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Abstract 

Intrathecal pre-treatment with N-methyl-D-aspartate (NMDA) receptor 

antagonists blocks development of spinal sensitization in a number of pain models. In 

contrast, secondary mechanical allodynia evoked by thermal injury (52.5°C for 45 

seconds) applied to the hind paw of the rat is not blocked by intrathecal pre-treatment 

with NMDA receptor antagonists.  It is, however, blocked by antagonists to the non-

NMDA, α-amino-3-hydroxy-5-methyl-4-isoxazole-proprionic acid/kainate (AMPA/KA) 

and calcium-permeable AMPA/KA receptors. These findings suggest a role for these 

receptors in the development of spinal sensitization. The present study used the same 

thermal injury model to assess the effects of the AMPA/KA receptor antagonist, CNQX, 

and specific calcium-permeable AMPA/KA receptor antagonists, philanthotoxin (PHTx) 

and joro spider toxin (JST) when given as post-injury treatments.  Intrathecal saline 

injection at 5 and 30 minutes post injury had no effect on thermal injury-evoked allodynia 

as measured by calibrated von Frey filaments.  In contrast, 36nmol CNQX given at both 

time points reversed allodynia.  Intrathecal 13nmol PHTx or 9nmol JST (higher doses 

than that required for pre-treatment) reversed allodynia at the 5-minute time point, but 

neither drug was anti-allodynic at the 30-minute time point.  Thus, secondary mechanical 

allodynia in this model is not maintained by calcium-permeable AMPA/KA receptors, 

but instead requires activation of calcium-impermeable AMPA/KA receptors. This 

finding supports a role for AMPA/KA receptor function in responses occurring during 

spinal sensitization. 
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Peripheral inflammation and tissue injury induce sensitization of spinal cord 

neurons and enhance spinal nociceptive transmission (Dickenson and Sullivan, 1987; 

Abram and Yaksh, 1994; Traub, 1997).  Behavioral correlates of spinal sensitization 

include secondary mechanical allodynia, an increased sensitivity to innocuous stimuli in a 

region adjacent to or distinct from the site of injury.  Activation of N-methyl-D-aspartate 

(NMDA) receptors and subsequent calcium influx is thought to be an early and necessary 

step in the induction of spinal sensitization and resultant enhanced pain states (Murray et 

al., 1991; Mao et al., 1992; Yamamoto and Yaksh, 1992b).  Accordingly, intrathecal 

administration of NMDA receptor antagonists has been shown to block both 

electrophysiological and behavioral manifestations of spinal sensitization (Woolf and 

Thompson, 1991; Dougherty et al., 1992).    It is now apparent, however, that α-amino-3-

hydroxy-5-methyl-4-isoxazole-proprionic acid or kainite (AMPA/KA) receptors can also 

play a significant role in this stage of nociceptive processing.   

The AMPA receptor is composed of GLUR1-GLUR4 subunits, while the kainite 

receptor is composed of GLUR5-GLUR7, KA1 and K2 subunits.  Both are permeable to 

monovalent sodium and potassium ions (Keinanen et al., 1990) and mediate the majority 

of monosynaptic current produced by glutamate release from primary afferent terminals.  

Recent studies show that activation of AMPA/KA, and not NMDA, receptors is required 

for the development of spinal sensitization and secondary hyperalgesia that occurs in 

models of post-incision pain (Pogatzki et al., 2000) and first-degree burn (thermal injury) 

(Nozaki-Taguchi and Yaksh, 2002).  In both models, pre-injury treatment with an 

AMPA/KA receptor antagonist, 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo[f]quinoxaline-7-

sulfonamide (NBQX) or 6-cyano-7-nitroquinoxaline-2, 3-dione (CNQX), blocks 
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development of increased spinal nociceptive responses, while NMDA receptor 

antagonists have little or no effect on enhanced pain behavior.   

