hasan *et al.*, 2003). Investigations next determined if these analogs of RPPGF also bound to the exodomain of human PAR1 (Figure 3).

RPPGF inhibited 20 μ M RPPGF-biotin binding to rPAR1_{EC} linked to microtiter plates with an IC₅₀=600 μ M. Similarly, TH146 inhibited RPPGF-biotin binding with an IC₅₀=160 μ M (Figure 3). Scrambled peptides of RPPGF (FPRPG) or TH146 (FOicrPG) did not inhibit RPPGF-biotin binding. MAP4-TH146 was the most potent inhibitor of RPPGF-biotin binding to rPAR1_{EC} (IC₅₀=1 μ M). These results demonstrate that, like RPPGF, these analogs also inhibited thrombin-induced platelet activation by two mechanisms, by directly interfering with the active site of thrombin and by binding to the PAR1 exodomain (Hasan *et al.*, 2003). These features defined this class of compounds.

Since these compounds interfere with the active site of thrombin as well as bind to the exodomain of PAR1, additional experiments determined if MAP4-TH146 blocked the proteolysis of rPAR1_{EC} by thrombocytin. Thrombocytin is a snake venom enzyme that activates platelets by proteolyzing PAR1 and would not be expected to have an active site structurally like thrombin (Niewiarowski *et al.*, 1979; Santos *et al.*, 2000). Increasing concentrations (0.05-0.5 mM) of MAP4-TH146 prevented thrombocytin cleavage of rPAR1_{EC} (Figure 4A). Thrombocytin-induced proteolysis of rPAR1_{EC} was inhibited by 0.2 mM MAP4-TH146 (Figure 4A). When the concentration of peptide was increased to 0.5 mM, there was no significant increase in the amount of inhibition of rPAR1_{EC} proteolysis. Investigations next determined if MAP4-TH146 inhibited PAR1 proteolysis by interfering with the active site of thrombocytin. At 0.2 mM MAP4-TH146, there was little inhibition of thrombocytin hydrolysis of its chromogenic substrate. This result indicated that MAP4-TH146 had to bind to rPAR1_{EC} to inhibit thrombocytin 's cleavage since it did not directly inhibit the active site of thrombocytin (Figure 4B). This fact distinguished thrombocytin from thrombin whose active site is inhibited by

19

MAP4-TH146. These data indicated that MAP4-TH146, like RPPGF, bound to the exodomain of PAR1 to prevent enzymatic cleavage (Hasan *et al.*, 2003).

In vivo studies with RPPGF analogs. In preparation for in vivo studies, various preliminary investigations were performed. Initially, pharmacokinetic studies were performed in dogs with TH146. After a single, 1 min intravenous infusion of TH146 at 4.63 mg/kg in 5 ml in 5 dogs, the $t_{1/2}\alpha$ was 3.1 ± 0.31 min (mean ± SD, n=5 experiments) with a mean AUC of 171.8±147 (mg/liter) min, V_d of 2650±1116 ml, and CL 66±32 ml/min/kg. These results were similar to those found with RPPGF (Hasan et al., 1999). Next, preliminary toxicology studies were performed. Mice were administered 13, 44, 131, 440 mg/kg TH146 intraperitoneal (IP) or MAP4-TH146 at 0.20, 0.61, 2.03, 6.1, 20.3, 61, 203, and 610 mg/kg by IP injection to determine if any adverse effects occurred. After IP injection, mice tolerated TH146 up to 440 mg/kg without observable effect. Alternatively, MAP4-TH146 was not well tolerated by mice. MAP4-TH146 at 20.3 mg/kg IP induced drowsiness in all mice followed by full recovery. However \geq 61 mg/kg MAP4-TH146 IP resulted in the death of all the mice treated in this manner. Further, a single intravenous infusion over 5 min of MAP4-TH146 at \geq 1.6 mg/kg produced transient hypotension in dogs that recovered within 30-60 min. Since MAP4-TH146 had these toxicities, studies with it were limited to the prevention of thrombosis (see below).

Investigations next were performed to determine if TH146 blocked γ -thrombin-induced platelet aggregation of mouse platelets (Figure 5). The threshold for human γ -thrombin to induce mouse platelet aggregation was 500 nM (Figure 5). Sixty μ M TH146 did not interfere with human γ -thrombin-induced mouse platelet aggregation. However 100 and 200 μ M TH146 abolished γ -thrombin-induced platelet aggregation of mouse platelets. These results were

unanticipated since mice only have PAR4, not PAR1 that is a target for RPPGF and its analog, TH146.

Additional investigations were performed to determine if TH146 prolonged the bleeding time in the mouse. Preliminary studies showed that after IP injection, the maximal prolongation of the bleeding time occurred \geq 45 min. All bleeding times in treated animals were performed at 45 min after IP injection of the agent. Untreated mice had a tail vein bleeding time of 101 \pm 9 sec (mean \pm SEM) (Figure 6). TH146 at 33 and 44 mg/kg IP, prolonged the mouse tail vein bleeding time to 150 \pm 11.3 sec (p < 0.23) and 233 \pm 32 sec (p < 0.003), respectively (Figure 6). These data suggested that TH146 influenced mouse platelet function as reflected in the bleeding time.

Investigations next were performed to determine if RPPGF, TH146, or MAP4-TH146 prevented carotid artery thrombosis induced by photo-oxidation of Rose Bengal (Figure 7). Since the genetic background of mice may influence their risk for thrombosis, the investigations were performed in two different strains of mice, B6:129SF2/j and C57BL/6j (Cui *et al.*, 2000). In mice in a B6:129SF2/j background, RPPGF at 2 mg/kg IP significantly prolonged (p < 0.0002) the time to carotid artery thrombosis [60.4 \pm 4.2 min, n=6 (mean \pm SEM) versus 29.1 \pm 2.3 min for the Control, n=19] (Figure 7A). It is of interest that a 2 mg/kg IP injection of RPPGF did not significantly (p < 0.4) elevate the blood level of the peptide in mice (111 \pm 35 pM Control vs 106 \pm 20 pM RPPGF treated, mean \pm SEM, n \geq 14/group). RPPGF at 4 mg/kg prolonged the time to occlusion to 77 \pm 3.1 min, n=6 (Figure 8A). In the C57BL/6j mice, the mean time to thrombosis in the control was 41 \pm 2.4 min, n=11 (Figure 7B). RPPGF at 2 and 4 mg/kg IP

significantly delayed (p < 0.03 and p < 0.0003, respectively) the time to thrombosis in the C57BL/6j mice to 57 ± 6.9 min, n=6 and 77 ± 5.4 min, n=6, respectively (Figure 7B).

