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ABSTRACT
The ataxia-telangiectasia and Rad3-related (ATR) inhibitor cerala-
sertib and the poly (ADP-ribose) polymerase (PARP) inhibitor ola-
parib have shown synergistic activity, in vitro, in the FaDu ATM-
knockout cell line. It was found that combining these drugs with
lower doses and for shorter treatment periods induced greater or
equal toxicity in cancer cells than using either as a single agent.
Here, we developed a biologically motivated mathematical model
governed by a set of ordinary differential equations, considering
the cell cycle–specific interactions of olaparib and ceralasertib. By
exploring a range of different possible drug mechanisms, we have
studied the effects of their combination as well as which drug in-
teractions are the most prominent. After careful model selection,

themodel was calibrated and compared with relevant experimental
data. We have used this developed model further to investigate
other doses of olaparib and ceralasertib in combination, which can
be potentially helpful in exploring optimized dosage and delivery.

SIGNIFICANCE STATEMENT
Drugs that target cellular DNA damage repair pathways are
now being used as a new way to maximize the effect of multi-
modality treatments such as radiotherapy. Here, we develop
a mathematical model to investigate the effects of ceralaser-
tib and olaparib, two drugs that target DNA damage response
pathways.

Introduction
Recently, mathematical and computational modeling ap-

proaches have been considered as an effective and comple-
mentary way to study cancer progression and anticancer
treatments as they can model cancer growth by considering
cell-cell heterogeneity and dynamics (Powathil et al., 2012;
Hamis et al., 2019). These in silico models can give new bio-
logical insights into cancer mechanisms and allow us to in-
vestigate the effects of anticancer treatments and study the
optimal dosage, sequencing, and scheduling of them as mono-
therapies or in combination with one another.

Every day, each cell in the human body faces DNA dam-
age—roughly 70,000 lesions per day (Tubbs and Nussenz-
weig, 2017)—which could be due to endogenous damage
[such as DNA replication errors (Barnum and O’Connell,
2014)], oxidation damage (Cooke et al., 2003), and hydrolysis
(De Bont and van Larebeke, 2004) or exogenous damage
[such as sunlight (Barnum and O’Connell, 2014), cigarette
smoking (Huang et al., 2021), and ionizing radiation (O’Connor,
2015)]. In response to DNA damage, many intracellular events
are triggered to detect and repair the damage. These cellular
responses are associated with the DNA damage response (DDR).
The DDR is regulated by proteins responsible for detecting dam-
age, arresting the cells to allow time for repair, activating the
repair mechanisms, and inducing apoptosis if the damage is too
severe for repair (Hamis et al., 2021).
The DDR consists of cell cycle checkpoints, which the cells

will have to pass to enable them to continue through the cell
cycle. The main checkpoints are the G1/S checkpoint, the
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intra-S checkpoint, and the G2/M checkpoint, which ensure
that a damaged cell cannot progress through to the next phase.
The activation of the cell cycle checkpoints relies heavily on the
ataxia-telangiectasia mutated (ATM) and ataxia telangiectasia
and Rad3-related (ATR) proteins, both of which are members of
the phosphatidyilinositol-3-OH-kinases (PI3K) family (Carrassa
and Damia, 2017; Hamis et al., 2021). If a damaged cell encoun-
ters a checkpoint, it should be arrested to allow time for repair
(O’Connor, 2015; Ghelli Luserna di Rora’ et al., 2017). In cancer
cells, certain aspects of the DDR tend to be faulty; for example,
the proteins responsible for activating the checkpoints may be
defective, allowing damaged DNA to pass the checkpoints and
potentially cause deleterious mutations during replication and di-
vision, which could cause cancer (Barnum and O’Connell, 2014).
The most common form of DNA damage is a single-strand

break (SSB), occurring approximately 55,000 times to each
cell per day (O’Connor, 2015; Tubbs and Nussenzweig, 2017).
The repair of SSBs heavily relies on the protein poly (ADP-
ribose) polymerase (PARP)-1, which is responsible for detect-
ing the break, binding to the break to avoid further damage,
and then dissociating from the break to allow for repair
(Schultz et al., 2003; Helleday, 2011; Hosoya and Miyagawa,
2014; O’Connor, 2015; Lloyd et al., 2020). Olaparib is a PARP
inhibitor (PARPi) drug that inhibits the enzymatic activity of
PARP1/2, meaning that PARP1 gets trapped onto the SSB,
leading to inhibition of its repair (Lloyd et al., 2020).
The most cytotoxic and difficult DNA damage to repair is a