Calcium-permeable AMPA/KA (Ca2+-perm-AMPA/KA) receptors substantially 

influence synaptic activity occurring throughout the central nervous system.  Activation 

of these receptors increases intracellular calcium levels during states of synaptic 

strengthening (Gu et al., 1996), ischemia (Gorter et al., 1997) and excitotoxicity (Lu et 

al., 1996; Carriedo et al., 1998).  The Ca2+-perm-AMPA/KA receptors also mediate 

spinal sensitization.  Intrathecal pre-treatment with selective antagonists, joro spider toxin 

(JST) or philanthotoxin (PHTx), attenuates development of secondary mechanical 

allodynia evoked in the thermal injury model (Sorkin et al., 1999; Sorkin et al., 2001).  In 

addition, joro spider toxin reverses secondary mechanical allodynia in the post-incision 

pain model (Pogatzki et al., 2003).  The present study examined the effects of AMPA/KA 

and Ca2+-perm-AMPA/KA receptor antagonists on thermal injury-evoked secondary 

mechanical allodynia when given as post-injury treatments.  
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Methods 

 
Animals 

 

Male Holtzman rats (300-350g, Harlan Industries, Indianapolis, IN) were housed 

in 12:12 hour light:dark cycle.  Food and water were made available, ad libitum, except 

during recovery from surgery and mechanical threshold testing.  Effort was made to 

minimize animal discomfort and reduce number of animals used.  All experiments were 

approved by the Animal Care Committee of the University of California-San Diego. 

 

Intrathecal catheter implantation  
 

Animals were anesthetized with 3% isofluorane (Halocarbon Laboratories, River 

Edge, NJ) and catheters (PE-5, Baxter Healthcare Corporation, Deerfield, IL) were 

implanted into the subarachnoid space and ended over the lumbar enlargement (Yaksh, 

1976).  Animals received 5mL of intraperitoneal Lactated Ringer’s solution (Baxter 

Healthcare Corporation, Deerfield, IL) immediately after surgery and again at one and 

two days post surgery.  Animals were housed individually after intrathecal catheters were 

implanted.  Paw withdrawal threshold and motor function testing occurred 5 days or more 

after catheter implantation. 

 

Assessment of mechanical allodynia 
 

Animals were given 30 minutes to acclimate to their individual testing 

compartments (26 x 11 x 20cm) that were comprised of a wire-mesh bottom and clear 
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(plexi-glass) walls and cover, prior to obtaining two baseline withdrawal threshold 

measures.  Calibrated von Frey filaments (Stoelting, Wood Dale, IL) with buckling forces 

between 4.7 and 147.05mN were applied sequentially to a central area of the plantar hind 

paw at a perpendicular angle until paw withdrawal occurred.  The up-down paradigm was 

used to determine 50% probability of paw withdrawal thresholds (Chaplan et al., 1994).   

 

First-degree burn and secondary mechanical allodynia 
 

After baseline responses were measured, animals were lightly anesthetized with 

2% isofluorane while the left plantar hind paw was placed and held on a 52.5°C metal 

surface for 45 seconds at constant pressure by a 10-gram sand pouch (Nozaki-Taguchi 

and Yaksh, 1998).  This first-degree burn results in transient redness in the skin and 

evokes reduced withdrawal thresholds to innocuous mechanical stimuli applied to the 

previously mentioned central area of the hind paw that is distinct from the injury site.  

This same area does not display thermal sensitization.  After the first-degree burn was 

applied, animals were returned to individual testing compartments where they recovered 

from anesthesia within 2-3 minutes.  

  

Drugs 
 

 Drugs were administered intrathecally (i.t.) in 10µL of sterile saline (Abbott 

Laboratories, North Chicago, IL) vehicle and included the AMPA/KA receptor antagonist 

6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, molecular weight (M.W.) 232.2)  (Sigma, 

St. Louis, MO) and the Ca2+-perm-AMPA/KA receptor antagonists philanthotoxin and 
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joro spider toxin (M.W. 777.7 and 565.7, respectively) (Research Biochemicals 

International, Natick, MA).   