Studies next proceeded to examine whether TH146 delayed the time to thrombosis in this animal model. In mice with a B6:129SF2/j background, TH146 at 0.44 and 1.31 mg/kg significantly prolonged (p < 0.000004) the time to thrombosis to 49 ± 2.3 min, n=7 and 63.4 ± 2.2 min, n=7, respectively, compared to control animals with a mean thrombosis time of 29.1 ± 2.3 min (Figure 7A). Similarly, in mice with the C57BL/6j background, TH146 at 4.4 mg/kg significantly delayed (p < 0.0000005) the time to thrombosis to 71 ± 2.5 min, n=6 compared to control animals with a mean thrombosis to 71 ± 2.5 min, n=6 compared to control animals with a mean thrombosis to 71 ± 2.5 min, n=6 compared to control animals with a mean thrombosis time of 41.1 ± 2.4 min(Figure 7B). In B6:129SF2/j mice, TH146 was a 3-5-fold more potent inhibitor than wild type peptide, RPPGF. In C57BL/6j mice, there were no differences in efficacy. Moreover, mice in B6:129SF2/j backgrounds were more sensitive to RPPGF or TH146 to delay thrombosis than animals in C57BL/6j backgrounds.

Further studies were performed with MAP4-TH146. Although a much more effective inhibitor of *in vitro* platelet aggregation than TH146, MAP4-TH146 at 2 and 6.1 mg/kg IP inhibited thrombosis less in B6:129SF2/j mice (Figure 7A). At 2 and 6.1 mg/kg MAP4-TH146 IP, the delay in time to thrombosis was significant when compared to control (p < 0.03), but only to 43.7±6 min, n=6 and 44.2±2.1 min, n=5, respectively. In mice treated with 6.1 mg/kg MAP4-TH146, swelling of all the tissues was noted in the surgical field where the right carotid artery was exposed. These data suggested that the multiantigenic peptide had additional *in vivo* effects that interfered with its ability to prevent thrombosis not observed with the linear peptide. Last, it was observed that the bradykinin B2 receptor antagonist, HOE140 (HrRPHypGThiSD-Tic-OicR), that is structurally similar to TH146, also delayed the time to thrombosis in B6:129SF2/j

mice when given at IP at 2.7 and 9.1 mg/kg to 44.7 ± 3.2 min, n=3 and 73.3 ± 5.1 min, n=4, respectively (data not shown).

Since there was no increased protection from vessel occlusion at higher doses of MAP4-TH146 and these animals had obvious tissue swelling when treated with ≥ 6.1 mg/kg MAP4-TH146, the animals had their blood pressure measured under conditions that simulated the thrombosis model. In general, mice that were treated with sodium pentobarbital had a drop in their mean blood pressure from 120 mm Hg to ~70-80 mm Hg (data not shown). Animals that were treated with TH146 at 1.3 mg/kg IP and RPPGF at 2 mg/kg did not have a significant change (p > 0.05) in the mean blood pressure from those animals treated with saline (Figure 8). Animals treated with 2 mg/kg IP MAP4-TH146 did have a significant drop (p < 0.04) in their mean blood pressure at 15-60 min. All animals that were treated with MAP4-TH146 at 6 mg/kg IP did had a significant drop (p < 0.001) in their mean blood pressure to 40-50 mm Hg at all times during the experiment. These results are consistent with the blood pressure lowering effect previously reported for MAP4-RPPGF and may account for the reduced thrombosis protection and tissue swelling seen with higher concentrations of MAP4-TH146 (Hasan *et al.*, 2001b).

DISCUSSION

These investigations indicate that RPPGF and structural analogs consisting of D- and synthetic amino acids interfere with thrombin's activities *in vitro* and can prolong bleeding times and delay the time to thrombosis *in vivo*. The basis for the design of these present compounds was the observation that the bradykinin B2 receptor antagonist, HOE140, delays the time to thrombosis in mice. These data indicate that HOE140 has a direct anti-thrombin effect or that inhibition of the bradykinin B2 receptor activation influences the risk to thrombosis in the intravascular compartment. Three-12-fold more potent RPPGF-like compounds were prepared using D- and synthetic amino acid substitutions (Stewart *et al.*, 1999; Stewart *et al.*, 2001).

The compounds TH146 and MAP4-TH146 appear to have the same mechanism(s) of action as RPPGF (Hasan *et al.*, 2003). Both compounds block soluble biotinylated RPPGF from binding the recombinant exodomain of human PAR1 (Hasan *et al.*, 2003). The fact that MAP4-TH146 blocks thrombocytin proteolysis of the recombinant exodomain of human PAR1 indicates that it must be binding to PAR1 to prevent cleavage because it does not inhibit the enzymatic activity of thrombocytin to hydrolyze its chromogenic substrate. Further, both compounds also interact directly with thrombin because they prolong various plasma coagulation assays mediated by thrombin formation (Hasan *et al.*, 2003). Like previous studies with MAP4-RPPGF, both TH146 and MAP4-TH146 have a greater degree of prolongation of the APTT over the PT (Hasan *et al.*, 2001b). Previous studies have suggested that this dichotomy of results could be due to MAP4-RPPGF interfering with thrombin activation of factor XI (Hasan *et al.*, 2001b). It was unexpected to learn that TH146 and MAP4-TH146 also inhibit factor VIIa without blocking the preformed FVIIa•TF complex. This activity must additionally contribute

to their antithrombotic effect *in vivo*, but would not account for the greater prolongation of the APTT over the PT.