double-strand break (DSB) (O’Connor, 2015), which occurs
around 25 times per cell per day (Tubbs and Nussenzweig,
2017). These can arise during the replication process; for ex-
ample, if an SSB is not repaired before the DNA gets dupli-
cated, it can collide with the replication fork, causing it to stall
or collapse, thus forming single-ended DSBs (seDSBs) (Helle-
day, 2011; Murai et al., 2012; Hosoya and Miyagawa, 2014;
O’Connor, 2015; Balmus et al., 2019; Lloyd et al., 2020). These
seDSBs can only be accurately repaired by the homologous re-
combination repair (HRR) pathway (Jelinic and Levine, 2014;
Balmus et al., 2019), which works by using the identical sister
chromatid as a template for repair (Delacôte and Lopez, 2008)
[meaning HRR is restricted to the S and G2 phase when
the sister chromatid is available (Delacôte and Lopez, 2008;
Benada and Macurek, 2015)], during which single-stranded
DNA overhangs are formed during the important stage of
HRR, called end resection (Jasin and Rothstein, 2013; Krajew-
ska et al., 2015). This single-stranded DNA activates ATR,
emphasizing the importance of ATR in response to replication
stress (Benada and Macurek, 2015; Checkley et al., 2015; Ha-
mis et al., 2021). Nonhomologous end-joining (NHEJ), another
repair pathway for DSBs that operates throughout the cell cy-
cle, works well for double-ended DSBs by joining the two distal
ends together. NHEJ works by ligating the ends of the DSB
without the need for a homologous template. NHEJ is not well
suited to the repair of seDSBs, because these types of breaks
only have one distal end. Repair of these via NHEJ will lead
to genetic rearrangements and genomic instability (Delacôte
and Lopez, 2008; Davis and Chen, 2013; Chang et al., 2017).
Ceralasertib is an ATR inhibitor (ATRi) drug that inhibits

the activity of ATR, causing greater reliance on the other
mechanisms of the DDR [such as ATM (Lloyd et al., 2020)]
(Checkley et al., 2015; Carrassa and Damia, 2017; Hamis
et al., 2021). Ceralasertib plays an important role in inhibiting
the repair of replication damage (Checkley et al., 2015; Hamis

et al., 2021). ATR is important for activating the G2/M check-
point, which prevents damaged cells from progressing to mito-
sis. When ceralasertib was given, the checkpoint became
incapable of responding to damage, allowing damaged cells to
bypass the checkpoint and enter mitosis. This resulted in ge-
nomic instability, leading to mitotic catastrophe (Checkley
et al., 2015; Carrassa and Damia, 2017; Lloyd et al., 2020).
DDR inhibitor drugs target the cells with DDR defects, usu-

ally cancer cells, limiting the damage to noncancerous cells. The
concept of synthetic lethality is that the loss/inhibition of two
functions in the DDR is lethal to the cell, whereas the cell can
function with the loss/inhibition of either one alone (O’Connor,
2015; O’Neil et al., 2017). For example, ATR and ATM are the
primary regulators of the cell cycle checkpoints (Hamis et al.,
2021). It is fairly common for diseases to have mutations in
ATM (Checkley et al., 2015), which causes a greater reliance on
ATR for checkpoint signaling and DNA repair (Lloyd et al.,
2020). By using an ATRi drug in an ATM-deficient cancer, the
cancer cells have no ATM for signaling, whereas the noncancer-
ous cells do, thus causing damage mainly to the ATM-deficient
cancer cells (Vendetti et al., 2015; Min et al., 2017; Lloyd et al.,
2020). Another example of synthetic lethality is PARPi drugs in
cells with breast cancer gene (BRCA) mutations. BRCA1/2 are
important in HRR; hence, when a PARPi (such as olaparib) is
given in a HRR-deficient cancer, the PARPi-generated seDSBs
(which need HRR to be accurately repaired) will cause genomic
instability because other repair pathways (such as NHEJ) will
repair the damage inaccurately (Helleday, 2011; Brown et al.,
2017; Lloyd et al., 2020).
Lloyd et al. (2020) proposed synergy between ATR and