 

Behavioral Experiment 1:  Pre-injury treatments  
 

Intrathecal injections were administered 5 minutes before thermal injury in order 

to assess their effect on subsequent withdrawal responses.  Control animals received 

20µL of sterile saline flush 5 minutes before thermal injury.  In other groups, 36nmol 

CNQX, 6nmol PHTx or 5nmol JST was administered followed by a 10µL sterile saline 

flush.  These are the lowest doses found to be effective as pre-injury treatments (Sorkin et 

al., 2001; Nozaki-Taguchi and Yaksh, 2002). 

Testing for withdrawal responses began 30 minutes after thermal injury and 

continued at 30-minute intervals for 2.5 hours.  The person conducting behavioral testing 

did not know which agent was administered to each animal.   

 
Behavioral Experiment 2:  Post-injury treatments  

 

Intrathecal injections were administered 5 or 30 minutes after thermal injury in 

order to assess their effect on subsequent withdrawal responses.  Control animal groups 

received 20µL sterile saline, similar to the pre-injury treatments.  In other groups, 36nmol 

CNQX, 6 or 13nmol PHTx, or 5 or 9nmol JST was administered and followed by a 10µL 

sterile saline flush.   

Testing for withdrawal responses began 30 minutes after thermal injury for the 5-

minute post-treatment group and 60 minutes after thermal injury for the 30-minute post-

treatment group.  Testing continued at 30-minute intervals until 2.5 hours post-injury.  
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The person conducting behavioral threshold testing did not know which agent was 

administered to each animal. 

 

Behavioral Experiment 3:  Effects of intrathecal agents on motor function 
 

Intrathecal administration of many antagonists of facilitatory spinal cord 

mechanisms elicits depressive effects on central nervous system activity and motor 

function.  An accelerating rotarod apparatus (Columbus Instruments, Columbus, OH) was 

used to assess whether the effects of agents on withdrawal threshold responses were due 

to non-specific motor deficits versus specific anti-allodynic effects. 

 Animals were trained on the rotarod for 1 to 2 days.  Training consisted of at 

least two 1-minute trials at 4 rotations per minute (rpm).  On the test day, animals were 

placed on the rotating rod for several seconds at 4 rpm, before the rod began accelerating 

at 1 rpm/second.  The duration of time until the animal fell from the moving rotarod was 

measured (maximum 180 seconds).  Two measures from each animal were averaged and 

served as baseline (pre-intrathecal injection).  Animals were re-tested 30 and 90 minutes 

after intrathecal injection of saline or highest drug dose used in experiments (13nmol 

PHTx, 9nmol JST, and 36nmol CNQX).  These time points correlated with the average 

onset and diminution of thermal injury-evoked secondary mechanical allodynia. 

 

Statistical Analysis 
 

A Friedman’s test was performed to determine difference between withdrawal 

threshold responses before and those after thermal injury to hind paws 
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(p<0.05=secondary mechanical allodynia).  A post hoc Dunn’s multiple comparisons 

analysis followed this statistic.  The Mann-Whitney test determined differences in mean 

baseline responses between treatment groups and p<0.05 was considered significant.   

Areas under the curve (AUC) were calculated from the withdrawal threshold 

values of each animal across time (GraphPad Prism, 3.02, San Diego, CA).  Increase in 

AUC correlated with a decrease in allodynia.  One-way analysis of variance (ANOVA) 

test was performed to determine difference between the AUC for intrathecal saline versus 

drugs.  This statistic was performed for time points 30 through 180 minutes after thermal 

injury for all groups except for the 30-minute post-injury treatment group.  ANOVA for 

the latter was performed for time points 60 through 180 minutes.  A post hoc Dunnett’s 

multiple comparisons analysis followed the ANOVA test.   
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Results 

Mean baseline withdrawal thresholds did not differ across the pre-, 5- or 30-

minute post-injury saline treatments (140.0 ± 4.5, 141.9 ± 3.6 and 142.8 ± 2.2mN, 

respectively).  All three groups of control animals displayed reduced withdrawal 

threshold responses after thermal injury, indicating secondary mechanical allodynia. 