In vivo studies show that TH146 has a similarly delayed clearance after intravenous infusion as has been noted for RPPGF (Hasan *et al.*, 1999; Murphey *et al.*, 2000). The toxicology studies showed that MAP4-TH146 was much less tolerated than TH146. MAP4-TH146 injection results in tissue edema, hypotension and death at concentrations near the dose necessary to delay thrombosis formation. These complications are not seen with TH146. Previous studies showed that MAP4-RPPGF induces hypotension upon a single, intravenous infusion (Hasan *et al.*, 2001). This hypotension was blocked by pre-treating the animal with the bradykinin B2 receptor antagonist, HOE140. Hypotension and tissue edema seen with MAP4-TH146 infusion are consistent with stimulation of the bradykinin B2 receptor. RPPGF has been demonstrated not to bind to the bradykinin B2 receptor and does not produce vasodilation or stimulate tissue-type plasminogen activator release, two well-characterized bradykinin B2 receptor to give the deleterious effects observed.

The finding that TH146 inhibits thrombin-activation of mouse platelets was not expected. Mice do not have PAR1 on their platelets; they have PAR3 and PAR4. It is not possible that the amount of TH146 used to inhibit human γ -thrombin-induced platelet aggregation *ex vivo* was at a concentration sufficient to directly block the enzymatic activity of the thrombin. Although TH146 could interact with the active site amino acids of γ -thrombin, our studies show that TH146 does not inhibit the hydrolytic activity of γ -thrombin on a small molecule substrate

25

JPET Fast Forward. Published on June 21, 2004 as DOI: 10.1124/jpet.104.069229 This article has not been copyedited and formatted. The final version may differ from this version.

JPET #69229

(Ayala *et al.*, 2001; Cleary *et al.*, 2002). This assessment indicates that the prolongation of the mouse bleeding time and delay in thrombosis after free radical induced vessel injury cannot be explained by direct inhibition of endogenous thrombin. The amount of TH146 administered to the animal IP and entering the intravascular compartment also must be below the amount necessary to directly block endogenous mouse thrombin. These *in vivo* studies suggest that TH146 may also be interacting with mouse PAR4. Recent preliminary data from our laboratory indicate that RPPGF and TH146 directly bind to a recombinant exodomain of human PAR4 (Schmaier *et al.*, 2003). Thus, RPPGF and its analogs appear to interact with the exodomains of both human PAR1 and PAR4 (Hasan *et al.*, 2003; Schmaier *et al.*, 2003).

Although it is not yet known if RPPGF *in vivo* ever achieves a sufficiently high concentration to function as an antithrombin, it was surprising to us that after a 2 mg/kg IP injection of RPPGF, the picomolar blood levels of the RPPGF were not significantly elevated in the treated mice. These data suggest that the peptide is binding to different sites and is not available to circulate in the intravascular compartment. Previous *in vitro* studies showed that when RPPGF was added to a suspension of PRP, 97% of the peptide bound to the platelet pellet (Hasan *et al.*, 1999). These results also suggest that small changes in the intravascular concentration of RPPGF may influence the anticoagulant state of an animal.

Further analogs of TH146 have the potential to be a novel anti-platelet agent. It is of interest that its effective antithrombotic dose of 0.44 mg/kg IP in the B6:129SF2/j mice is less than that required for *in vivo* efficacy of two small molecule, non-peptide mimetics that have been published recently (Derian *et al.*, 2003; Kato *et al.*, 2003). Moreover, TH146 at 3 orders of magnitude higher concentration had no adverse effect on mice. Unlike the small non-peptide

mimetic compounds that are directed only to the PAR1 signaling site, TH146 and related compounds interfere with both PAR1 and PAR4 activation as well as have some inhibitory effect directly on thrombin and factor VIIa. These combined inhibitory effects must summate *in vivo* to contribute to the antithrombotic effect in the whole animal. These findings suggest that RPPGF and related compounds are novel antagonists to thrombin, factor VIIa, and thrombin activation of platelets, being a single class of compounds that interact with both thrombin receptors on human platelets. These investigations indicate that prevention of thrombin cleavage of PAR1 and 4 also is an appropriate target to develop anti-thrombin, anti-platelet agents.

ACKNOWLEDGEMENTS

We would like to thank Dr. John Stewart of the University of Colorado School of Medicine,

Denver CO for his helpful discussions in the design of these compounds. We also appreciate the

assistance of Dr. Ziaeddin Shariat-Madar of the University of Michigan with the

pharmacokinetic calculations.

REFERENCES

- Ayala YM, Cantwell AM, Rose T, Bush LA, Arosio D, and DiCera E. (2001) Molecular mapping of thrombin-receptor interactions. *PROTEINS: Structure, Function, and Genetics.* 45:107-116.
- Bieth JG. (1984) In vivo significance of kinetic constants of protein proteinase inhibitors. Biochem Med. 222:209-223.
- Cleary DB, Trumbo TA, and Maurer MC. (2002) Protease-activated receptor 4-like peptides bind to thrombin through an optimized interaction with the enzyme active site surface. *Arch. Biochem Biophys.* **403**:179-188.
- Cleary DB, Ehringer WD, Maurer MC. (2003) Establishing the inhibitory effects of bradykinin on thrombin. *Arch. Biochem Biophys.* **410**:96-106.
- Cook JJ, Sitko GR, Bednar B, Condra C, Mellott MJ, Feng D-M, Nutt RF, Shafer JA, Gould RJ, and Connolly TM. (1995) Molecular and cellular cardiology: An antibody against the exosite of the cloned thrombin receptor inhibits experimental arterial thrombosis in the African green monkey. *Circulation*. **91**:2961-2971.
- Cui J, Eitzman DT, Westrick RJ, Christie PD, Xu ZJ, Yang AY, Purkayastha AA, Yang TL,
 Metz AL, Gallagher KP, Tyson JA, Rosenberg RD, and Ginsburg D. (2000)
 Spontaneous thrombosis in mice carrying the factor V Leiden mutation. *Blood.* 96:4222-4226.

