Roles of Superoxide, Peroxynitrite and Protein Kinase C in the Development of Tolerance to Nitroglycerin

Medical College of Georgia
Augusta, GA 30912

Medical College of Georgia
Augusta, GA 30912
Running Title: GTN tolerance involves O_2^-, ONOO$^-$ and PKC.

Corresponding Author:
R. William Caldwell, Ph.D.
Department of Pharmacology and Toxicology
Medical College of Georgia
Augusta, GA 30912
(706) 721-3384 – Phone
(706) 721-6059 - Fax
wcaldwel@mail.mcg.edu

Text pages – 18
Number of tables – none
Number of Figures – 10
Number of References – 38
Number of words in Abstract – 245
Number of words in Introduction – 546
Number of words in Discussion – 1504

List of nonstandard abbreviations
PKC – protein kinase C
O_2^- – superoxide
ONOO$^-$ – peroxynitrite
GTN – glyceryl trinitrate/nitroglycerin
CRC – concentration-response curve
BAEC – bovine aortic endothelial cells
ROS – reactive oxygen species
NO – nitric oxide
NOS – nitric oxide synthase
PE – phenylephrine
PD$_2$ – negative log of the dose producing 50% of maximal response
BH$_4$ – tetrahydrobiopterin
BH$_2$ – dihydrobiopterin
L-NAME – N(G) - nitro-L-arginine methyl ester

Recommended section assignment
Cardiovascular
ABSTRACT

A current hypothesis states tolerance to nitroglycerin (GTN) involves increased formation of superoxide (O$_2^-$). Studies showing that inhibitors of protein kinase C (PKC) prevent tolerance to GTN suggest involvement of PKC activation, which can also increase O$_2^-$
. We examined roles of O$_2^-$, peroxynitrite (ONOO$^-$) and PKC activation in GTN tolerance. Pre-exposure of rat aortic rings to GTN (5 x 10$^{-4}$ M) for 2 hours caused tolerance to GTN’s vasodilating effect as evident by substantial rightward shift of GTN concentration-relaxation curves. This shift was reduced by treatment of the rings with the anti-oxidants uric acid, vitamin C or tempol or the PKC inhibitor chelerythrine. We also found that O$_2^-$ generation via xanthine/xanthine oxidase in the bath induced tolerance to GTN. However, responses to nitroprusside were not affected. In vivo tolerance produced in rats by 3 day i.v. infusion of GTN was also almost completely prevented by co-infusion of tempol. In bovine aortic endothelial cells (EC), addition of GTN produced a marked increase in tyrosine nitrosylation indicating increased ONOO$^-$ formation. This action was blocked by prior treatment with uric acid, superoxide dismutase, L-NAME or chelerythrine. We also demonstrated that GTN translocates the α and ε protein kinase C (PKC) isoforms in EC. However, PKCζ was not affected by GTN treatment. In conclusion, tolerance to GTN involves enhanced production of O$_2^-$ and ONOO$^-$ and activation of NO synthase. Further, sustained activation of α and εPKC isoymes in EC by GTN may play a role in development of tolerance.
Nitroglycerin (glyceryl trinitrate, GTN) is a vasodilator used in the therapy of cardiovascular diseases, such as angina pectoris, congestive heart failure and hypertension. However, use of GTN and other organic nitrates is limited by the development of nitrate tolerance, especially during continuous administration. Mechanisms of this tolerance have been extensively investigated and are thought to involve both vascular and humoral effects (Munzel et al., 1996; Parker and Parker, 1998). Well established vascular mechanisms include desensitization of smooth muscle guanylate cyclase (Molina et al., 1987), enhanced cGMP breakdown due to increased phosphodiesterase activity (Pagani et al., 1993) and impaired GTN biotransformation (Slack et al., 1989). Humoral mechanisms include increases in plasma levels of catecholamines, vasopressin, angiotensin II and aldosterone, which elevate vascular resistance and blood volume (Stewart et al., 1986). Recently, it has been shown that GTN treatment of animals and cells increased the formation of superoxide (O$_2^-$) (Munzel et al., 1995; Dikalov et al., 1998; Kaesemeyer et al., 2000). Superoxide can be generated via multiple systems including xanthine oxidase, NADH/NADPH oxidase(s) and NO synthase (NOS). It rapidly reacts with and inactivates NO (Gryglewski et al., 1986) and produces peroxynitrite (ONOO$^-$). L-arginine may also play a role in tolerance to organic nitrates in that reduced availability of L-arginine to NOS may occur from the direct inhibitory effects of NO, O$_2^-$ and/or ONOO$^-$, formed by GTN, on the transport of L-arginine into endothelial cells (Patel et al., 1996; Abou-Mohamed et al., 2000; Ogonowski et al., 2000). In support of this, our previous experiments have demonstrated that supplementing L-arginine to rat aorta and humans partially prevents the development of tolerance to GTN (Abou-Mohamed et al., 2000; Parker et al., 2002).