PARP inhibitor drugs in ATM-deficient cancers. The synergy
between PARP and ATR inhibitors is described in Fig. 1. The
figure shows how olaparib inhibits the repair of SSBs, which,
if not repaired before replication, can cause replication dam-
age. In the presence of ATR, the replication damage is usually
repaired. However, when ceralasertib is given, the repair is in-
hibited, thereby leading to cell death.
Here, motivated by a mechanistic cell cycle model by Checkley

et al. (2015), we developed a mathematical model to further inves-
tigate the combined effects of olaparib and ceralasertib in FaDu
ATM-knockout (FaDu ATM-KO) cells in vitro. The developed
model incorporates appropriate biologically relevant details to
explore the cell cycle–specific drug interactions and thus
study the in vitro growth of the cells. The parameters are esti-
mated using the experimental data provided by AstraZeneca
(Lloyd et al., 2020).

Materials and Methods
Recently, Checkley et al. (2015) developed a mathematical model to

study the effects of the ATR inhibitor drug ceralasertib alone and in
combination with ionizing radiation on the cell cycle. Motivated by
this model and the need for an updated model to study the effects of

Olaparib

SSB
Ceralasertib

Replication

Cell Repair 

Cell Repair 

Cell Death

     Replication
     Damage 

Fig. 1. The synergy between PARP and ATR inhibitor drugs.
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the ATRi drug ceralasertib and the PARPi drug olaparib as mono-
therapies and in combination, we developed an extended model by
considering relevant biological interactions. The simulations of the
model are implemented in MATLAB, and parameters have been esti-
mated using a nonlinear least squares method, calibrating the model
to experimental data provided by AstraZeneca (Lloyd et al., 2020).

Model Framework
The model represents a population of asynchronous cancer cells pro-

gressing through the cell cycle. A schematic representation is shown
in Fig. 2. The green nodes represent the undamaged cells (G1, S,
G2/M), the red nodes represent the damaged cells [S-damage (SD) and
G2/M-damage (G2D)], and the red cross represents dead cells. Each
node represents the number of cells in that state of the cell cycle.

No Treatment: Cell Cycle Model. Following Fig. 2, the mathe-
matical model for the case with no drug treatment can be written as
eqs. 1–6:

dG1
dt

52k5 1�NðtÞ
L

� �
G2� k1G1, (1)

dS
dt

5k1ð1� pÞG1� k2S1k3SD, (2)

dG2
dt

5k2ð1� qÞS� k5 1�NðtÞ
L

� �
G21k7G2D, (3)

dSD
dt

5k1pG1� k3SD� k6SD� k4SD, (4)

dG2D
dt

5k2qS1k6SD� k7G2D� k8G2D, (5)

dðDead CellsÞ
dt

5k4SD1k8G2D: (6)

If a cell remains undamaged throughout the cell cycle, it will pro-
gress from G1 to S and then from S to G2/M, where it will divide into
two daughter cells, both entering G1 (Checkley et al., 2015). A cell in
the model can become damaged during replication and enter SD or
during the G2/M phase and enter the G2D (Lloyd et al., 2020). From
either damaged state, the cell can get repaired or die and can progress

directly into G2D if in SD (O’Connor, 2015). A cell can encounter DNA
damage at any point during the cell cycle, but capturing all of this, as
well as various extents of damage in one mathematical model, is very
elusive, so we have tried to include the main and most important as-
pects without making the mathematical model overly complex.

A cell will leave G1 at a rate of k1. Since all cells are at high risk of
getting damaged during the replication process [e.g., from DNA repli-
cation errors (Barnum and O’Connell, 2014)], a cell will enter SD with
a probability of p (and a probability of 1 � p of entering S phase with
no damage). The SD compartment represents cells with replication
stress (Checkley et al., 2015), mainly with seDSBs from unrepaired
SSBs. A cell in SD can be repaired, represented by the transition from
SD to S—this happens at a rate of k3.