- Derian CK, Damiano BP, Addo MF, Darrow AL, D'Andrea MR, Nedelman M, Zhang H-C, Maryanoff BE, and Andrade-Gordon P. (2003) Blockage of the thrombin receptor protease-activated receptor-1 with a small-molecule antagonist prevents thrombus formation and vascular occlusion in nonhuman primates. *J Pharmacol Exp Ther.* 304:855-861.
- Eitzman DT, Westrick RJ, Nabel EG, and Ginsburg D. (2000) Plasminogen activator inhibitor-1 and vitronectin promote vascular thrombosis in mice. *Blood.* 95: 577-580.
- Fisher SK, Domask LM, Roland RM. (1989) Muscarinic receptor regulation of cytoplasmic Ca2+ concentrations in human SK-N-SH neuroblastoma cells: Ca2⁺ requirements for phospholipase C activation. *Mol Pharmacol* 35:195-204.
- Hanson SR and Harker LA. (1988) Interruption of acute platelet-dependent thrombosis by the synthetic antithrombin D-phenylalanyl-L-prolyl-L-arginyl chloromethyl ketone. *Proc Natl Acad Sci.* 85:3184-31888.
- Hasan AAK, Cines DB, Zhang J, and Schmaier AH. (1994) The carboxyl terminus of bradykinin and amino terminus of the light chain of kininogens comprise an endothelial cell binding domain. J Biol Chem 269:31822-31830.
- Hasan AAK, Amenta S, and Schmaier AH. (1996) Bradykinin and its metabolite, Arg-Pro-Pro-Gly-Phe, are selective inhibitors of α-thrombin-induced platelet activation. *Circulation*.
 94:517-528.

- Hasan AAK, Rebello SS, Smith E, Srikanth S, Werns S, Driscoll E, Faul J, Brenner D, Normolle D, Lucchesi BR, and Schmaier AH. (1999) Thrombostatin inhibits induced canine coronary thrombosis. *Thromb Haemost.* 82:1182-1187.
- Hasan AAK, Warnock M, Srikanth S, and Schmaier AH. (2001a) Developing peptide inhibitors to thrombin activation of platelets from bradykinin analogs. *Thromb Res.* 104:451-465.
- Hasan AAK, Schmaier AH, Warnock M, Normolle D, Driscoll E, Lucchesi BR, and Werns SW.
 (2001b) Thrombostatin inhibits cyclic flow variations in stenosed canine coronary arteries. *Thromb Haemost.* 86:1296-1304.
- Hasan AAK, Warnock M, Nieman M, Srikanth S, Mahdi F, Krishnan R, Tulinsky A, and
 Schmaier AH. (2003) Mechanisms of Arg-Pro-Pro-Gly-Phe inhibition of thrombin. *Am J Physiol Heart Circ Physiol.* 285: H183-H193.
- Kato Y, Kita Y, Hirasawa-Taniyama Y, Nishio M, Mihara K, Ito K, Yamanaka T, Seki J, Miyata S, and Mutoh S. (2003) Inhibition of arterial thrombosis by a protease-activated receptor 1 antagonist, FR171113, in the guinea pig. *Eur J Pharmacol.* 473:163-169.
- Mahdi F, Rehemtulla A, Van Nostrand WE, Bajaj SP, Schmaier AH. (2000) Protease nexin-2/amyloid β-protein precursor regulates factor VIIa and factor VIIa-tissue factor complex. *Thromb Res.* **99**:267-276.

- Malave HA, Murphey LJ, Vaughan DE, Biaggioni I and Brown NJ. (2003) RPPGF inhibits alpha-thrombin and gamma-thrombin-induced platelet aggregation in the human vasculature. *Arterioscler. Thromb. Vasc. Biol.* **23**:P106.
- Meloni FJ and Schmaier AH. (1991) Low molecular weight kininogen binds to platelets to modulate thrombin-induced platelet activation. *J Biol. Chem.* **266**:6786-6794.
- Murphey LJ, Hachey DL, Oates JA, Morrow JD, and Brown NJ. (2000) Metabolism of bradykinin in vivo in humans: identification of BK1-5 as a stable plasma peptide metabolite. *J Pharm Exp Therap.* 294:263-269.
- Murphey LJ, Hachey DL, Vaughan DE, Brown NJ, Morrow JD. (2001) Quantification of BK15, the stable bradykinin plasma metabolite in humans, by a highly accurate liquidchromatographic tandem mass spectrometric assay. *Anal. Biochem.* 292: 87-93.
- Niewiarowski S, Kirby EP, Brudzynski TM, Stocker K. (1979) Thrombocytin, a serine protease from Bothrops atrox venom. 2. Interaction with platelets and plasma-clotting factors. *Biochemistry* 18:3570-3577.
- Prieto AR, Ma H, Huang R, Khan G, Schwartz KA, Hage-Korban EF, Schmaier AH, Davis JM, Hasan AAK, and Abela GS. (2002) Thrombostatin, a bradykinin metabolite, reduces platelet activation in a model of arterial wall injury. *Cardiovas. Res.* 53: 984-92.

- Puri R, Zhou F, Hu C-J, Colman RF, and Colman RW. (1991) High molecular weight kininogen inhibits thrombin-induced platelet aggregation and cleavage of aggregin by inhibiting binding of thrombin to platelets. *Blood.* 77:500-507.
- Rowland M and Tozer T. (1989) Clinical pharmacokinetics: concepts and application. 2nd Edition. Philadelphia: Lea & Febiger.
- Santos BF, Serrano SM, Kuliopulos A, and Niewiarowski S. (2000) Interaction of viper venom serine peptidases with thrombin receptors on human platelets. *FEBS Lett* **477**:199-202.
- Schmaier AH, Dahl LD, Hasan AAK, Cines DB, Bauer KA, Van Nostrand WE. (1995) Factor IXa inhibition by protease nexin-2/amyloid β-protein precursor on phospholipid vesicles and cell membranes. *Biochemistry*. **34**:1171-1178.
- Schmaier AH, Pagan-Ramos E, Warnock M, Krijanovski Y, Hasan AAK, and Nieman MT.
 (2003) Arg-Pro-Pro-Gly-Phe binds to the exodomain of human protease activated receptor 4 (PAR4) to prevent thrombin proteolysis and platelet activation. *Blood.* 102 [Supple 1]: 776a-777a (Abstract).
- Stewart JM, Gera L, York EJ, Chan DC, and Bunn P. (1999) Bradykinin antagonists: present progress and future prospects. *Immunopharmacology*. **43**:155-161.
- Stewart JM, Gera L, York EJ, Chan DC, Whalley EJ, Bunn PA jr, and Vavrek RJ. (2001)
 Metabolism-resistant bradykinin antagonists: development and applications. *Biol Chem.*382:37-41.