A previous study has reported that a protein kinase C (PKC) inhibitor can prevent tolerance to GTN (Zierhut and Ball, 1996). The PKC family includes at least 11 isozymes (Nishizuka, 1986).
Upon activation, PKC isozymes translocate from the cytoplasm to particulate structures where they are thought to mediate their catalytic functions (Kraft and Anderson, 1983). Recent cardiovascular studies have revealed substantial "crosstalk" between the nitric oxide (NO) and PKC signaling pathways (Tazi et al., 2002; Liang and Knox, 1999; Li et al., 1998; Ping et al., 1999; Balafonova et al., 2002). For example, treatment with NO donors triggers the translocation of the αPKC isozyme to the particulate fraction in kidney cells (Liang and Knox, 1999). Nitric oxide has also been shown to directly stimulate PKC activities in heart tissue (Yoshida et al., 1999). NO donors have been shown to activate the PKC signaling pathway via a mechanism involving production of ONOO\(^{-}\) and tyrosine nitration of the εPKC isozyme (Balafonova et al., 2002). This nitration enhances the interaction of εPKC with its intracellular receptor that targets εPKC to its active cell locus. In addition, O\(_2\)\(^{-}\) has been reported to be capable of activating PKC (Gopalakrishna and Anderson, 1989); (Knapp and Klann, 2000). The activation and subsequent translocation of PKC trigger additional formation of O\(_2\)\(^{-}\) (Christiansen, 1988). Thus, a "positive feedback" loop may result.

In the present study we have, therefore, investigated the interactive roles of GTN, reactive oxygen species (ROS) and PKC isozymes in the development of tolerance to GTN. Our work has therapeutic implications in the prevention of GTN tolerance and may be beneficial in the treatment of cardiovascular diseases.
METHODS

Vascular tone studies

In-vitro induction of tolerance. Male Sprague-Dawley rats (200-250 g) were lightly anesthetized with ketamine and sacrificed. The descending thoracic aorta was removed, cleaned from the adjacent tissues and cut into ring segments of approximately 4 mm in length. Two metal hooks were passed carefully through the lumen of each ring and the tissues were then mounted under 2 x 10^{-3} Newtons of tension in 25-ml organ baths containing Krebs solution. Tissues were left to equilibrate for 90 min with intermittent changing of the solution every 15 min. Krebs solution had the following composition (mM): NaCl, 118; KCl, 4.75; NaHCO₃, 25; MgSO₄, 1.2; KH₂PO₄ · H₂O, 1.19; CaCl₂ · 2H₂O, 2.54; glucose 11. The bathing solution was kept at 37°C and was continuously aerated with 5% CO₂ and 95% O₂ gas mixture. After equilibrium, a submaximal dose of phenylephrine, (PE, 3x10^{-7} M - final, producing ~86% of maximum contraction) was added to the tissue bath and the full response allowed to develop. A concentration-response curve (CRC) for GTN was then constructed. The bathing solution was drained and replaced with fresh solution. The tissues were allowed to return to the baseline. Tolerance to GTN was developed by incubating the tissues with 5 x 10^{-4} M of GTN for 1 h followed by a replenishment of the same dose for a second hour.

In one series of experiments, 1) L-ascorbic acid (10^{-3} M), a general anti-oxidant, 2) uric acid (10^{-3} M), a scavenger of ONOO⁻, peroxyl and OH⁻, 3) 4- hydroxy tempol (10^{-3} M), an intracellular scavenger of O₂⁻ and OH⁻, or 4) chelerytherine (10^{-6} M), an inhibitor of PKC, or the combination of 4-hydroxy tempol (10^{-3} M) and chelerytherine (10^{-6} M) was present in half of the tissue baths throughout the incubation time with GTN, while the other baths had only regular
Krebs solution. In other experiments, only the actions of the anti-oxidants on the CEC to GTN were examined. Tissues were washed extensively every 15 min for 1 h post-incubation. Rings were reconstricted with PE and a second series of CRC for GTN were constructed.

In order to examine the effect of superoxide generation on GTN-induced relaxation, a second series of experiments were conducted. The tissues were contracted with PE and concentration-response curves were constructed. The rings were washed and exposed to a free radical-generating system of xanthine/xanthine oxidase (10^{-5} M / 0.5 mU/ml). The treatment was replenished every 10 min for 1 h. The aortic rings were washed 3 timed and cumulative dose response curves for GTN and sodium nitroprusside (SNP) were constructed. The pD₂ values for GTN (negative log of the dose producing 50% of the maximal response) were determined for each treatment. For each experiment, four ring segments were obtained from the rat and randomly assigned to one of our experimental treatments. All responses were expressed as a percentage of the response produced by a time control to PE alone.

In-vivo induction of tolerance. Male Sprague Dawley rats 200-250 g were utilized. Rats were anesthetized by an injection of mixture of xylazine and ketamine (40 mg/kg and 5 mg/kg, ip, respectively). The jugular vein was isolated and cannulated with a heparinized-saline filled PE-10 catheter. The catheters were advanced under the skin to the back of the neck and supported by a swivel and coiled wire conduit to the outside of the cage. The skin was sutured under aseptic condition. After complete recovery, animals were replaced in their cages. Three days later, rats were infused continuously with either saline or GTN at a dose of 15 mg/kg/day for three days with or without 4-hydroxy tempol (13.3 mg/kg/day) by means of syringe infusion pumps (Harvard). The development of tolerance was tested in vitro after 3 days of treatment as
follows. Rats were sacrificed and their descending thoracic aortas were removed, and set up in tissue baths where concentration-response curves for GTN were constructed, as described above.