We assumed that a cell in SD can enter G2D directly as cells highly
depend on the G2/M checkpoint after exposure to increased damage
during replication (O’Connor, 2015). ATM is important for HRR sig-
naling and counteracting seDSB repair via NHEJ, meaning ATM defi-
ciency has an impact on the repair of seDSBs (we attribute most of
the damage in the SD compartment to be seDSBs). When ATM was
deficient, HRR was delayed, and more seDSBs were repaired via
NHEJ, causing aberrant chromatid fusions and cell death (Balmus
et al., 2019; Lloyd et al., 2020). We assume that cells in our model are
ATM-deficient, so cells in SD will likely be repaired incorrectly by NHEJ,
sending them directly to G2D (at a rate of k6). If the cell is not repaired
from the SD state, it may be removed from the cell cycle and enter the
dead state (at a rate of k4), representing apoptosis, where it will no longer
be able to progress through the cell cycle (Checkley et al., 2015).

A cell will leave the undamaged S phase at a rate of k2, but since
damage can occur at any stage in the cell cycle, it is assumed that a cell
can enter G2D directly from the S phase with probability q (and a proba-
bility 1 � q of entering G2/M). G2D does not represent a specific form of
damage, but we assume that it will be mainly attributed to errors after
replication and the unrepaired/incorrectly repaired damage from SD. Like
a cell in SD, a cell in G2D can be repaired at a rate of k7. Since the G2/M
checkpoint is responsible for repairing any damaged cells before they
enter mitosis (Stark and Taylor, 2004; O’Connor, 2015), the repair of a
cell is represented in the model by the transition from G2D to G2/M
as it will need to go through the mitosis process to enable it to divide.

If the repair was not achieved for a cell in G2D, we have assumed in
the model that the cell will die via mitotic catastrophe as most of the
damage in this phase will represent the incorrectly repaired seDSBs,
hence being removed from the system into the dead state at a rate of
k8. Since we are working with in vitro data, there is only limited space
for the cells to grow and divide (noting that dead cells are not removed
from the system, so they still take up space). This is incorporated using

a logistic growth rate, k5 1� NðtÞ
L

� �
, where k5 is the rate of a cell leaving

G2/M, NðtÞ5G11S1SD1G2=M1G2D1Dead Cells is the total num-
ber of cells in the system (alive and dead), and L is the carrying capac-
ity (Miao et al., 2016a).

Effect of the Drug Olaparib. As described in Introduction, ola-
parib treatment inhibits the repair of SSBs, causing indirect damage from
the SSBs colliding with the replication fork, which will generate seDSBs
(Murai et al., 2012; Hosoya and Miyagawa, 2014; O’Connor, 2015; Balmus
et al., 2019; Lloyd et al., 2020). Hence, when olaparib treatment is added to
the model, more cells will enter SD rather than S, depending on the ola-
parib dose [olaparib is known to be an S phase–dependent drug (Lloyd
et al., 2020)]. Also, when olaparib treatment is given, FaDu ATM-KO cells
accumulate in the G2 phase as arrested cells (Lloyd et al., 2020) [G2 accu-
mulation after olaparib treatment was also found in other cell lines (Jelinic
and Levine, 2014)]. In the model, we have assumed that the repair of a cell
in G2D will be dose dependently inhibited by olaparib treatment.

Here, these effects (of drug) are modeled using the Sigmoid Emax
equation (Greco et al., 1995) and are given by:

EffectOla1 5EmaxO � PARPihO1

EC50hO1
O 1PARPihO1

 !
, (7)

Ceralasertib Olaparib

+ Olaparib

+ Ceralasertib

G1 S G2/M

SD G2D

�

Fig. 2. The model: This represents cancer cells progressing through
the cell cycle phases (G1, S, and G2/M nodes), where they can become
damaged (SD and G2D nodes), or they can die (cross node). The arrows
represent state transitions, the ki, i 5 1, … , 8 values are rate con-
stants, and the values p, q are probabilities. The value A1 represents
delayed cell death, where s represents the delay time.
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EffectOla2 5 ImaxO � PARPihO2

IC50hO2
O 1PARPihO2

 !
: (8)