Weiss EJ, Hamilton JR, Lease KE, and Coughlin SR. (2002) Protection against thrombosis in mice lacking PAR3. *Blood*. 100:3240-3244.

Whitesall SE, Hoff JB, Vollmer AP, D'Alecy LG. (2004) Comparison of simultaneous measurement of mouse systolic arterial blood pressure by radiotelemetry and tail-cuff methods. *Am J Physiol Heart Circ Physiol.* 286:H2408-2415.

[§]FOOTNOTES

This work was supported by a grant from the Michigan Economic Development Corp #1607 and the National Institutes of Health, HL61981 to Dr. Schmaier, HL04445 to Dr. Murphey and HL65193 to Dr. Brown.

Reprint requests:

Dr. Alvin H. Schmaier University of Michigan 5301 MSRB III 1150 West Medical Center Drive Ann Arbor, MI 48109-0640

734 647-3124 (telephone)

734 647-5669 (fax)

aschmaie@umich.edu

Figure Legends

Figure 1. Influence of TH146 and MAP4-TH146 on α -thrombin induced intracellular calcium mobilization. Normal lung fibroblast were loaded with Fura-2 and incubated in the absence or presence of increasing concentrations of TH146 (**•**) and MAP4-TH146 (**•**). Following incubation, cells were treated with threshold concentrations of human α -thrombin to induce maximal calcium mobilization. Values for each concentration of peptide were determined by calculating the area under the curve and are expressed as percent calcium flux. Samples with no peptide present were 100%. The data represent the mean ± standard deviation of at least 3 experiments at each concentration.

Figure 2. *Influence of TH146 and MAP4-TH146 on coagulation assays*. Normal human plasma was incubated with increasing concentrations of TH146 (Panel A) or MAP4-TH146 (Panel B) and the APTT (gray bars), PT (dark bars), or TCT (clear bars) was determined as described in the METHODS. The data represent the mean \pm standard deviation of at least 3 independent experiments.

Figure 3. Inhibition of RPPGF-biotin binding to $rPAR1_{EC}$ by RPPGF and peptide analogs. Recombinant human PAR1_{EC} (1 µg/well) in 0.1 M Na₂CO₃, pH 9.6, was linked to microtiter plate wells by overnight incubation at 4°C. After washing the wells with 0.01 M sodium phosphate, 0.15 M NaCl, pH 7.4 containing 0.05% Tween, and blocking with 1% gelatin, the bound protein was incubated with 20 µM RPPGFK-biotin in the absence or presence of increasing concentrations of RPPGF (•), FPRPG (•), MAP4-TH146 (•), TH146 (•), or FOicrPG (•). The RPPGF-biotin bound to the cuvette well was detected streptavidin horseradish peroxidase followed by peroxidase-specific substrate and quantitated by reading

absorbance at 450 nm. The data are normalized to wells containing no inhibitor that represents 100% of binding. The data are the mean \pm SD of 3 experiments.

Figure 4. *MAP4-TH146 inhibits rPAR1_{EC} cleavage by thrombocytin*. Panel A: rPAR1_{EC} (1 μ g) in 10 mM Tris-HCl, 200 mM NaCl, pH 8.0 was incubated at 37°C for 45 min with 0.5 μ g/ml (16.7 nM) thrombocytin in the absence or presence of increasing concentrations of MAP4-TH146 (0.05-0.5 mM). Reaction mixtures were separated on SDS-PAGE and stained with R-250 Coomassie Brilliant Blue. The lane marked "input" represents starting rPAR1_{EC}. Panel B: The ability of thrombocytin (16.7 nM) to hydrolyze H-D-Phe-Pip-Arg-paranitroanilide in the presence of 0.2 mM MAP4-TH146. In Panel B, the data represent the mean ± standard deviation of three replicates.

Figure 5: *TH146 inhibits thrombin-induced mouse platelet aggregation*. PRP from 10 mice were pooled, the platelet count was adjusted to 2.5 X 10^8 /ml, and the threshold for human γ -thrombin-induced platelet aggregation (500 nM) was obtained. The influence of 60-200 μ M TH146 on human γ -thrombin-induced mouse platelet aggregation was determined. This figure is a representative experiment of 3 experiments. The panels shown are one continuous experiment from left to right and top to bottom.

Figure 6. *Prolongation of mouse bleeding times*. C57BL/6j mice were given injections of TH146 (13 to 44 mg/kg) IP. Forty-five min after injection, the mouse tail bleeding time was determined. These data are the mean \pm SD of 5 or more experiments at each concentration of the inhibitor.

Figure 7. *Influence of RPPGF and analogs on mouse carotid artery thrombosis.* B6:129SF2/j (129SF2) mice (Panel A) or C57BL/6j (C57Bl) mice (Panel B) were prepared for study for the time to carotid artery thrombosis initiated by photo-oxidation of Rose Bengal in the absence or presence of 0.5 to 4.0 mg/kg RPPGF, 0.04 to 4.4 mg/kg TH146, or 0.2 to 6.1 mg/kg MAP4-TH146 after IP injection. The time to carotid artery was measured in at least 5 animals in each group. The data are expressed as mean \pm SD.

Figure 8. *Influence of RPPGF and analogs on mouse blood pressure.* C57Bl mice were treated with sodium pentobarbital and after 30 min were given saline, TH146 at 1.3 mg/kg, RPPGF at 2 mg/kg, MAP4-TH146 at 2 mg/kg, or MAP4-TH146 at 6 mg/kg by IP injection. The mean blood pressure was measured in the treated animals 15 min after IP injection at 15 min intervals for 75 min (See Methods). The values shown are the mean \pm SEM of 6 or more experiments.