Cell Culture Experiments

Cell culture. Bovine aorta endothelial cells (BAEC) were obtained from Cell Systems (Kirkland, Washington) and maintained in medium-199 with 10% fetal bovine serum and penicillin and streptomycin through passages 4-7.

cGMP formation. BAEC were grown to ~90% confluency in 24 well plates and incubated in serum free and arginine deficient medium (M 199) for 2 hours. To determine the short term effects of GTN on cGMP levels, cells were further incubated with or without GTN (10^{-6} M) for 10 mins in this M-199 medium containing IBMX (0.5 mM, Sigma). Following removal of medium, cell contents were harvested using 0.5 ml of 0.1N HCl and 0.1% Triton-X. To study the effects of tolerance inducing concentrations of GTN on cGMP level, cells were treated with GTN (10^{-6} M) for 10 minutes before and after exposure to a tolerance inducing concentration of GTN (10^{-5} M) for 1 hour. At the end of the treatments, cells were harvested as described above. The cGMP levels were measured using enzyme-linked immunoassay commercial kit (ELISA kit, Assay Designs). The values are expressed as pmol/ml.

Nitrotyrosine formation. The relative amounts of proteins nitrated on tyrosine were measured by immunocytochemistry. BAECs were grown until ~90% confluent. Cells were incubated in serum-free and arginine-deficient M199 for 2 hrs. Cells were treated with GTN (10^{-5} M) for 30 min in the absence or the presence of superoxide dismutase (SOD, 80 U/ml), uric acid (10^{-3} M), N(G)-nitro-L-arginine methyl ester (L-NAME, 5 x 10^{-4} M), or chelerytherine (10^{-6} M) Cultures were fixed with 4% paraformaldehyde and then reacted with a polyclonal rabbit anti-nitrotyrosine antibody (Upstate
Biotechnology). Oregon green-conjugated goat anti-rabbit antibody (Molecular Probes, Eugene, OR) was used to visualize the primary antibody. Data were analyzed using Ultra View morphometric program and fluorescence microscopy to quantify intensity of immunostaining.

Protein kinase C activation BAEC were incubated in serum-free and arginine deficient M199 for 2 hrs. Cells were then treated with 10^{-5} M GTN for 0, 15, 30, 60, 120 and 180 min. One group of cells was treated with 10 nM PMA for 15 min as a positive control. At the end of treatment period, the media from one 100 mm dish of BAEC was removed and 0.5 ml of chilled homogenization buffer (10 mM Tris (hydroxymethyl – aminomethane), 1mM EDTA, 1mM EGTA, 20 µg/ml of phenylmethysulfonylfluoride, soybean trypsin inhibitor, leupeptin, and aprotinin, pH 7.4) was added to each dish. The cells were scraped from the plates and triturated 3 times with a syringe and 22 gauge needle. The resulting lysates were centrifuged at 4°C for 20 min at 100,000 x g. The supernatants were concentrated using a Centricon 30 concentration device (Amicon Corporation, Beverly, MA) to a volume of 250 µl. The pellets were resuspended in 250 µl of homogenization buffer. Protein concentrations were measured by the Biorad micro protein assay (Biorad Laboratories, Hercules, CA) and samples equated for total protein were subjected to SDS-PAGE. Western blot analysis with PKC isozyme-selective antisera, 125I-labeled protein A detection methods and autoradiography were conducted as previously described (Johnson and Mochly-Rosen, 1995; Johnson et al., 1996). All antisera were from Transduction Laboratories and were used at 1:500 dilutions. Data were analyzed by densitometry ($n = 2$ to 3 samples).

Chemicals

All chemicals were made fresh on the day of use. Acetylcholine Cl, phenylepherine HC1, sodium nitroprusside, L-ascorbic acid, uric acid, 4-hydroxy tempol, chelerytherine, L-NAME,
xanthine, and xanthine oxidase were purchased from Sigma-Aldrich Co (St. Louis, MO).

Xylazine and ketamine were purchased through our University’s Animal Resources Division.

Nitroglycerin (SDM®27) was a kind gift from Astra-Zeneca (Wilmington, DL).

Statistical Analysis

Data are presented as mean ± s.e. mean of the indicated number of observations (n) and the difference between groups was assessed using the paired t-test or analysis of variance, when appropriate. A probability value (P) less than 0.05 was considered to be statistically significant.
RESULTS

Development of tolerance to GTN is associated with superoxide production in rat aorta. Nitroglycerin produced a concentration-dependent relaxation of constricted rat aortas with a pD$_2$ value of 8.83 ± 0.07. As shown in Figure 1, incubation with a high concentration of GTN (5 x 10$^{-4}$ M) for 2 hours rendered the vessels less responsive to GTN. In these tolerant vessels, GTN produced a relaxation with a pD$_2$ value of 6.57 ± 0.2. Co-incubating vessels with the tolerance-inducing concentration of GTN along with the general anti-oxidant vitamin C (10$^{-3}$ M) significantly reduced tolerance development (pD$_2$ value of 8.18 ± 0.15) (Figure 1A). In a similar way, a peroxynitrite, peroxyl and OH$^-$ scavenging agent, uric acid (10$^{-3}$ M), significantly reduced tolerance development. The pD$_2$ value for GTN after uric acid was 7.8 ± 0.16 (Figure 1B). Moreover, the water-soluble SOD mimetic, 4-hydroxy tempol (10$^{-3}$ M), diminished the effect of a tolerance-inducing concentration of GTN. As a result, the pD$_2$ value for GTN was increased in the presence of 4-hydroxy tempol to 7.65 ± 0.16 as compared to 6.57 ± 0.2 in its absence (Figure 1C). Exposure of vessels to any of the three antioxidants without the tolerance-producing concentration of GTN did not alter or shift the concentration-response curves (CRC) to GTN (Figure 2). These results implicate ROS species in the development of GTN tolerance in rat aortic rings.

