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hydroxypropyl)xanthine; DMPX, 3,7-dimethyl-1-propargylxanthine; MSX-3, phosphoric acid 

mono-(3-{8-[2-(3-methoxyphenyl)vinyl]-7-methyl-2,6-dioxo-1-prop-2-ynyl-1,2,6,7-tetra-

hydropurin-3-yl}propyl)ester; PSB-50, 8-(p-bromophenyl)-1-propargylxanthine; PSB-53, 4-

(1-butylxanthin-8-yl)benzoic acid; PSB-1115, 1-propyl-8-(p-sulfophenyl)xanthine; PSB-55, 

8-{4-[2-(4-benzylpiperazin-1-yl)-2-oxo-ethoxy]phenyl}-1-butylxanthine; enprofylline, 
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3-propylxanthine; PSB-10, (R)-8-ethyl-4-methyl-2-(2,3,5-trichlorophenyl)-4,5,7,8-tetrahydro-

1H-imidazo[2,1-i]purin-5-one; 8-SPT, 8-(p-sulfophenyl)theophylline; 8-SPC, 8-(p-sulfo-

phenylcaffeine). 
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ABSTRACT 

Caffeine, an adenosine A1, A2A and A2B receptor antagonist, is frequently used as an adjuvant 

analgesic in combination with non-steroidal anti-inflammatory drugs or opioids. In this study 

we have examined the effects of novel specific adenosine receptor antagonists in an acute 

animal model of nociception. Several A2B-selective compounds showed antinociceptive 

effects in the hot-plate test. In contrast, A1- and A2A- selective compounds did not alter pain 

thresholds, and an A3 adenosine receptor antagonist produced thermal hyperalgesia. 

Evaluation of psychostimulant effects of these compounds in the open field showed only 

small effects of some antagonists at high doses. Co-administration of low, sub-effective doses 

of A2B-selective antagonists with a low dose of morphine enhanced the efficacy of morphine.  

Our results indicate that analgesic effects of caffeine are mediated - at least in part - by A2B 

adenosine receptors. 
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Introduction 

Caffeine has intrinsic antinociceptive properties and is frequently used as an adjuvant 

analgesic drug (Malec and Michalska, 1988; Sawynok and Yaksh, 1993). Although it is 

thought that caffeine analgesia is produced, at least in part, through adenosine receptor 

antagonism it is unclear which receptor subtypes are involved. The adenosine receptor family 

comprises four subtypes, A1, A2A, A2B and A3 (Fredholm et al., 2001). They are widely 

distributed in the CNS and peripheral tissues: The A1 receptors are found in high density in 

the brain (cortex, cerebellum and hippocampus) and the dorsal horn of the spinal cord, and at 

lower levels in other brain regions and in peripheral tissues (Rivkees et al., 1995; Fredholm et 

al., 2001). The A2A receptors show a more restricted expression pattern in the CNS with high 

levels in the striatum, nucleus accumbens and olfactory tubercle (Ongini and Fredholm, 

1996). In the periphery, A2A receptors are highly expressed in spleen, thymus, leukocytes and 

blood platelets (Ongini and Fredholm, 1996). A2B and A3 receptors are widely distributed, but 

have a low density in the CNS (Dixon et al., 1996). In the periphery A2B receptors are highly 

expressed in the large intestine, on mast cells and hematopoietic cells (Feoktistov and 

Biaggioni, 1995). A3 receptors show a species-dependent distribution: in rats, testis and mast 

cells express A3 receptors in high density (Salvatore et al., 1993), while humans exhibit high 

A3 receptor expression in the lung and in cells of the immune system (Salvatore et al., 1993). 

A1 receptors can couple to Gi thus inhibiting the formation of cAMP, while  stimulation 

of A2 receptors, which bind to Gs leads to an increase in adenylate cyclase activity (Fredholm 

et al., 2001). A1 receptors also activate phospholipase C and phospholipase D (Fredholm et 

al., 2001). A2 receptors are further subdivided into subtypes A2A and A2B, based on the 

recognition that stimulation of the adenylate cyclase by adenosine (through Gs or in the 

striatum through Golf) in rat brain was mediated via distinct high affinity (localized in high 

density in striatal membranes) and low affinity binding sites (present in low density 

throughout the brain) (Daly et al., 1983). A2B receptors can also stimulate phospholipase C via 

This article has not been copyedited and formatted. The final version may differ from this version.
JPET Fast Forward. Published on October 16, 2003 as DOI: 10.1124/jpet.103.056036

 at A
SPE

T
 Journals on A

pril 19, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


 

6 

 

Gq activation (Feoktistov and Biaggioni, 1997). A3 adenosine receptors are coupled to Giα2-, 

Giα3-, and to a lesser extent to Gq/11 protein (Palmer and Stiles, 1995).  