(Figures 1A, 2A and 3A). 

 
 
Pre-injury treatment 

 

Peak secondary mechanical allodynia after pre-treatment with saline occurred 60 

minutes after thermal injury (22.0 ± 4.2mN) (Figure 1A).  In contrast, allodynia was 

blocked by pre-injury treatment with 6nmol PHTx, 5nmol JST or 36nmol CNQX (Figure 

1A).   

The areas under the curve (AUC) of withdrawal thresholds measured from thirty 

minutes to 2.5 hours after thermal injury for each treatment group are also shown in 

Figure 1B.  Values for all pre-injury drug treatments are greater than saline control, 

indicating decreased allodynia. 

 

5-minute post-injury treatment 
 

Peak secondary mechanical allodynia after 5-minute post-treatment with saline 

also occurred 60 minutes after thermal injury (31.9 ± 5.1mN) and differed from baseline 

(Figure 2A).  Although 6nmol PHTx or 5nmol JST was effective as a pre-injury 

treatment, neither was sufficient to block allodynia when given 5 minutes post-injury 
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(Figure 2A).   However, increased doses (13nmol PHTx and 9nmol JST) were anti-

allodynic when administered as 5-minute post-injury treatments.  The CNQX dose, which 

was effective as a pre-treatment, was also able to reverse mechanical allodynia when 

given 5 minutes after injury. 

The AUC of withdrawal thresholds from thirty minutes to 2.5 hours post thermal 

injury for saline control and drug groups are also shown in Figure 2B.  There is no 

difference between areas under the curve for low-dose PHTx (6nmol) or JST (5nmol) and 

saline control.   

 

30-minute post-injury treatment 
 

The peak allodynia after 30-minute post-treatment with saline also occurred 60 

minutes after thermal injury (60.73 ± 19.03mN) (Figure 3A).  When PHTx and JST 

treatments were delayed until 30 minutes post-injury they were no longer anti-allodynic.  

In contrast, 30-minute post-treatment with 36nmol CNQX reversed secondary 

mechanical allodynia just as it had when given at the two earlier time points. 

The AUC of withdrawal thresholds measured from 60 minutes to 2.5 hours after 

thermal injury for each group are also shown in Figure 3B.  Only the CNQX area under 

the curve differs from saline control, indicating an anti-allodynic effect. 

 

Effects of intrathecal injections on motor function 
 

 Effects of the largest doses of intrathecal PHTx, JST and CNQX on motor 

function were assessed by measuring the ability of rats to remain on an accelerating 
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rotarod 30 and 90 minutes after drugs were administered.  Prior to intrathecal drug 

injections, mean duration on the rotarod was 113.9 ± 14.6 and did not differ from saline 

control (105.9 ± 11.2).  Figure 4 shows change from baseline time for rats that received 

intrathecal saline or drugs.  Spinally administered AMPA/KA and Ca2+-permeable 

AMPA/KA receptor antagonists at anti-allodynic doses did not alter the ability of rats to 

remain on the rotarod, indicating that effects of these drugs on mechanical allodynia were 

specific and not due to side-effects such as sedation or motor deficits.  
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Discussion 

Innocuous or low-frequency noxious stimulation results in excitatory amino acid 

release that activates postsynaptic non-NMDA receptors.  Although these receptors are 

responsible for fast monosynaptic transmission leading to neuronal depolarization, they 

also have a role in nociceptive transmission.  Intrathecal administration of AMPA/KA 

receptor antagonists blocks development of acute (Nishiyama et al., 1998) and 

inflammatory (Stanfa and Dickenson, 1999) pain.  A subset of AMPA/KA receptors that 

lack the GLUR2 receptor subunit and are calcium-permeable (Burnashev et al., 1992) 

mediate secondary mechanical allodynia occurring in models of post-operative pain 

(Pogatzki et al., 2003) and first-degree burn (Sorkin et al., 1999; Sorkin et al., 2001).   