The presence of chelerythrine (10$^{-6}$ M) during the tolerance producing exposure to GTN also reduced development of tolerance (Figure 3A). Co-incubating vessels with the tolerance-inducing concentration of GTN along with the general PKC inhibitor chelerythrine (10$^{-6}$ M) significantly reduced tolerance development. The pD$_2$ values for the CRC to GTN were 9.38 ± 0.14, 7.87 ± 0.09, and 9.24 ± 0.26, respectively, for control, GTN tolerant, and GTN plus chelerythrine. Concurrent incubation of vessels with chelerythrine (10$^{-6}$ M) and 4-hydroxy tempol (10$^{-3}$ M) along with GTN also
reduced tolerance to a similar degree (Figure 3B). The pD₂ values for the CRC to GTN were 9.33 ± 0.21, 7.04 ± 0.12, and 8.25 ± 0.19, respectively, for control, GTN tolerant, and GTN plus chelerythrine and tempol.

In order to examine the role of superoxide in the production of tolerance to GTN, aortic rings were incubated with a xanthine/xanthine oxidase mixture and washed before a second CRC was constructed. As shown in Figure 4A, vessels exposed to superoxide were less sensitive to GTN than non-treated vessels as shown by 3.6-fold parallel shift in the CRC (pD₂ values are 7.20 and 7.76, respectively). In contrast, vasorelaxant responses to sodium nitroprusside (SNP) were not altered (Fig. 4B).

To further confirm the role of reactive oxygen species in in vivo development of tolerance to GTN, in-vivo tolerance was achieved by continuous i.v. infusion of GTN into rats for 3 days. Aorta were then tested in vitro. This treatment resulted in a 6.6 fold decrease in responsiveness to GTN in isolated aortic rings. When 4-hydroxy tempol was co-infused with GTN, it protected the rats against GTN tolerance. The pD₂ values for GTN on isolated rings were 8.63 ± 0.13, 7.81 ± 0.13 and 8.65 ± 0.16, from control rats treated with saline (control), GTN alone or GTN and 4-hydroxy tempol, respectively (Figure 5). These results demonstrate that this antioxidant prevents tolerance to GTN administered in vivo.

Glyceryl trinitrate (GTN) induces tolerance to its ability to increase cGMP in endothelial cells.

Effects of GTN were also examined in endothelial cells. In BAEC not previously exposed to GTN, there was a marked increase in cGMP levels with a challenge dose of GTN (gtn, 10⁻⁶ M) for 5 min compared to vehicle (Control) (Figure 6). After a 1 hr exposure of cells to a higher concentration of GTN (10⁻⁵ M) and application of fresh media, cells exhibited similar basal (Control) levels of cGMP,
but did not produce a rise in cGMP in response to the second challenge dose of GTN (gtn, 10^{-6} M, 5 min). Thus, BAEC exhibit tolerance to GTN-induced cGMP responses.

Inhibiting NOS or scavenging superoxide blocks peroxynitrite formation.

Since concurrent elevation of NO and superoxide is associated with increased peroxynitrite levels, we investigated the effect of GTN on formations of peroxynitrite in BAEC (Figure 7). Peroxynitrite (ONOO⁻) is a short-lived molecule at physiologic pH, but it produces stable nitration of protein tyrosine residues. Thus, nitrotyrosine immunoreactivity can be used as an indicator for ONOO⁻ formation. Our time course studies showed that GTN increases the ONOO⁻ formation in BAEC in a time-dependent manner, reaching the maximum between 15 to 30 minutes (Figure 7A insert). Afterward, the levels of nitrotyrosine decreased gradually returning to basal levels after 180 minutes. A sample photomicrograph illustrates cellular staining at + 30 min of GTN exposure (Figure 7B). This rise in ONOO⁻ formation was investigated further by determining the effects of inhibiting NOS, or scavenging superoxide or ONOO⁻. Treatment of BAEC with GTN (10^{-5} M) for 30 min. increased ONOO⁻ formation as indicated by a 3-fold increase in nitrotyrosine levels (Figure 7A). Pretreatment with the NOS inhibitor L-NAME (5 \times 10^{-4} M), superoxide dismutase (SOD, PEG-linked, 100 U/ml), or the peroxynitrite, scavenger uric acid (10^{-3} M) also prevented the rise in nitrotyrosine in response to GTN. Uric acid totally blocked the GTN-induced nitrotyrosine formation. Moreover, treatment with either L-NAME or superoxide dismutase was equally as effective as uric acid in preventing nitration of tyrosine. The PKC inhibitor chelerythrine (10^{-6} M) also prevented the rise in nitrotyrosine in BAEC in response to GTN (Figure 8). Chelerythrine alone did not alter nitrotyrosine formation. These results suggest that NOS and PKC are involved in peroxynitrite formation in endothelial cells with exposure to GTN.
Glyceryl trinitrate (GTN) induces sustained translocation of the α and ε PKC isozymes to the particulate cell fraction in endothelial cells

The translocation of PKC isozymes from the cell supernatant to the cell particulate fraction has been used as an indirect measure of their activation in many cell types. We examined the effect of GTN on examples of three forms of isozymes of PKC – classical (α), novel (ε), and atypical (ζ). As a positive control for induction of PKC isozyme translocation, one group of BAEC was treated for 15 minutes with PMA (10^-8 M). PMA triggered a robust translocation of the α and ε PKC isozymes but not the ζ PKC isozyme to the particulate cell fraction (Figure 9, lane 7).