The role of adenosine receptors in nociception is complex and may involve different 

mechanisms in the central nervous system and in peripheral tissues. For example, spinal 

administration of adenosine receptor agonists produces antinociception in a variety of animal 

models of pain, presumably through the activation of spinal A1 and to a lesser extent through 

A2 receptors (Holmgren et al., 1986; Sawynok, 1998). Adenosine can produce analgesic or 

pronociceptive effects (Doak and Sawynok, 1995) through the activation of peripheral A1 and 

A2 receptors, respectively (Taiwo and Levine, 1990; Doak and Sawynok, 1995). It has been 

suggested that antagonism of peripheral adenosine A2 receptors accounts, at least in part, for 

caffeine analgesia (Taiwo and Levine, 1990; Karlsten et al., 1992).  

A number of studies have shown interactions between adenosine receptors and the opioid 

system. Caffeine potentiated the analgesic effects of morphine, decreased the morphine-

induced hyperactivity in mice, and inhibited the development of tolerance to morphine in rats 

(Malec and Michalska, 1988).  

In this study we  examined the roles of specific adenosine receptor subtypes in analgesia 

and morphine synergism using several novel subtype-selective adenosine receptor 

antagonists. We  demonstrate an analgesic effect of A2B receptor-selective compounds. 
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Experimental Procedures 

Chemicals. The following compounds were tested in this study: DPCPX, 8-cyclopentyl-1,3-

dipropylxanthine; PSB-36, 1-butyl-8-(3-noradamantyl)-3-(3-hydroxypropyl)xanthine; DMPX, 

3,7-dimethyl-1-propargylxanthine; MSX-3, phosphoric acid mono-(3-{8-[2-(3-

methoxyphenyl)vinyl]-7-methyl-2,6-dioxo-1-prop-2-ynyl-1,2,6,7-tetrahydro-purin-3-

yl}propyl)ester; PSB-50, 8-(p-bromophenyl)-1-propargylxanthine; PSB-53, 4-(1-

butylxanthin-8-yl)benzoic acid; PSB-1115, 1-propyl-8-(p-sulfophenyl)xanthine; PSB-55, 8-

{4-[2-(4-benzylpiperazin-1-yl)-2-oxo-ethoxy]phenyl}-1-butylxanthine; enprofylline, 3-

propylxanthine; PSB-10, (R)-8-ethyl-4-methyl-2-(2,3,5-trichlorophenyl)-4,5,7,8-tetrahydro-

1H-imidazo[2,1-i]purin-5-one; 8-SPT, 8-(p-sulfophenyl)theophylline; 8-SPC, 8-(p-

sulfophenylcaffeine); morphine-HCl; codeine sulfate; acetylsalicylic acid; caffeine. For 

structures and affinities of adenosine receptor antagonists and reference compounds see Table 

1. Methylcellulose sodium salt, caffeine, morphine-HCl, codeine sulfate, ∆9-

tetrahydrocannabinol (THC), acetylsalicylic acid sodium salt, DMPX, DPCPX and 

enprofylline were purchased from Sigma-Aldrich (Steinheim, Germany); carrageenan was 

from Carl Roth (Karlsruhe, Germany). PSB-36, MSX-3, PSB-50, PSB-53, PSB-1115, PSB-

55, PSB-10, 8-SPT, and 8-SPC were synthesized in our laboratory. The adenosine receptor 

affinities of compounds used in this study, were determined experimentally by published 

standard procedures, or taken from the literature (see Table 1).  For the selective A2B 

antagonists PSB-1115 and PSB-53 effects on specific radioligand binding to 30 different 

receptors were determined by a company (Cerep, Poitiers, France) at a high concentration of 

3 µM. 

Animals. Male NMRI mice (32 – 40 g, Charles River Deutschland GmbH, Sulzfeld) were 

housed in groups of 5 mice per cage at a temperature of 23 - 24°C and a 12 h light/dark cycle. 

Standard food pellets (Altromin 1324 R. Germany) and water were available ad libitum. 
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Experiments were approved by a local ethics committee. All animals were acclimatized for 2 

weeks prior to the initiation of the experiments. Animals were used only once, and were 

euthanized after the test. The experiments were performed during the light phase between 

07.00 and 16.00 h 

Hot-plate test. Antinociceptive effects of the compounds were evaluated in the hot-plate test. 