Table 1

Influence of RPPGF-Derivatives on Gamma Thrombin-induced Platelet

Peptide	Sequence	Platelet aggregation 100% inhibitory concentration (mM) ± SEM. ^b	Calcium mobilization ^c (% Inhibition at 100 μM peptide)
RPPGF ^a	RPPGF	0.68 ± 0.28	-
TH146	rOicPGF	0.142 ± 0.02	54
MAP4-TH146 ^d		0.019 ± 0.006	80
TH34	rOicPGIdg	0.129 ± 0.02	36.2
TH37	rOicHypGThi	0.157 ± 0.02	38
TH40	rOicHypGIdg	0.157 ± 0.02	36.7
TH26	rOicPGThi	0.228 ± 0.02	14.5
TH46	rOicOicGIdg	0.257 ± 0.04	28.1
TH43	rOicOicGThi	0.271 ± 0.04	18.1

Aggregation and Calcium Mobilization

^a from reference Hasan *et al.*, 2001b.

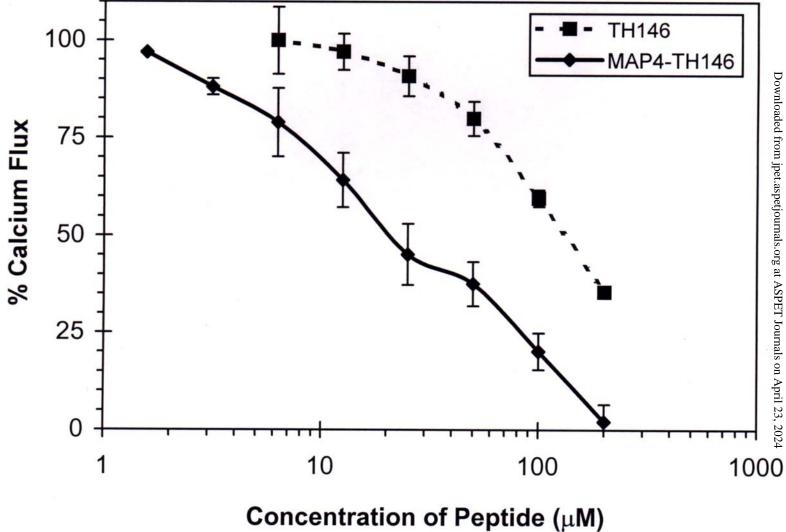
^b The results presented are the mean \pm SEM of n > 3 independent experiments. In all instances, the values given represent the concentration of peptide needed to inhibit threshold γ -thrombin-induced platelet aggregation 100%.

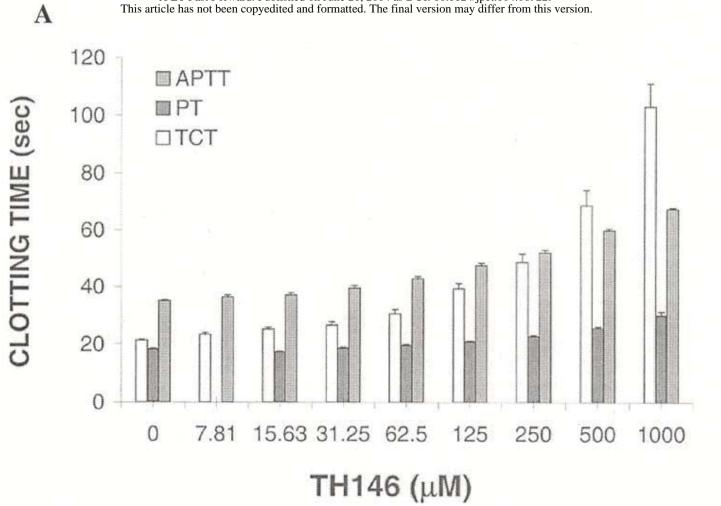
^c Calcium mobilization assays were as described in Material and Methods. In all instances the values given represent the influence of 100 μ M peptide on threshold- α -thrombin-induced calcium mobilization.

^dMAP4-TH146 is a multiantigenic peptide of TH146 consisting of β -AK2K-4(rOicPGF).

Table 2

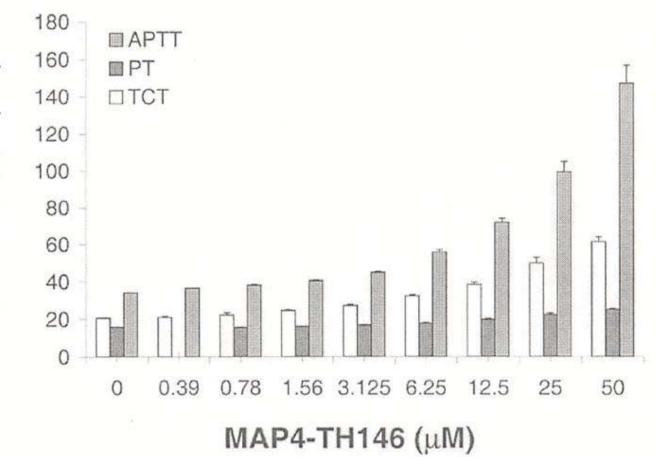
Direct Influence of TH146 and MAP4-TH146 on the Enzymatic Activity of Various Coagulation Protein Enzymes^a