PARPi represents the concentration of the PARP inhibitor drug,
olaparib. EmaxO and ImaxO represent the maximal effect and the
maximal inhibitory effect of olaparib, respectively. EC50O and IC50O
represent the concentration of olaparib resulting in half the maximal
effect and half the maximal inhibitory effect, respectively, and hO1

and hO2 represent the Hill coefficients.
The updated equations, incorporating the effects of Olaparib, are

given by:

dS
dt

5k1ð1� pð11EffectOla1ÞÞG1� k2S1 k3SD, (9)

dG2
dt

5 k2ð1� qÞS� k5 1�NðtÞ
L

� �
G21 k7ð1� EffectOla2ÞG2D,

(10)
dSD
dt

5k1pð11EffectOla1ÞG1� k3SD� k6SD� k4SD, (11)

dG2D
dt

5k2qS1k6SD� k7ð1� EffectOla2ÞG2D� k8G2D: (12)

Effect of the Drug Ceralasertib. ATR is important during the
repair of seDSBs via HRR and also for stabilizing and restarting stalled
replication forks (Lloyd et al., 2020). Furthermore, ATR is important for
activating the intra-S checkpoint, which is responsible for arresting
damaged cells in the S phase and delaying the replication process
(O’Connor, 2015; Lloyd et al., 2020). Hence, ceralasertib treatment dose
dependently inhibits the repair of replication damage, which, in the
model, is represented by the transition from SD to S at rate k3 (Checkley
et al., 2015). Treatment with ceralasertib in vitro resulted in abrogation
of the G2/M checkpoint [responsible for preventing damaged cells enter-
ing mitosis (Hakem, 2008)]. Thus, ceralasertib releases cells from G2 ar-
rest, forcing them to undergo mitotic catastrophe (Checkley et al., 2015;
Lloyd et al., 2020). However, drug effects are not always instantaneous
(Lloyd et al., 2020); the combination of olaparib and ceralasertib could
allow for shorter treatment times as they induce cell death in ATM-
deficient cell lines within 1 to 2 cell divisions. Therefore, drug-induced
death need not happen immediately, and this is incorporated into the
model by introducing death delay. In the model, ceralasertib induces cell
death from G2D as it releases cells from G2 arrest but at a delayed rate.
We have introduced a transit compartment, A1, to implement death de-
lay (Lobo and Balthasar, 2002; Miao et al., 2016a,b), which we assume
is about 4 days (s � 96), where s represents the time spent in the delay.

Ceralasertib drug effects are included using the Sigmoid Emax
equation (Greco et al., 1995) and are given by:

EffectCera15 ImaxC � ATRihC1

IC50hC1
C 1ATRihC1

 !
, (13)

EffectCera25KmaxC � ATRihC2

KC50hC2
C 1ATRihC2

 !
: (14)

ATRi represents the concentration of the ATR inhibitor drug, cera-
lasertib. ImaxC and KmaxC represent the maximal inhibitory effect
and the maximal killing effect of ceralasertib, respectively. IC50C and
KC50C represent the concentration of ceralasertib resulting in half
the maximal inhibitory effect and half the maximal killing effect, re-
spectively, and hC1 and hC2 represent the Hill coefficients.

The updated equations, incorporating the effects of ceralasertib are
given by:

dS
dt

5k1ð1� pÞG1� k2S1k3ð1� EffectCera1ÞSD, (15)

dSD
dt

5k1pG1� k3ð1� EffectCera1ÞSD� k6SD� k4SD, (16)

dG2D
dt

5k2qS1k6SD� k7G2D� k8G2D� A1G2D, (17)

dðDead CellsÞ
dt

5k4SD1k8G2D1A1G2D, (18)

dA1

dt
5

1
t
ðEffectCera2 � A1Þ: (19)

The complete model with the effects of both olaparib and ceralaser-
tib is given in Section 1 (Model with effects of olaparib and ceralaser-
tib) of the Supplemental Materials.

Experimental Data
The data are based on in vitro studies on FaDu ATM-KO cells

(head and neck squamous cell carcinoma) (Lloyd et al., 2020). In the
experiments, cells were plated at a density of 1500 cells per 384-well
plate and exposed to different doses of the DDR inhibitor drugs, either
alone or in combination with one another. Cells were treated with
DMSO, a solvent commonly used as a vehicle in cell culture experi-
ments, for the control case when there was no drug treatment.

Data for cell confluency and caspase 3/7 intensity confluency
were collected approximately every 3 hours for 310 hours. Apopto-
sis was measured by mean fluorescence levels of active caspase 3/7
(calculated using incucyte ZOOM 2016A software). Using caspase
3/7 to measure cell death means that the cell death values may
not be cumulative—instead, it depicts the number of dead cells at
that given time point.