Mice (10 per group) were injected intraperitoneally with drug, or the control animals with 

solvent (1% methylcellulose) in a volume of 10 ml/kg. At the times indicated, they were 

placed individually on a hot-plate apparatus (Columbus Instruments, Ohio, USA), a 25 x 25 

cm metal surface maintained at 52 ± 0.1°C and surrounded by a 40 cm high plexiglass wall. 

The latency of hindpaw licking was determined using a timer integrated into the hot-plate 

system. A cut-off time of 60 s was used to prevent tissue damage. The paw-surface 

temperature was determined 50 minutes after drug injection using a contact thermometer. The 

level of analgesia was expressed as % of the maximum possible effect (MPE): MPE = 

[(latency drug-treated – latency control) / (cutoff time – latency control)] x 100. If possible, we 

calculated ED50 values for analgesic drug efficacy. We used only those compounds where 

data from at least five doses were available. All calculations were performed using 

logarithmic dose-values and sigmoid curve fit. The ED50 values were calculated by applying 

the Hill’s equation using the Prism software (GraphPad Software Inc.).  

Open field test. To determine possible psychostimulant drug effects, we determined the 

locomotor activity in the open field in mice that were treated under the same conditions as for 

the analgesia testing. Briefly, animals (6 - 8 per group) were injected ip with drug or MC 

(controls) and placed into the center of an open field apparatus (42 x 42 x 28 cm) after 30 

min. Activity of the animals was tracked by an automatic monitoring system (ActiMot, TSE, 

Germany) for 10 minutes under normal lighting conditions. Horizontal motor activity was 

evaluated and expressed as distance travelled (in m). 
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Statistical Analysis. Data were analyzed by one-way ANOVA followed by Dunnett´s test or 

in case of the interaction studies by Bonferroni test . The 0.05 level of probability was used as 

the criterion for significance. The group sizes are shown in the description of the methods 

above. All data were expressed as mean values ± S.E.M.. 

 

Results 

Adenosine receptor affinity and selectivity of compounds. All non-commercially available 

compounds used in this study (shown in Table 1) were synthesized in our laboratory. The 

affinities and selectivities for adenosine receptor subtypes of the test compounds were 

described previously or determined by published standard procedures in radioligand binding 

assays at native (A1, A2A) or recombinant (A2B, A3) adenosine receptors. Ki values are 

summarized in Table 1. It should be noted that these binding data were mostly obtained with 

human and rat adenosine receptors. Mouse data were only available for some compounds at 

the A2B receptor (Brackett and Daly, 1994), although the Ki values are likely to be similar in 

the highly homologous human, rat and mouse A1, A2A and A2B receptors (Fredholm et al., 

2001; Kim et al., 2002). Only the A3 adenosine receptor exhibits larger species differences, 

many antagonists exhibiting a considerably lower affinity for the rat than for the human A3 

adenosine receptor subtype. Thus, it is likely that the A3 affinity at mouse A3 receptors may 

even be lower than at human A3 receptors for the compounds used in this study. The 

selectivity of the A2B adenosine receptor antagonists PSB-53 and PSB-1115 was further 

investigated in radioligand binding assays at a series of 30 different receptors, including 

adrenergic, angiotensin, benzodiazepine, bradykinin, cholecystokinin, dopamine, endothelin, 

GABA, NMDA, histamine, muscarinic and nicotinic acetylcholine, neurokinin, opioid, 

serotonin, and vasopressin receptors, as well as neurotransmitter transporters for 

norepinephrine, dopamine and serotonin. At a high concentration of 3 µM both compounds 
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showed only low to negligible binding to all investigated drug targets, except for the 

adenosine receptors (data not shown). Therefore the compounds appear to be truly selective 

A2B adenosine receptor antagonists.  

The compounds include (a) the potent A1-selective antagonists DPCPX and PSB-36, 

both compounds exhibiting high selectivity over all other adenosine receptor subtypes, (b) the 

water-soluble prodrug MSX-3 of the potent A2A-selective antagonist MSX-2, (c) the A3-

antagonist PSB-10, (d) four recently developed A2B-selective adenosine receptor antagonists 

(PSB-1115, PSB-50, PSB-53, PSB-55), (e) the moderately potent standard antagonists 

caffeine, DMPX, and enprofylline, which has moderate selectivity for A2B receptors (3-7-fold 

vs. A1, 3-28-fold vs. A2A, highly selective vs. A3), and (f) two sulfophenylxanthine 

derivatives, structurally related to the A2B-selective antagonist PSB-1115, one of which is 

virtually inactive at adenosine receptors (8-SPC), the other one being a non-selective A1/A2B 

antagonist (see Table 1). The A2B-selective antagonist PSB-1115 and the structurally related 

sulfophenyltheophylline (8-SPT) and sulfophenylcaffeine (8-SPC) would not penetrate into 

cells or into the brain (Daly, 2000), and can thus be used as pharmacological tools to 

distinguish extracellular from intracellular, and peripheral from central effects.  