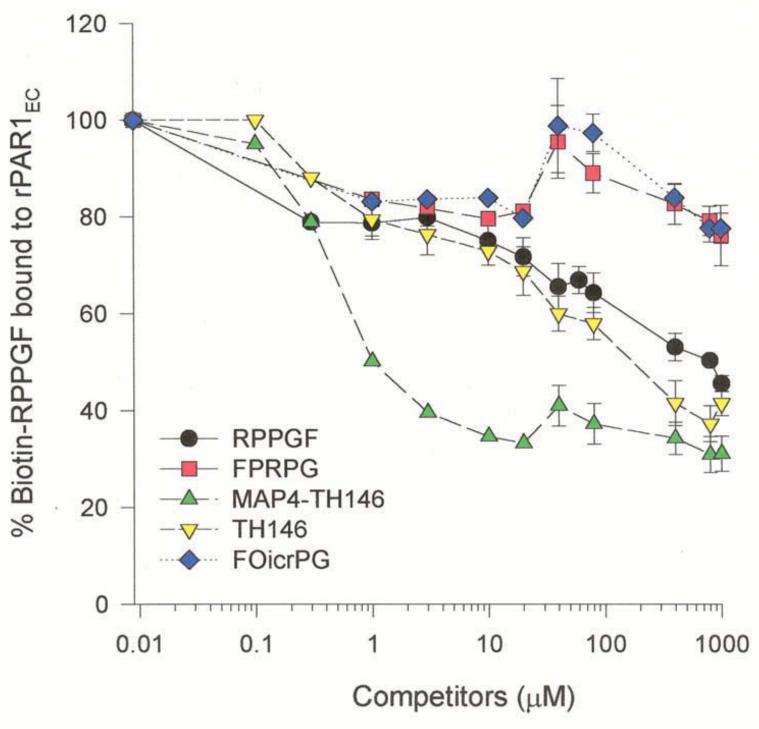

	TH146	MAP4-TH146
nzyme	$K_i (\mu \mathbf{M}) \pm \mathbf{SD}^{\mathrm{a}}$	$K_i (\mu \mathbf{M}) \pm \mathbf{SD}^{\mathrm{a}}$
thrombin ^b	97 ± 28	49 ± 1.8
thrombin ^b	NI ^c	NI
Xa	NI	NI
IXa	NI	NI
VIIa-TF ^d	44.7 ± 5.4	5.0 ± 1.3
VIIa-TF (preformed) ^d	NI	NI
XIa	NI	NI
Xa IXa VIIa-TF ^d VIIa-TF (preformed) ^d	NI NI 44.7 ± 5.4 NI	NI NI 5.0 ± 1.3 NI

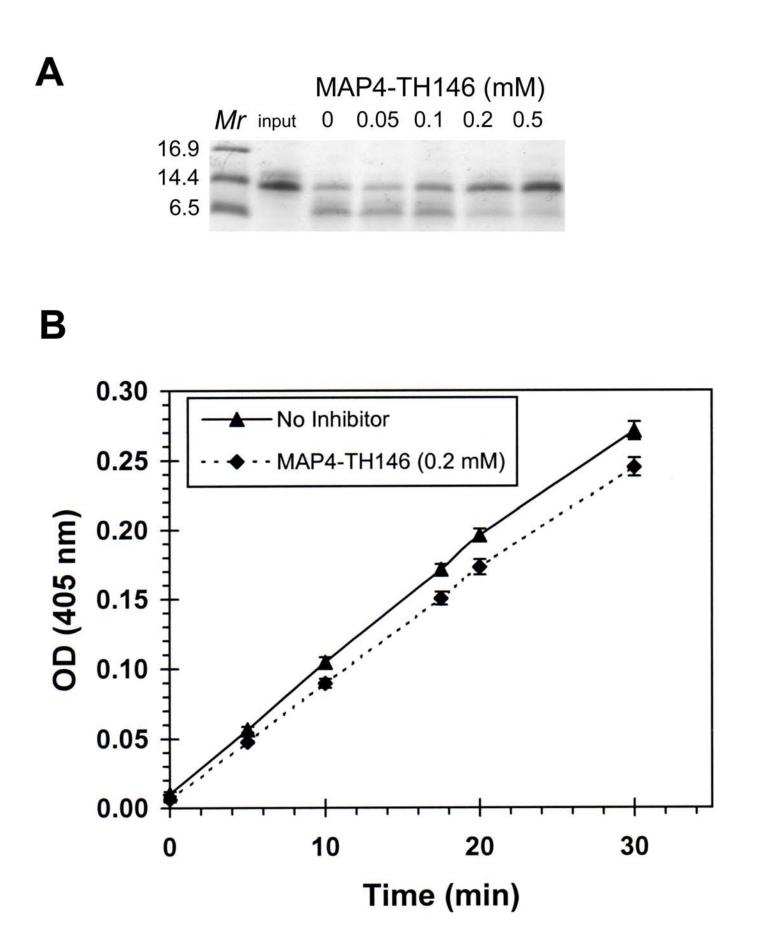

^a The enzymatic assays were performed as described in the METHODS. The data presented are the mean \pm SD of 3 or more experiments.

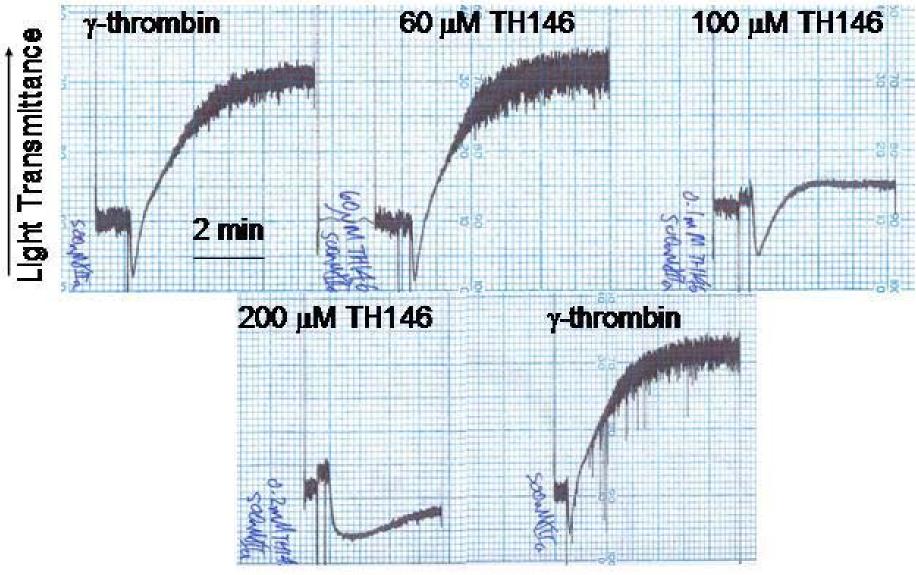
^b For α -thrombin (1 nM) and γ -thrombin (1 nM), the enzyme was incubated with TH146 (0.142 mM) or MAP4-TH146 (0.2 mM) for 5 min at 25°C. The reaction was initiated by the addition of substrate Sar-Pro-Arg-pNA (0.6 mM) and the optical density at 405 nm was measured every 2 min for 20 min.