Other groups of BAECs were treated with GTN (10^-5 M) for times ranging from 15 minutes to 1 hr and PKC isozyme translocation was monitored (Figure 9, lanes 2-6). A second GTN (10^-5 M) treatment was then administered at 60 minutes and PKC isozyme distribution was monitored for 2 additional hrs. Samples were taken at the times shown in the figure. Cells were then lysed, fractionated and subjected to Western blot analyses. As shown in the figure (lane 1), the αPKC isozyme was found predominantly in the cell supernatant (cytosolic) fraction prior to GTN treatment. Following a 15 min exposure to GTN, there was a complete redistribution of αPKC from the supernatant to the cell particulate fraction (Figure 9, lane 1 vs. 2). However, by 30-60 min of GTN treatment αPKC immunoreactivity declined in the particulate fraction, but was still greater than in control, and reappeared in the cell supernatant fraction. Since GTN is rapidly metabolized, we hypothesized that the decline in αPKC translocation could be due to diminished GTN levels in our experiments. For that reason a second GTN bolus was delivered to the cells at 60 minutes which caused αPKC to once again repartition to the particulate cell fraction (Figure 9, lanes 5 and 6). The percentage of the αPKC isozyme found in the particulate cell fraction following 15 min., 1 hr and 3 hr GTN treatments were 100, 48 and 95%, respectively.
In contrast, the εPKC isozyme was found to be evenly distributed between the cell supernatant and particulate fractions prior to GTN treatment. Figure 9 demonstrates that GTN (10^{-5} M) treatment stimulated the translocation of the supernatant-localized εPKC to the particulate fraction. Similar to our findings with the αPKC isozyme εPKC translocation attained a maximal level following 15 minutes of GTN exposure. However, εPKC remained in the particulate fraction longer than αPKC. There was a return of εPKC immunoreactivity to the supernatant fraction at 30-60 minutes of GTN exposure (lanes 3-4), but this effect was smaller in magnitude than was observed for the αPKC isozyme. A second treatment of BAECs with GTN (10^{-5} M) triggered the retranslocation of the εPKC isozyme to the particulate fraction (lanes 5-6). Unlike the α and εPKC isozymes, the ζPKC isozyme was found almost entirely in the cell supernatant fraction before and after GTN treatments (Figure 9, bottom). There was no significant redistribution of ζPKC in response to PMA or GTN in these cells.
DISCUSSION

We have examined the roles of O$_2^{-}$, ONOO$^{-}$ and PKC activation in vascular GTN tolerance. Tolerance to GTN’s vasorelaxation effects was studied by determining GTN concentration-relaxation curves (CRC) in rat aortic rings before and after 2 hr treatment with GTN (5×10^{-4} M). Pretreatment of rings with GTN caused substantial tolerance to GTN’s vasodilating effect as evident by a large rightward shift of the CRC. This effect was substantially inhibited by concurrent treatment of the rings with the anti-oxidants uric acid, vitamin C, tempol, or by the PKC inhibitor chelerythrine. Our experiments showing that the combination of tempol and chelerythrine similarly reduced GTN tolerance suggest that both agents are working through reduction of oxidant levels - tempol is scavaging superoxide and other ROS, and chelerythrine is reducing oxidant formation by preventing PKC activation. Our findings confirm previous reports of involvement of oxidative stress and PKC activity in GTN tolerance (Munzel et al., 2000; Zierhut and Ball, 1996). Our finding that O$_2^{-}$ generation via treatment with xanthine / xanthine oxidase also induces a tolerance to GTN supports the role of O$_2^{-}$ as a mediator of GTN tolerance. The fact that the xanthine/xanthine oxidase treatment did not affect responses to the nitrovasodilator SNP demonstrates the specificity of the effect for GTN. This result is consistent with our earlier finding that GTN-tolerant vessels remain sensitive the the vasodilating effects of another potent nitrovasodilator, S-nitroso-N-acetyl penicillamine (SNAP) (Abou-Mohamed et al., 2000). The role of O$_2^{-}$ in GTN tolerance was further confirmed by our in vivo study showing that GTN tolerance produced in rats by a 3 day i.v. infusion of GTN was also almost completely prevented by the concurrent infusion of tempol.

We also examined endothelial mechanisms that might contribute to tolerance to GTN. We first demonstrated that GTN induces tolerance to its ability to increase cGMP in cultured bovine
aortic endothelial cells. Our data also showed that this effect is closely correlated with increases in tyrosine nitration of endothelial cell proteins and with translocation of the α and εPKC isozymes to the particulate fraction. Previous studies showing that tyrosine nitration of εPKC enhances its interaction with its intracellular receptor and movement to its active cell locus (Balafanova et al., 2002) suggest that these events are causally related. We next determined that the free radical scavengers SOD and uric acid completely abolished GTN-induced tyrosine nitration. These results indicate that GTN has marked oxidant effects on endothelial cells. These results are in concert with our previous studies (Abou-Mohamed et al., 2000; Kaesemeyer et al., 2000). This endothelial dysfunction and tolerance to GTN may be mediated, at least in part, by ROS such as superoxide and peroxynitrite, tyrosine nitration, and the α and εPKC isozymes. Additionally, we found that the selective NOS inhibitor L-NAME also abolished tyrosine nitration of proteins in these cells implying that NOS activation is required for this effect. This result is consistent with our previous study showing a role for NOS activation in GTN’s action on endothelial cells (Abou-Mohamed et al., 2000). The importance of NOS activation in GTN tolerance is further demonstrated by the fact that other NO donors which do not induce vascular tolerance such as sodium nitroprusside and SNAP, do not activate NOS or increase reactive oxygen species. Finally, we observed that the PKC inhibitor chelerytherine prevented tyrosine nitration indicating that PKC activation is also involved in the enhanced ONOO⁻ formation caused by GTN.