Hot-plate test. The antinociceptive activity of these compounds was evaluated in the 

hot-plate test in mice, an acute animal pain model. The results are summarized in Fig. 1,  

Table 2, and Table 3. A time course analysis of several adenosine receptor antagonists was 

performed. As shown in Table 2,  PSB-1115, PSB-55 and PSB-10 showed their maximum 

effect after 30 minutes. This time point was chosen for all further studies with independent 

groups of animals. Caffeine, a virtually non-selective A1/A2A/A2B adenosine receptor 

antagonist with a slight preference for the A2B receptor produced a robust dose-dependent 

analgesia in this test. In contrast, the A1 selective antagonists DPCPX and PSB-36 were not 

effective in doses up to 100 mg/kg. The A2 non-selective antagonist DMPX, which shows a 

slight preference for the A2B versus the A2A adenosine receptor (Table 1), exhibited 
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antinociceptive activity at 30 mg/kg. When subtype-selective antagonists were used, we found 

no effect with the A2A-selective compound MSX-3, while all A2B-selective compounds (PSB-

50, PSB-53, PSB-1115, PSB-55 and enprofylline) produced a dose-dependent effect in hot-

plate analgesia. PSB-50 was effective at 75 mg/kg, but not at 100 mg/kg. However, we 

observed profound hypomotility/ataxia and sedation in animals treated with 100 mg/kg. 

Surprisingly, we found a dose-dependent decrease in hot-plate response latencies in mice 

treated with the A3 antagonist PSB-10. Thus, PSB-10 appeared to produce hyperalgesia. 8-

SPT and 8-SPC, which are structurally similar to the A2B-selective compound PSB-1115, but 

were either non-selective (8-SPT), or virtually inactive at adenosine receptors (8-SPC), did 

not show any antinociceptive efficacy. The antinociceptive effects of codeine sulfate, 

morphine hydrochloride, and acetylsalicylic acid were also tested and are shown for 

comparison (Table 3). To determine, if the compounds had any effects on the body 

temperature of the animals, which might interfere with the hot-plate result, we determined the 

paw-surface temperature using a contact thermometer 30 minutes after drug injection. The 

results are shown in Fig. 2. Neither PSB-1115, nor PSB-55, nor PSB-10, nor caffeine 

produced changes of the animals paw temperature. In contrast, injection of 4 mg/kg ethanol, 

which is known to produce hypothermia, led to a readily detectable, highly significant 

reduction in paw temperature.  

Open-field test. To evaluate possible effects of active compounds on locomotor 

activity, we used the open field test (Fig. 3). High dose of enprofylline (100 mg/kg) reduced 

locomotor activity, but neither with an antinociceptive dose of 100 mg/kg of PSB-53, nor with 

enprofylline and PSB-50, at an analgesic dose of 75 mg/kg effects on the locomotor activity 

were seen. No significant locomotor effects were observed with the analgesic compounds 

DMPX and PSB-1115. The hyperalgesic compound PSB-10 also not reduced locomotor 

activity at a high dose of 100 mg/kg.  
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Interaction with morphine. Because caffeine is known to enhance the analgesic effect 

of morphine, we wanted to investigate possible interactions between A2B antagonists and 

morphine. We therefore evaluated hot-plate response latencies of animals treated with a low 

(non-effective) dose of A2B antagonists, a low dose of morphine, or a combination of both. As 

shown in Fig. 4, the efficacy of morphine was increased by each compound except PSB-50. 

We selected among the active compounds PSB-1115 (10 mg/kg) and tested whether it also 

affected the efficacy of ∆9-tetrahydrocannabinol (THC, 20 mg/kg, threshold-dose of THC). 

However, we did not find any significant enhancement of THC analgesia (p > 0.36). 
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Discussion 
 
Adenosine has dual activity on nociception. It acts centrally within the spinal cord to suppress 

nociceptive signaling (Sawynok and Yaksh, 1993), presumably through the activation of A1 

and A2 adenosine receptors (DeLander and Hopkins, 1986). In the periphery adenosine has 

algogenic activity, which is probably mediated by A2 receptors (Taiwo and Levine, 1990; 

Karlsten et al., 1992; Sawynok and Yaksh, 1993). Caffeine, a virtually non-selective A1-, A2A-

, and A3-adenosine receptor antagonist, exhibits antinociceptive effects and shows adjuvant 

analgesic properties in combination with opioid and non-opioid analgesics (Sawynok and 

Yaksh, 1993; Sawynok, 1998). 