^c "NI" indicates no inhibition.

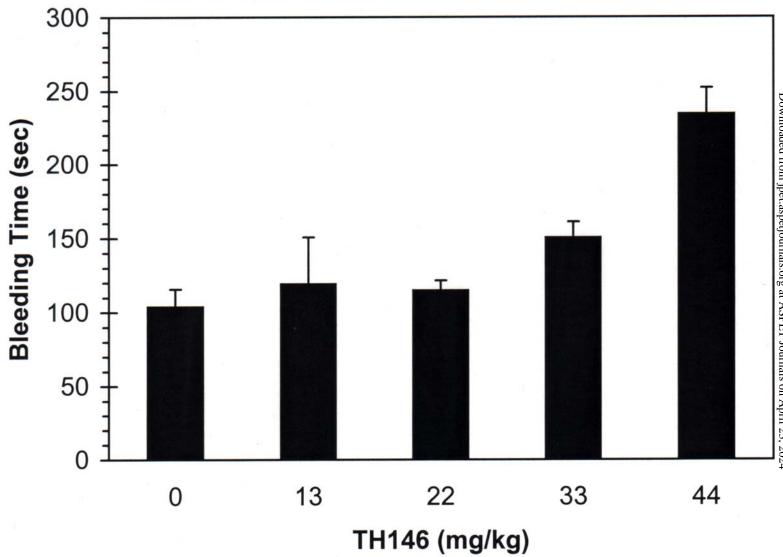

^{d.} FVIIa-TF^a samples were treated in two ways. FVIIa (50 nM) was added to 0.142 mM TH146 or 0.020 mM MAP4-TH146, followed by the addition of soluble tissue factor (70 nM) and the samples were incubated for 5 min. The reaction was initiated by the addition of substrate methoxycarbonyl-D-cyclohexylglycyl-glycyl-arginine-*p*-nitroanilide (Spectrozyme fXa) (1.25 mM). In other experiments, a preformed complex of FVIIa (50 nM) and soluble tissue factor (70 nM) was prepared by incubation for 5 min at 25°C. The preformed FVIIa-TF complex was then mixed with each peptide and incubated 15 min at 25°. The reaction initiated by the addition of substrate Spectrozyme fXa (1.25 mM) and monitored every 2 min for 20 min.

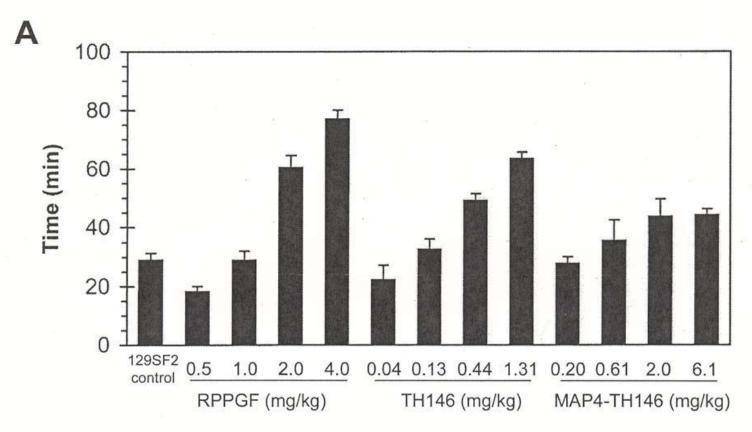


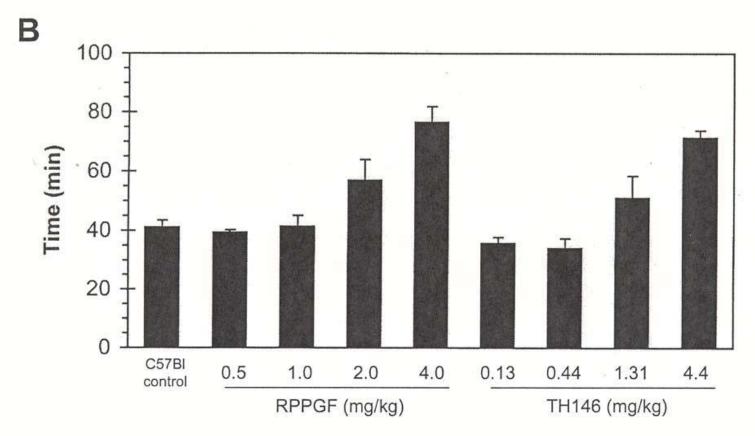


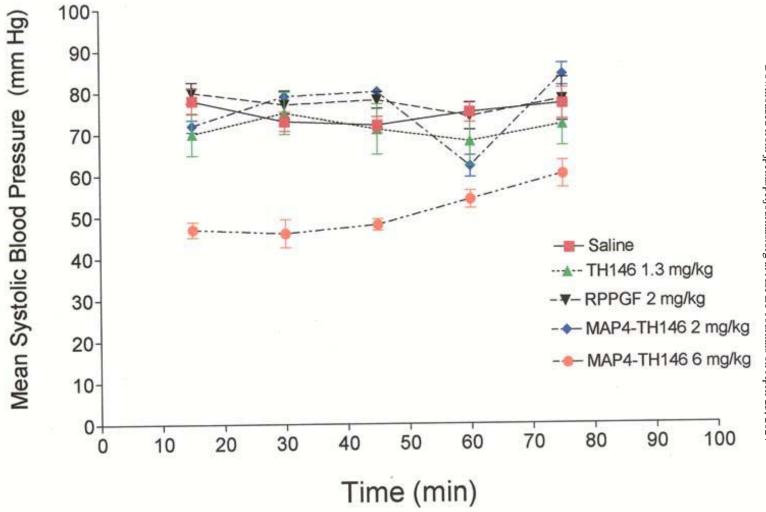


CLOTTING TIME (sec)









Downloaded from jpet.aspetjournals.org at ASPET Journals on April 23, 2024