It is important to note that ONOO⁻ has the prominent ability to oxidize tetrahydrobiopterin (BH4) to dihydrobiopterin (BH2) (Milstein and Katusic, 1999). Loss of BH4 leads to further uncoupling of eNOS and more O₂⁻ formation (Stroes et al., 1998). Therefore, antioxidants and L-arginine, by reducing ONOO⁻ levels or formation, can be expected to promote normal
coupling of eNOS by the further action of maintaining BH4 levels. This may partially explain a recent observation that folic acid prevents tolerance to GTN (Gori et al., 2001). In addition to being a precursor for BH4 synthesis and a necessary co-factor for proper NOS function, folic acid and BH4 are also antioxidants (Verhaar et al., 2002; Nakamura et al., 2001).

Previous studies have shown that treating endothelial cells with GTN leads to increased O$_2^-$ formation (Dikalov et al., 1998; Kaesemeyer et al., 2000). Both vitamin C and the normal substrate for NOS, L-arginine reduce O$_2^-$ levels or production. It has also been shown that GTN both activates eNOS and inactivates the transporter system y^+ for uptake of arginine (Abou-Mohamed et al., 2000). Therefore, arginine can become depleted at the site of eNOS activity at caveoli of endothelial cells where eNOS and the L-arginine transporter (y^+) are colocalized. As this occurs, eNOS increasingly utilizes O$_2$ as its substrate and O$_2^-$ production increases. O$_2^-$, once formed, freely reacts with NO to form ONOO$^-$. Both of these reactive species are capable of producing further damage and suppression of the system y^+ transporter. Our observation that L-NAME blocked nitrotyrosine formation is consistent with our prior finding that eNOS is a site of superoxide formation in endothelial cells treated with GTN (Kaesemeyer et al., 2000).

Antioxidants protect y^+ transport function (Patel et al., 1996) and thereby provide arginine to the site of eNOS activity and interrupt this cycle. The y^+ system transporter also has recently been reported to be regulated by PKCα in porcine pulmonary artery endothelial cells (Krotova et al., 2003). With activation of PKCα, an initial suppression (\leq 1 hr) and a secondary increase (4-18 hr) in L-arginine transport were observed. These investigators suggest that translocated PKCα may inhibit L-arginine uptake by phosphorylation of the transporter. However, our data suggest that enhancement of O$_2^-$ and ONOO$^-$ production by PKC and GTN may oxidize the transporter and inhibit its function.
Involvement of endothelial cells in GTN tolerance has been supported by earlier studies. Munzel et al. (1995) demonstrated that removal of endothelial cells from rabbit aorta made tolerant to GTN markedly improved the vasorelaxation to GTN. Furthermore, an increase in vascular levels of O$_2^-$ in response to GTN was reduced with endothelial cell denudation. More recently, (Munzel et al., 2000) have shown that three day treatment of rats with GTN enhanced eNOS (type III) expression and O$_2^-$ production from eNOS. Furthermore, treatment of aortic rings with PKC inhibitors reduced O$_2^-$ production and tolerance to GTN. Our previous study also demonstrated the depressive action of GTN on L-arginine uptake in endothelial cells (Abou-Mohamed et al., 2000). In our present study, we also have noted that an increase endothelial cell production of cGMP in response to GTN is absent after sustained exposure to GTN (10^{-5} M for 1 hr). Thus, endothelial cells do exhibit a tolerance to an action of GTN.

A recent report using eNOS knockout and wild-type mice has suggested that endothelial NOS may not be critically involved in GTN tolerance because the degrees of tolerance to GTN in these two mouse strains were similar (Wang et al., 2002). We do not believe that this is the case because others have shown that in eNOS knock-out mice, expression of neural (n, type I) NOS is enhanced within the endothelial cells and vessels and is capable of maintaining vasodilator responses to increased flows (Huang et al., 2002). Thus, it is likely that this vascular-associated nNOS contributed to the development of tolerance in the eNOS-deficient mice.

Previous studies have indicated a role for PKC activation in GTN-induced vascular tolerance as inferred from the beneficial effect of chemical inhibitors of PKC in preventing the development of tolerance. Our data for the first time present evidence for the activation of PKC isoforms by GTN in endothelial cells and suggests a role for PKC activation by GTN in the development of
tolerance. Activation of PKC has been shown to raise \(O_2^- \) levels via activation of NAPDH oxidase (Bankers-Fulbright et al., 2001). Thus a positive feedback loop appears likely with \(O_2^- \) from NAPDH oxidase subsequently further inactivating system \(\gamma^+ \) uptake of arginine and leading to reduced arginine levels at the site of eNOS activity and more superoxide as the end result. Inhibitors of PKC, as well as antioxidants and L-arginine, would be expected to ameliorate tolerance to GTN by interrupting this vicious cycle. A proposed scheme of events is given in Figure 10.