In this study we investigated the effects of systemic administration of adenosine 

receptor subtype-selective antagonists on pain sensation. Results obtained with subtype-

selective antagonists may provide better insights into the (patho)physiological role of specific 

adenosine receptors in pain models than agonists, because agonists can target receptors that 

have no role in control by endogenous adenosine, while antagonists block physiological 

stimulation of the receptors.  

A1-selective adenosine receptor antagonists were not hyperalgesic in the hot-plate test. 

Thus, although the activation of central A1 receptors seems to play an important role in spinal 

antinociception (Reeve and Dickenson, 1995; Nakamura et al., 1997), the pharmacological 

blockade of this receptor has no effect on pain responses in the applied animal models. This 

cannot be due to lacking CNS penetration of DPCPX, since it has been shown that the 

compound does penetrate into the brain in concentrations sufficient to block A1 receptors 

(Finlayson et al., 1997). In A1 knockout mice the analgesic effect of intrathecal adenosine 

analogs was lost suggesting that this receptor subtype is responsible for the central analgesic 

effects of adenosine. These animals showed an increased pain sensation in the tail-flick test, 

but not in the von-Frey test (Johansson et al., 2001). It is likely that the role of A1 receptors in 

the central processing of nociceptive signals may not have become evident in our models. In a 
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recent study, DPCPX had exhibited pronociceptive effects only at a low dose of 1 mg/kg, but 

not at 3 or 10 mg/kg (Bastia et al., 2002). This had been explained by the potentially low 

selectivity at higher concentrations. In fact, DPCPX is highly selective versus the other 

adenosine receptor subtypes in rodents. PSB-36, an even more selective A1 antagonist, also 

did not show any pronociceptive effects in our hands. 

 The selective A2A antagonist MSX-3 was also ineffective, although A2A knockout mice 

displayed a hypoalgesic phenotype (Ledent et al., 1997). Disparate results from knockout and 

pharmacological studies are not uncommon. They may be due to pharmacokinetic effects, or 

to developmental effects of the gene knockout, or both. In this case, pharmacological 

blockade of the A2A receptors may not be sufficient to produce antinociception, or the central 

and peripheral effects of A2A receptor inhibition counterbalance each other. Recently, 

antinociceptive effects of the A2A-selective antagonist SCH-58261 were described (Bastia et 

al., 2002), which is structurally different from the styrylxanthine derivative MSX-3. However, 

the A2A antagonist was only effective in the hot plate test after intrathecal and not after 

systemic application.  

Here we report for the first time that A2B receptor antagonists are potent analgesic 

agents. Because the virtually nonselective A2  receptor antagonist DMPX (only slightly 

selective for A2B versus A2A receptors) was active in our models but not the A2A-selective 

antagonist MSX-3, we feel that the DMPX effects may be due to the inhibition of A2B 

receptors. A variable response was observed with compound PSB-55, which was effective 

only at the highest dose tested (100 mg/kg), although this compound has the highest affinity 

to the A2B receptors of all compounds tested (Hayallah et al., 2002). PSB-55 has a relatively 

high molecular weight and rather low water-solubility. We therefore feel that the probably 

unfavorable pharmacokinetic properties, of this compound may be responsible for the variable 

in vivo effects.  
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To determine possible locomotor effects of adenosine receptor antagonists, which may 

complicate the interpretation of hot-plate results, we studied locomotor activity after drug 

treatment in the open-field. We found that high dose of the analgesic compound enprofylline 

(100 mg/kg) reduced locomotor activity. However, no locomotor effects were observed with 

PSB-53 at100 mg/kg where strong analgesia was observed, nor with enprofylline and PSB-50 

at an analgesic dose of 75 mg/kg. Also, we did not observe any locomotor effects with the 

antinociceptive compounds DMPX and PSB-1115. In addition, PSB-10 also did not alter 

locomotor activity at 100 mg/kg, although animals showed significantly decreased hot-plate 

response latencies. Thus, the hot-plate analgesia observed after A2B antagonist administration 

cannot easily be accounted for by their locomotor effects. 

We found that the peripherally acting A2B antagonist PSB-1115, which probably cannot 

penetrate the blood brain barrier due to its polar sulfonate group (Baumgold et al., 1992), is a 

potent analgesic compound. Therefore A2B analgesia must be produced by a  peripheral effect. 