Implementation
Here, we assume that all cells are ATM-deficient and that they do

not change in size/volume throughout the duration of the experiment.
Model simulations start with an initial cell population of 1500 cells,
and the full dose of the drugs is given at the start time (in line with
the data). Since we are studying the case of in vitro, we may assume
that the drug concentration is constant throughout the time course of
our simulations (up to 310 hours) and that no drug elimination or de-
cay happens during this time (Hamis et al., 2021).

Initial Conditions. Initial conditions were obtained from EdU
pulse-chase data (Lloyd et al., 2020); namely, the percentage of cells in
G1, S, and G2/M phase at t 5 0 are 45.8%, 13.3%, and 39.1%, respec-
tively. The percentage of cells in SD was estimated to be 1.57%, ob-
tained using the experimental data of cH2AX-positive cells. The
percentage of cells in G2D was approximated to be 0.23% and was cal-
culated by finding the remainder of the cells. We start with 0 cells in
the death compartment (Checkley et al., 2015).

Parameter Estimation
The parameters in the model are estimated using a nonlinear least

squares method in MATLAB. Here, estimations are done using a part
of the data (namely, all data except mono- and combination therapies
including 0.3 lM olaparib). Estimated parameters (given in Tables 1
and 2) are then used to compare the results of other combinations
that are not used in the calibration process. Appropriate sensitivity
analyses were performed to study these estimated parameters [see
Section 3 (Sensitivity Analysis) of the Supplemental Materials].

To ensure a positive number of cells, we set the lower bounds of all
parameters to be 0 and the upper bounds of ImaxC and ImaxO to be 1.
Both probability constants were bounded at 1. By observing the cell
confluency data and assuming the cells stay the same size throughout
the experiment, we decided that the cell confluency, L, was less than
100,000. To avoid cells staying in the death delay for a prolonged
amount of time, s was bounded at 4 days.

Consistent with the upper bounds used in the model by Checkley
et al. (2015), all rate constants ki, i 5 1, 2, … , 8 were bounded at 1.0e 1
06, and all hill coefficients (hO1, hO2, hC1, and hC2) were bounded at 100.
To ensure a biologically relevant concentration of each drug, we bounded
EC50O, IC50O, IC50C, and KC50C at 100.
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When the developed model is compared against other versions of
the model (to study drug effects at multiple points), the model good-
ness of fit was assessed using the root mean square error (RMSE):

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i50
ðyi � f ðtiÞÞ2

n

vuut
(20)

where yi represents the experimental data points, and f(ti) represents
the simulation value at time ti. The RMSE was calculated at each of
the n experimental data points. Further, the total RMSE of each
model is calculated by:

Total RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
9

j51
∑
n

i50
ðyi � f ðtiÞÞ2

n

vuuut
, (21)

where j represents each of the nine treatments.

Results
Model Analysis: Insight into Drug Interactions

Lloyd et al. (2020) proposed synergy between ATR and
PARP inhibitor drugs in ATM-deficient cancers. Both ola-
parib and ceralasertib exert their effects in targeting the
DDR pathway at multiple points of the cell cycle (Lloyd et al.,
2020). Motivated by this, the developed model incorporates
the effects of these drugs at multiple points. By removing
each drug effect one at a time, we can investigate which drug
effects are most prominent in the model. We tested the cur-
rent model described in Materials and Methods against four

alternative model versions (labeled Version 1–4), each with-
out an individual drug effect.
Figure 3 shows the current model and the four model var-

iations that we are testing to estimate the cell confluency
data. Columns 1–5 in Fig. 3 show the current model, the
model without the olaparib effect in contributing to more
DNA damage (model version 1), the model without olaparib
inhibiting repair from G2D (model version 2), the model with-
out ceralasertib inhibiting repair from SD (model version 3),
and the model without ceralasertib-related cell death (model
version 4), respectively. The first row shows a schematic of the
model with total RMSE underneath, the second row shows
the model calibration, and the third row shows the model val-
idation. The estimation and comparison plots show the cell
confluency over 310 hours for the simulation (solid lines)
compared with the experimental data (dashed lines with er-
ror bars, mean ± S.E.M.) for each drug treatment. For each
model, we optimized the parameters using the nonlinear
least squares on MATLAB using a part of the data with the
parameter bounds given in Parameter Estimation. The pa-
rameter values for each of these models are given in
Supplemental Table 1, in Section 2 (Model Analysis: Parame-
ter values estimated for different versions of the model) of
the Supplemental Materials. For different sets of parameter
values, each of these versions of the model provides a decent
comparison with the experimental data. This shows that one
could further simplify the developed model by omitting some
of the detailed drug actions (potentially leaving the other ac-
tions more prominent). Version 2 and Version 4 of the model