In summary, tolerance to GTN in humans limits its therapeutic capacity as its effects wane with continuous use. The molecular mechanisms contributing to this tolerance has been studied extensively in vascular smooth muscle but the contribution of vascular endothelial cells to this phenomenon has received less attention. We therefore, have investigated this aspect of GTN-induced tolerance in intact rat aorta preparations and in isolated bovine aortic endothelial cells in culture. Our results indicate that GTN tolerance occurs at the level of endothelial cells and is associated with: 1) activation of NOS and PKC, and 2) production of superoxide and peroxynitrite free radicals, which occur temporally with the activation of the \(\alpha \) and \(\varepsilon \)PKC isozymes. These findings suggest potential therapeutic roles for agents which reduce ROS levels and selective inhibitors of PKC isozymes in attenuating nitrate tolerance.
Acknowledgements

The authors wish to recognize the contributions of Drs. Jianhe Yuan and Rahul Datar, and also James Zagrodnik to the conduct of the studies and preparation of the manuscript.
REFERENCES

Munzel T, Li H, Mollnau H, Hink U, Matheis E, Hartmann M, Oelize M, Skatchkov M,
nitroglycerin treatment on endothelial nitric oxide synthase (NOS III) gene expression,
NOS III-mediated superoxide production, and vascular NO bioavailability. Circ. Res.
86:e7-e12.

nitrate tolerance. Am J Cardiol 77:24C-30C.

vascular superoxide anion production in nitrate tolerance. A novel mechanism underlying

Nakamura K, Bindokas VP, Kowlessur D, Elas M, Milstien S, Marks JD, Halpern HJ and Kang
Chem 276:34402-34407.

effects of NO donors and synthase agonists on endothelial cell uptake of L-Arg and

Pagani ED, VanAller GS, O'Connor B and Silver PJ (1993) Reversal of nitroglycerin tolerance
in vitro by the cGMP-phosphodiesterase inhibitor zaprinast. Eur J Pharmacol 243:141-
147.

338:520-531.

supplemental L-arginine on tolerance development during continuous transdermal

Footnote to Title: This work was supported by funds from the American Heart Association – SDG-0130154N (to GA) and the National Institute of Health, HBLI-70215 (to RWC) and EYI-11766, EYI-04618 (to RBC)
FIGURE LEGENDS

Figures 1: Induction of tolerance to GTN in isolated rat aortic ring segments and the effects of prior treatment with (A) vitamin C (10^{-3} M), (B) uric acid (10^{-3} M), and (C) 4-hydroxyl tempol (10^{-3} M). Vessels made tolerant to GTN (▲) were incubated for 2 hr with GTN (5x10^{-4} M, replenished after 1^{st} hr.). Control responses to GTN (◊) were obtained in vessels which were not exposed to GTN (5x10^{-4} M) for 2 hr. Effects of concurrent treatment of vessels exposed to GTN (5x10^{-4} M, 2 hr) with each of the three anti-oxidants are displayed as dashed lines (■).

Figure 2: Effect of antioxidants alone on the vasorelaxant responses to GTN. Control responses to GTN (♦) were obtained in vessels not exposed to GTN for 2 hr. Effects of (A) vitamin C (10^{-3} M), (B) uric acid (10^{-3} M), or (C) 4-hydroxyl tempol (10^{-3} M) in the bath upon responses to GTN are shown in the lines with the symbol (Δ).

Figure 3: Effect of chelerythrine (A) or chelerythrine and 4-hydroxy tempol (B) on tolerance to GTN. Vessels made tolerant to GTN (▲) were incubated for 2 hr with GTN (5x10^{-4} M, replenished after 1^{st} hr.). Control responses to GTN (◊) were obtained in vessels not exposed to GTN for 2 hr. Effects of concurrent treatment of vessels exposed to GTN (5x10^{-4} M, 2 hr) with chelerythrine (10^{-6} M) or chelerythrine (10^{-6} M) and 4-hydroxy tempol (10^{-3} M) are displayed as dashed lines (■).

Figure 4: Effect of xanthine/xanthine oxidase (10^{-5} M /0.5 mU/ml), replenished every 10 min for 1 hr, on A) GTN-induced and B) sodium nitroprusside (SNP)-induced relaxation of rat aortic ring segments. Control responses to GTN or SNP are displayed in solid line (◊); responses after xanthine/xanthine oxidase treatment and tissue washes are shown as dashed line (▲).

Figure 5: Effects of induction of tolerance to GTN in vivo by continuous i.v. infusion of GTN into rats for 3 days (15 mg/kg/day) on the vasorelaxant responses of GTN in aortic ring segments.
isolated from these rats (▲). These GTN concentration-response curves were compared to those obtained using vessel segments from rats treated with a 3 day i.v. infusion of 4-hydroxy tempol (13.3 mg/kg/day) in addition to GTN infusion (dashed line ■), and vessels from control rats, not receiving infusion of either agent (◊).

Figure 6: Effect of challenge dose of GTN (10\(^{-6}\) M, gtn) or vehicle control (Control) on formation of cGMP in BAEC before and after 1 hr exposure to a 10\(^{-5}\) M concentration of GTN. Values are pmol/ml/5 min (*P<0.05 vs control levels).

Figure 7: Effects of GTN (10\(^{-5}\) M) exposure of BAEC on formation of nitrotyrosine. A. Insert displays the time course of the increase in nitrotyrosine levels (optical density) after GTN treatment (*P<0.05 vs control levels). Main graph displays effects of exposure to GTN for 30 min alone or in the presence of superoxide dismutase (SOD, 80 U/ml), uric acid (10\(^{-3}\) M) or L-NAME (5x10\(^{-4}\) M) on nitrotyrosine levels. (*p<0.05 vs control). B. Sample micrograph illustrates cellular staining after 30 min of GTN exposure.