Sulfonates such as PSB-1115 will also not penetrate cell membranes and therefore cannot 

inhibit intracellular enzymes (Daly, 2000). Thus, the observed effects clearly have to be due 

to an extracellular mechanism and are believed to be mediated by a blockade of peripheral 

A2B adenosine receptors. This is confirmed by the lacking affinity of PSB-1115 and another 

A2B-selective antagonist, PSB-53, for a series of 30 receptors, which are known drug targets.  

The A3 adenosine receptor antagonist PSB-10 significantly increased pain sensation in 

the hot-plate test. It should be noted that PSB-10 is a very potent and selective A3 antagonist 

in humans (Ozola et al., 2003), but may be less potent at mouse A3 receptors. Highly potent 

and selective rodent A3 antagonists are currently not available (Müller, 2003). 

Caffeine has a virtually non-selective A1, A2A and A2B antagonist activity on adenosine 

receptors, with a slight preference for A2B receptors. Caffeine analgesia in our models was 

similar to that described in the literature (Malec and Michalska, 1988), although the non-

selective adenosine receptor blocker 8-SPT remained ineffective in our pain tests. The main 
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differences between caffeine and 8-SPT with regard to their actions at adenosine receptors are 

(i) the high polarity of 8-SPT, which cannot penetrate the blood-brain barrier in contrast to 

caffeine, and (ii) the (small) selectivity of caffeine for A2B versus A1 adenosine receptors. 

Other activities of caffeine (alteration of catecholamine or acetylcholine release and turnover, 

inhibition of phosphodiesterases, influence on intracellular calcium concentrations, interaction 

with GABAA receptors, or an as yet unknown mechanism) may contribute to its 

antinociceptive effects as well (Sawynok and Yaksh, 1993; Daly, 2000). Also, selectivity for 

A2B versus A1 receptors may play a role since A1 antagonism may counteract the 

antinociceptive effect mediated by A2B antagonists. In vivo, in the presence of high adenosine 

concentrations released by noxious stimuli, the A2B selectivity of caffeine may even be higher 

than in vitro, since A2B adenosine receptors exhibit low affinity for adenosine (EC50 ~ µM) 

while A1 adenosine receptors are high affinity receptors (EC50 of adenosine ~ nM) (Fredholm 

et al., 2001).  

In summary, our results indicate an important role of adenosine  A2B and A3 receptors in 

pain signaling. A2B receptors have previously been proposed to mediate pro-nociceptive 

effects at peripheral sites (Sawynok et al., 1997). Since the compounds in these studies are 

likely to produce their anti-nociceptive effects also peripherally, they support the role of A2B 

receptors in peripheral pain signaling. However, our study revealed a pronociceptive effect of 

an A3 receptor antagonist, which was unexpected, because previous studies have indicated 

that those receptors may also be involved in peripheral pain signaling (Sawynok et al., 1997).  

Caffeine is frequently used as an adjuvant analgesic in the medical practice for the 

treatment of various types of pain such as headache, postpartum pain, postoperative pain, and 

dental surgery pain (Sawynok and Yaksh, 1993) in combination with non-steroidal anti-

inflammatory drugs (Cass and Frederik, 1962; Sawynok and Yaksh, 1993) or in combination 

with morphine (Malec and Michalska, 1988). There is a large body of evidence pointing to an 

interaction between the opioid and adenosine systems in the modulation of pain signaling. 
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Morphine enhances the release of adenosine from the spinal cord and cortex (Phillis et al., 

1980; Cahill et al., 1996), presumably through a synergistic activation of mu and delta opioid 

receptors (Cahill et al., 1996). Pharmacological studies have indicated that the A1 and A2A 

receptors may be downstream mediators of morphine analgesia (Keil and DeLander, 1994; 

Sawynok, 1998), although studies in A2A knockout mice failed to reveal any differences in 

mu-receptor dependent anlagesia (Bailey et al., 2002). The results from this study indicate 

that the analgesic effects of centrally released adenosine may be counterbalanced by pro-

nociceptive A2B receptor-mediated peripheral effects of adenosine. The lack of synergistic 

effects between A2B selective compounds and THC indicates that the synergism is specific for 

the opioid system and not due to a general increase in antinociceptive drug efficacy. Specific 

A2B receptor antagonists might therefore be valuable adjuvant drugs for opioid analgesia with 

minimal side effects. 
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Table 1   Structures of adenosine receptor antagonists and affinities at adenosine  
  receptor subtypes 

 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   
Ki [nM] (species)a 

 
No. 