TABLE 1
Table of parameters (estimated from nonlinear least squares method): The set of parameters used in Fig. 2 with their value and dimension. Here,
t refers to the time in hours and N refers to the number of cells.

Parameter Value Dimension Description

k1 0.050779 1/t The rate of a cell leaving G1 phase.
k2 0.17906 1/t The rate of a cell leaving S phase.
k3 0.39181 1/t The rate of a cell being repaired from SD to S.
k4 1.1443 1/t The rate of a cell dying from SD.
k5 0.060188 1/t The rate of a cell dividing, entering G1 from G2/M.
k6 0.32358 1/t The rate of a cell entering G2D from SD, i.e., the rate of a cell in SD not being

repaired properly before G2 phase.
k7 2.1526 1/t The rate of a cell being repaired from G2D to G2/M.
k8 0.0010523 1/t The rate of a cell dying from G2D.
p 0.14826 Dimensionless The probability of a cell entering SD from G1.
q 0.45458 Dimensionless The probability of a cell entering G2D from S.
L 13727.7261 N The carrying capacity, i.e., the maximum number of cells allowed in the system.
s 95.9914 1/t The transit step time.

TABLE 2
Table of drug-related parameters (estimated from nonlinear least squares method): The set of parameters used in Fig. 2 with their value and
dimension.

Parameter Value Dimension Description

ImaxC 0.92714 Dimensionless The maximum effect of ceralasertib inhibiting the repair of SD cells.
IC50C 5.3318 Concentration The ceralasertib concentration resulting in half of ImaxC.
hC1 5.1795 Dimensionless The Hill coefficient of ceralasertib inhibiting the repair of SD cells.
KmaxC 2.8866 Dimensionless The maximum effect of ceralasertib killing cells from G2D.
KC50C 0.14143 Concentration The sensitivity constant of ceralasertib, i.e., the concentration resulting in half of KmaxC.
hC2 5.6103 Dimensionless The Hill coefficient of ceralasertib-related cell death.
EmaxO 1.9721 Dimensionless The maximum effect of olaparib increasing p.
EC50O 0.15942 Concentration The olaparib concentration resulting in half of EmaxO.
hO1 0.40941 Dimensionless The Hill coefficient of olaparib increasing p.
ImaxO 1 Dimensionless The maximum effect of olaparib inhibiting repair of G2D cells.
IC50O 0.041212 Concentration The olaparib concentration resulting in half of ImaxO.
hO2 0.10945 Dimensionless The Hill coefficient of olaparib inhibiting repair of G2D cells.
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have the highest RMSE, illustrating the importance of both the
influence of olaparib inhibiting G2D repair and the transit com-
partment introduced for ceralasertib-specific death delay.
The model goodness of fit was assessed using the RMSE.

Figure 4 shows the RMSE (eq. 20) of each of the nine treat-
ments separately for each of the five models described.
By comparing the individual treatment RMSE values for each

of the five models (Fig. 4), it is hard to deduce which model best
fits the data since different models fit different treatments better.
All models are able to capture the model comparisons well, so we
calculated the total RMSE (eq. 21) to see the overall RMSE for
all treatment types for each model. Figure 4 also shows the total
RMSE of each model, indicating that the current model gives a
low RMSE among all the versions. Hence, we continue to use
the current model to study the multiple effects of the drugs.