Figure 8: Effects of GTN (10\(^{-5}\) M) exposure of BAEC in the presence of chelerytherine (10\(^{-6}\) M) on formation of nitrotyrosine (*P<0.05 vs control levels).

Figure 9: Effects of GTN (10\(^{-5}\) M) treatment at time 0 and + 60 min on the translocation of the α, ε and ζPKC isozymes in BAECs. Cells were isolated and cultured as described in “Methods” and treated with GTN for the times shown. Cells were then lysed and fractionated into cell supernatant (S) and particulate (P) fractions by centrifugation. Western blots were then conducted on each fraction with antisera selective for the α, ε or ζPKC isozymes as indicated on the left hand side of the figure. Data are the mean of 2 to 3 experiments. Western blot detection
was conducted using 125I-protein A and autoradiography as described in Methods. In the top panels of the figure optical density (O.D.) values for PKC isozyme immunoreactivity in the S and P fractions are plotted. These values were obtained by densitometric analysis of autoradiographs as described in Methods. The bottom portion of the figure is a representative autoradiograph demonstrating the changes in the redistribution PKC isozymes induced by GTN treatment. Shown is a typical autoradiograph from one of 3 experiments.

Figure 10: Proposed signaling events involved in GTN-induced tolerance in endothelial cells. Physiologic endothelial cell NO production is shown in the bottom left of the figure (in blue/shaded area). Under these conditions eNOS has adequate L-arginine substrate and tetrahydrabioperin (BH4) cofactor from which NO can be synthesized. Following prolonged elevation of NO and activation of NOS, the cells develop tolerance to subsequent GTN treatment. The hypothetical signaling events involved in tolerance are shown in yellow/non-shaded area. GTN may increase production or levels of either O_2^- or NO. The O_2^- can come either from uncoupled NOS or another source. The NO may come from denitration of GTN or its activation of coupled NOS. NO rapidly reacts with O_2^- to form the highly reactive peroxynitrite (ONOO-) which can promote the uncoupling of eNOS by oxidizing BH4 to BH2 and oxidizing the y+ (L-arginine) transporter and reducing its function. When eNOS is “uncoupled”, it produces superoxide (O_2^-). Peroxynitrite and O_2^- have been shown to prompt translocation and activation of PKC isozymes. Our results have demonstrated enhanced translocation of the α and εPKC isozymes to the cell particulate fraction (RACK –Receptor for Activated C-Kinase) following challenge with GTN. Active PKC isozymes have also been shown to enhance O_2^- production by NADPH oxidase in these cells, exerting a positive feedback system for increasing O_2^-.
Effect of Vitamin C on GTN-Induced Tolerance

% Maximal Relaxation

- Log Molar Concentration - GTN

- Control
- GTN + Vitamin C
- GTN Tolerant

This article has not been copyedited and formatted. The final version may differ from this version.

JPET Fast Forward. Published on October 16, 2003 as DOI: 10.1124/jpet.103.056119
at ASPET Journals on September 6, 2017 jpet.aspetjournals.org Downloaded from
Effect of Uric acid on GTN- induced Tolerance

% of Maximal Relaxation

- Log Molar Concentration - GTN

- Control
- Uric Acid
- GTN Tolerant
Effect of Tempol on GTN-Induced Tolerance

- Log Molar Concentration - GTN

% of Maximal Relaxation

Control
Uric Acid
GTN Tolerant
Effect of Chelerythrine on Tolerance to GTN

This article has not been copyedited and formatted. The final version may differ from this version.
Effect of Chelerythrine and Tempol on Tolerance to GTN

- Log Molar Concentration - GTN

% Maximal Relaxation

- Control
- GTN+Chelerythrine+Tempol
- GTN Tolerant
Effect of superoxide generation on responses to GTN

- Control
- ·X/XO Pretreat

% Maximal Relaxation

Log Molar Concentration - GTN

0 10 100
0 5 10
1 2 3 4 5 6 7 8 9 9.5 10

This article has not been copyedited and formatted. The final version may differ from this version.

JPET Fast Forward. Published on October 16, 2003 as DOI: 10.1124/jpet.103.056119

Downloaded from jpet.aspetjournals.org on September 6, 2017
Effect of superoxide generation on responses to SNP

% Maximal Relaxation

- Log Molar Concentration - SNP

Control

X/XO Pretreat

This article has not been copyedited and formatted. The final version may differ from this version.
Effect of Tempol on GTN-Induced Tolerance *Vivo*

```
% of Maximal Relaxation

- Log Molar Concentration - GTN

Control
GTN + Tempol
GTN Tolerant

0 10 110
10 9.5 9 8.5 8 7.5 7 6.5 6 5.5 5 4.5
```
Before exposure to GTN (10^{-5}M) for 1 hr

Control | GTN | Control | GTN

pmols/ml - cGMP

0.16 | 0.14 | 0.12 | 0.10 | 0.08 | 0.06 | 0.04 | 0.02 | 0.00

Control | GTN | Control | GTN

* denotes significance.
Effect of GTN on Nitrotyrosine Formation

- Control
- Alone
- +SOD
- + Uric acid
- + L-NAME

Optical Density - Nitrotyrosine
Nitrotyrosine - BAEC

Control

GTN
Effect of Chelerythrine on Nitrotyrosine Levels

- - -
- + -
- - +
+ + +

Optical Density - Nitrotyrosine

0 5 10 15 20 25 30 35 40 45

Control C+T GTN GTN_PKC

Chelerythrine

GTN