 
Compound A2B A1 A2A A3 

1 Caffeine 13,000 (m)d,1 

10,400 (h)4 
41,000 (r)2 

44,900 (h)c 
 

43,000 (r)2 

23,400 (h)c 
 

>100,000 (r)3 
13,300 (h)5 

2 DMPX 
 

2,500 (m)d,1 

4,130 (h) 4 
45,000 (r)6 

 
16,000 (r)6 

 
>10,000 (h)c  

3 Enprofylline 
 

4,730 (h)4
 32,000 (r)7 

 
135,000 (r)7 
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8b  R = PO 3Na2:  MSX-3 (prodrug of MSX-2)

10  R1 = propyl, R 2 = SO3H: PSB-1115
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9 PSB-10 
 

30,000 (h)c 805 (r)13 6,040 (r)13 0.441 (h)13 

10 PSB-1115 

 
53 (h)11 2,200 (r)11 24,000 (r)11 >10,000 (h)c 

11 PSB-5311 
 

24 (h) 481 (r) 3,800 (r) 4,622 (h) 

12 PSB-5011 
 

6.8 (h) 60 (r) 199 (r) 477 (h) 

13 PSB-5511 1.3 (h) 
 

37 (r) 550 (r) 475 (h) 

a r = rat; m = mouse; h = human 
b MSX-3 (8a) is a water-soluble phosphate prodrug of MSX-2 (8b) 
c Results from our laboratory 
d Data obtained from adenylate cyclase assays at NIH 3T3 intact cells 
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4 Kim SA, Marshall MA, Melman N, Kim HS, Muller CE, Linden J and Jacobson KA (2002). 
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Table 2. Time dependence of effects of different adenosine receptor antagonists on the hot-
plate response of mice (hind-paw) 
 

 Response latency (sec.) 

Comp. 15 min 30 min 60 min 90 min 120 min 

MC 23.50 ± 2.45 25.88 ± 1.86 24.13 ± 2.13 22.63 ± 2.03 23.75 ± 2.43 

PSB-1115 27.50 ± 2.20 33.38(*) ± 2.66 28.13 ± 1.63 25.50 ± 2.37 26.13 ± 2.00 

PSB-55 28.00 ± 1.45 34.0*± 2.35 27.63 ± 2.64 23.50 ± 1.43 22.63 ± 2.12 

PSB-36 23.75 ± 3.36 22.63 ± 1.15 18.88 ± 1.41 25.63 ± 2.56  22.63 ± 1.75 

PSB-10 23.38 ± 1.29 18.88 ± 1.75 22.13 ± 1.37 21.13 ± 1.77 23.75 ± 1.95 

MSX-3 23.50 ± 2.34 23.63 ± 2.26 24.88 ± 1.56 24.25 ± 1.88 24.25 ± 1.92 

8-SPC 21.88 ± 1.44 24.88 ± 2.61 24.13 ± 2.81 23.50 ± 1.15 21.88 ± 3.08 

 

Results are expressed as mean ± SEM, n = 8, (*) 0.1 < p < 0.05; * p < 0.05 
Dose used was 100 mg/kg for all compounds 
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Table 3 Hot plate analgesia 
 

No. Compound Dose 
(mg/kg) 

Time of reaction 
on pain stimulus 

(s)a 

 
ED50 

1 
Caffeine 0.00 

1.00 
3.00 
5.00 
10.0 
75.0 

27.10 ± 1.23 
26.80 ± 2.19 
33.00 ± 2.36 
34.30 ± 1.87 
36.90± 3.13* 
46.20 ± 2.74*** 

 
 

7.96 

2 
DMPX 0.00 

10.0 
30.0 
50.0 

23.60 ± 1.97 
26.10 ± 2.15 
34.20± 2.72** 
lethal dose 

 
 
> 50 

3 
Enprofylline 0.00 

10.0 
30.0 
50.0 
75.0 
100 

24.60 ± 2.03 
22.30 ± 2.23 
26.10 ± 2.38 
31.30 ± 1.79 
36.70 ± 2.55** 
39.50 ± 2.36*** 

 
 
56.9 

4 
8-SPT 0.00 

30.0 
50.0 
100 

24.50 ± 2.14 
26.50 ± 2.32 
23.90 ± 2.11 
25.80 ± 2.28 

 
> 100 

5 
8-SPC 0.00 

30.0 
50.0 
100 

27.30 ± 1.92 
24.10 ± 1.80 
25.60 ± 2.77 
25.40 ± 2.21 

 
 