The present study confirms that calcium-permeable AMPA/KA receptors are 

involved in the development of secondary mechanical allodynia evoked by first-degree 

burn and that their activity parallels NMDA receptor activity in other pain models.  For 

example, NMDA receptors mediate increases in intracellular calcium levels that 

subsequently induce various second-messenger systems involved in spinal sensitization 

and resultant hyperalgesia and/or allodynia.  Pre-injury treatment with NMDA receptor 

antagonists blocks development of these phenomena (Dougherty et al., 1992; Mao et al., 

1992), while post-injury treatment has little or no effect (Yamamoto and Yaksh, 1992a).  

In the present study, pre-treatment doses of calcium-permeable AMPA/KA receptor 

antagonists that were anti-allodynic did not reverse secondary mechanical allodynia when 

administered 5 minutes after thermal injury.  Even increased doses of these antagonists 

had no effect on allodynia when administered as 30-minute post-treatments.  This 

suggests that the roles of both NMDA and calcium-permeable non-NMDA receptors in 
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different pain states are similar and that both receptor subtypes may induce some shared 

or common intracellular mechanisms as a consequence of calcium influx and subsequent 

calcium-dependent processes. 

As secondary mechanical allodynia occurring in the first-degree burn model has 

fast onset and dissipates within a couple of hours it must be mediated by rapid changes in 

synaptic or intracellular activity, as opposed to prolonged gene transcription or de novo 

protein synthesis.  Previous studies demonstrate calcium-dependent protein kinase 

activity and increased phosphorylation of the AMPA GLUR1 receptor subunit in the 

spinal cord dorsal horn as early as 5 minutes after intradermal capsaicin-evoked 

hyperalgesia in the rat (Fang et al., 2002; Fang et al., 2003). Phosphorylation of the 

AMPA GLUR1 subunit by calcium-dependent protein kinases, like calcium/calmodulin-

dependent kinase IIα (CaM-Kinase IIα), increases AMPA receptor-channel conductance 

(Derkach et al., 1999) and thus, AMPA receptor function.  Activated CaM-Kinase IIα 

also promotes AMPA receptor insertion into the post-synaptic membrane (Liao et al., 

2001).  Thus, CaM-Kinase IIα can influence spinal activity by enhancing AMPA 

receptor function and increasing AMPA receptor density within post-synaptic 

membranes.  Both of these actions could induce development of spinal sensitization 

occurring in the first-degree burn.    

Activation of calcium-permeable AMPA/KA receptors likely mediates calcium-

dependent processes that induce spinal sensitization and allodynia occurring in the first-

degree burn.  These processes, in turn, appear to facilitate spinal cord neuronal activity 

that becomes independent of calcium-permeable AMPA/KA receptor occupation.  The 

observed lack of calcium-permeable AMPA/KA receptor involvement in maintenance of 
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secondary mechanical allodynia may be due to a decrease in membrane receptor density 

caused by clathrin-mediated endocytosis (Lin et al., 2000).  Previous electrophysiological 

studies demonstrate that calcium-permeable AMPA receptors rapidly internalize after 

their activation (Liu and Cull-Candy, 2000; Liu et al., 2002).  Receptor, or receptor 

subunit, cycling in and out of the post-synaptic membrane (Lissin et al., 1999) may very 

well shift the level of calcium-permeable AMPA receptor involvement.  These 

mechanisms may correlate with the induction and duration of secondary mechanical 

allodynia observed in the present model of spinal sensitization.   