> 100 

6 

DPCPX 0.00 
10.0 
30.0 
100 

27.10 ± 1.23 
24.10 ± 2.11 
23.10 ± 1.93 
26.10 ± 2.22 

 
> 100 

7 

PSB-36 0.00 
30.0 
50.0 
100 

24.40 ± 1.76 
25.10 ± 0.97 
23.00 ± 1.96 
23.40 ± 2.61 

 
> 100 

8 
MSX-3 0.00 

30.0 
50.0 
100 

25.90 ± 2.35 
30.20 ± 2.69 
25.80 ± 2.39 
24.40 ± 1.39 

 
> 100 

9 
PSB-10 0.00 

30.0 
50.0 
100 

24.70 ± 1.95 
24.20 ±1.23 
19.80 ± 2.28 
18.00 ± 1.04* 

 
b 
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10 
PSB-1115 0.00 

6.25 
12.5 
25.0 
50.0 
100 

23.50 ± 2.00 
20.90 ± 1.61 
30.30 ± 1.92 
30.40 ± 2.60 
33.30 ± 1.63** 
37.10 ± 2.34*** 

 
 
27.74 

11 
PSB-53 0.00 

12.5 
25.0 
50.0 
75.0 
100 

27.20 ± 2.11 
25.90 ± 2.29 
31.00 ± 3.08 
34.80 ± 1.24 
38.90 ± 2.19** 
43.00± 1.86*** 

 
 
50 
 
 

12 
PSB-50 0.00 

12.5 
25.0 
50.0 
75.0 
100 

27.20 ± 2.11 
25.30 ± 1.78 
25.60 ± 2.74 
33.80 ± 1.50* 
36.50± 2.05 
26.20 ± 2.34 

 
 
> 100 

13 
PSB-55 0.00 

30.0 
50.0 
100 

27.90 ± 1.75 
27.50 ± 2.28 
28.40 ±  2.07 
36.80 ± 3.01* 

 
> 100 

14 
Codeine 
sulfate 

0.00 
5.00 
20.0 
50.0 

26.20 ± 1.99 
23.88 ± 1.27 
25.98 ± 2.24 
36.25 ± 3.90* 

 
> 50 

15 
Morphine-HCl 0.00 

3.00 
5.00 
10.0 
15.0 
30.0 
50.0 

26.20 ± 1.99 
29.30 ± 2.16 
25.20 ± 2.56 
31.50 ± 2.05 
33.60 ± 4.76 
54.50 ± 2.82*** 
55.30 ± 3.18*** 

 
 
 
18.1 

16 
Acetylsalicylic 

acid 
0.00 
250 
500 
1000 

27.10 ± 1.23 
27.20 ± 1.10 
30.40 ± 1.28 
33.10± 2.44* 

 
>1000 

a Results are expressed as mean ± SEM, n =  8 - 10, *p < 0.05; ** p < 0.01; ***p < 0.001  
b compound was pronociceptive 
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Fig. 1. Effects of adenosine receptor antagonists and reference compounds on hot-plate 

analgesia in mice. Columns show the analgesic effect of the drug in two doses as percentage 

of the maximal possible effect (MPE%). The degree of shading of the columns is proportional 

to the dose tested. The results obtained with additional doses are also shown in Table 3. Data 

are represented as mean ± SEM, n =10; * = p < 0.05; ** = p < 0.01; *** = p < 0.001 (control 

vs. drug treated group, one-way ANOVA followed by Dunnett´s test).  

 

Fig. 2. Effects of adenosine receptor antagonists on hind-paw temperature. Ethanol at a dose 

of 4 g/kg was used as a positive control. Adenosine receptor antagonists showed no 

significant reduction in the paw temperature at high doses of 100 or (in case of caffeine) 75  

mg/kg. Data are represented as mean ± SEM, n = 8; * = p < 0.05; ** = p < 0.01; *** = p < 

0.001 (control vs. drug treated group, one-way ANOVA followed by Dunnett´s test).  

 

 

Fig. 3. Evaluation of effects of compounds on locomotor activity at analgesic doses. Data are 

represented as mean ± SEM, n = 10; ** = p < 0.01 (control vs. drug treated group, one-way 

ANOVA followed by Dunnett´s test).  

 

Fig. 4. Influence of A2B adenosine receptor selective antagonists on the analgesic effect of 

morphine. Each column represents the analgesic effect of the drug treatment as percentage of 

the maximal possible effect (MPE%) (mean ± SEM, n = 10); * = p < 0.05; ** = p < 0.01; *** 

= p < 0.001 (morphine vs. drug + morphine treated group, one-way ANOVA followed by 

Bonferroni test). 
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