In summary, this study demonstrated that non-NMDA, AMPA/KA, receptors are 

involved in the development and maintenance of spinal sensitization, whereas specific 

calcium-permeable AMPA/KA receptors, like NMDA receptors, are primarily involved 

in its development.   
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Legends for figures 

 
Figure 1 

A. Effects of pre-injury treatments on secondary mechanical allodynia.  Results are 

expressed as box and whisker plots: the horizontal line is the median, while the top and 

bottom are 75th and 25th percentiles.  Error bars indicate 90th and 10th percentiles.  

Baseline (B) withdrawal thresholds were measured before thermal injury and intrathecal 

injection (arrow).  Pre-injury treatments were administered 5 minutes before injury.  Pre-

injury time course of withdrawal thresholds is shown for saline (p=0.0001, n=7), 6nmol 

PHTx (p=0.0570, n=8), 5nmol JST (p=0.4954, n=8) and 36nmol CNQX (p=0.4439, n=7) 

treatments (p>0.05=anti-allodynia).  *p<0.05, ***p<0.001, compared to baseline.  �, 

median=75th percentile.  B. Areas under the curve (AUC) of withdrawal thresholds 

for pre-injury treatments.  The AUC for all groups that received intrathecal drugs are 

greater than saline control.  *p<0.05, **p<0.001, compared to saline control.  Values are 

expressed as mean ± S.E.M. 

 

Figure 2 

A. Effects of 5-minute post-injury treatments on secondary mechanical allodynia.  

Results are expressed as box and whisker plots (described in the Figure 1A legend).  

Baseline (B) withdrawal thresholds were measured before thermal injury (arrow).  

Intrathecal post-treatments were administered 5 minutes after injury.  Time course of 

withdrawal thresholds is shown for saline (p=0.0001, n=7), 6nmol PHTx (p=0.0090, 

n=7), 5nmol JST (p=0.0004, n=9), 13nmol PHTx (p=0.1915, n= 6), 9nmol JST 

(p=0.2317, n=9) and 36nmol CNQX  (p=0.2317, n=6) treatments (p>0.05=anti-
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allodynia).  *p<0.05, **p<0.01, compared to baseline.  �, median=75th percentile.  B. 

Areas under the curve (AUC) of withdrawal thresholds for 5-minute post-injury 

treatments.  The AUC for low-dose PHTx (6nmol) or JST (5nmol) do not differ from 

saline control.  **p=0.001, compared to saline control.  Values are expressed as mean ± 

S.E.M. 

 

Figure 3 

A. Effects of 30-minute post-injury treatments on secondary mechanical allodynia. 

Results are expressed as box and whisker plots (described in the Figure 1A legend).  

Baseline (B) withdrawal thresholds were measured before thermal injury (arrow).  

Intrathecal post-treatments were administered 30 minutes after injury.  Time course of 

withdrawal thresholds from 60-180 minutes after thermal injury is shown for saline 

(p=0.0001, n=7), 13nmol PHTx (p=0.0012, n=7), 9mol JST (p=0.0128, n=8) and 36nmol 

CNQX (p=0.7280, n=9) treatments (p>0.05=anti-allodynia).  *p<0.05, **p<0.01, 

compared to baseline.  �, median=75th percentile.  B. Areas under the curve (AUC) of 

withdrawal thresholds for 30-minute post-injury treatments.  Only the CNQX AUC 

is greater than saline control.  *p>0.05, compared to saline control.  Values are expressed 

as mean ± S.E.M.   
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Figure 4 

Effects of intrathecal injections on motor function.  Figure shows percent of baseline 

time (before injection) rats walked on an accelerating rotarod 30 and 90 minutes post 

intrathecal saline, 13nmol PHTx, 9nmol JST or 36nmol CNQX.  Intrathecal treatments 

with saline or drugs produced no apparent motor deficits.  Values are shown as mean ± 

S.E.M., n=10/group. 
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Figure 2 
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Figure 3   
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Figure 4 
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