Model Calibration and Parameter Estimation

The model is first calibrated using a part of the in vitro ex-
perimental data provided by AstraZeneca (Lloyd et al., 2020)
using the nonlinear least squares method on MATLAB (de-
scribed in Parameter Estimation). Populations of FaDu ATM-
KO cells were exposed to both the PARP inhibitor drug ola-
parib and the ATR inhibitor drug ceralasertib, both as mono-
therapies and combination therapies. Figure 5 shows the cell
confluency of the in silico model (solid lines) compared with
the in vitro data (dashed lines with error bars, mean ± S.E.M.)
over roughly 310 hours for each treatment type (represented
by different colors) involved in the optimization process. We
can see from this figure that the model is capable of capturing

the cell confluency data throughout the time course of the ex-
periment. Here, we are able to capture the results from the ex-
perimental data, showing that the combination of the drugs
requires lower doses and shorter treatment periods to induce
growth inhibition and death of cancer cells.
Sensitivity Analysis. We performed two uncertainty and

sensitivity analyses to investigate the parameters used in the
model. We performed robustness analysis and Latin hyper-
cube analysis, which check how sensitive the model is to local
and global parameter perturbations, respectively. Both meth-
ods are described in detail in Hamis et al. (2020). When inves-
tigating the model sensitivity, we take the model parameters
as the input (listed in Tables 1 and 2). For the robustness
analysis, we compare the cell confluency over the time course
of the experiment (Supplemental Figs. 1 and 2). For the Latin
hypercube analysis, the output compared is the RMSE of each
treatment separately. The corresponding Pearson product mo-
ment correlation coefficients are displayed in Supplemental Fig.
3. Both the local and global analyses agree that the parameters
p, L, and KC50C are the most sensitive to parameter perturba-
tions. Details of the sensitivity analysis are described in Section
3 (Sensitivity Analysis) of the Supplemental Material.

Model Analysis: Comparing in Silico and in Vitro Results

Model Analysis: Cell Confluence Data. Here, we use
the model together with the estimated parameters to simu-
late the effects of 0.3 lM olaparib and both combinations
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Fig. 3. Insight into drug interactions: The figure shows five variations of the model to study the role of olaparib and ceralasertib at multiple
points of action. The schematic of each model is given at the top, with the cell confluency over 310 hours for all treatment types—the estimation
(middle) and the comparison (bottom).

60 Pugh et al.

 at A
SPE

T
 Journals on D

ecem
ber 22, 2024

jpet.aspetjournals.org
D

ow
nloaded from

 

http://jpet.aspetjournals.org/lookup/suppl/doi:10.1124/jpet.122.001558/-/DC1
http://jpet.aspetjournals.org/lookup/suppl/doi:10.1124/jpet.122.001558/-/DC1
http://jpet.aspetjournals.org/lookup/suppl/doi:10.1124/jpet.122.001558/-/DC1
http://jpet.aspetjournals.org/lookup/suppl/doi:10.1124/jpet.122.001558/-/DC1
http://jpet.aspetjournals.org/lookup/suppl/doi:10.1124/jpet.122.001558/-/DC1
http://jpet.aspetjournals.org/


using this dose (0.1 mM ceralasertib 1 0.3 mM olaparib and
0:3 mM ceralasertib 1 0:3 mM olaparib). This is then com-
pared with the experimental data to study the performance of
the model to simulate the effects of drug combinations not
previously used in the estimation process.
Figure 6 shows the in silico and in vitro comparisons of cell

confluency over 310 hours for the doses not included in our pa-
rameter optimization. We can see from Fig. 6 that the model
is capable of estimating the monotherapy of 0.3 lM olaparib
throughout the time course of the simulation very well (orange
line). It also captures very well the combination 0.3 lM cerala-
sertib 1 0.3 lM olaparib (green line). Also, the model captures
fairly well the trend of the combination of 0.1 lM ceralasertib
1 0.3 lM olaparib (purple line). Overall, from both the calibra-
tion and comparison results, we see that the combination

therapies result in a lower cell confluence throughout the ex-
periments, meaning there is more growth inhibition and cell
death of cancer cells.
Model Analysis: Cell Death Data. Here, we qualita-

tively compare the in silico results of cell death to the experi-
mental data provided by AstraZeneca that was measured
using caspase 3/7 (Lloyd et al., 2020). The experimental data
shows how growth inhibition correlates with apoptosis activ-
ity. Caspase 3/7 activity was detected earlier (within 36 hours)
after combination treatment, implying that apoptosis is the
main reason for growth inhibition. As for single-agent treat-
ment, caspase 3/7 activity was seen at later time points, imply-
ing that multiple rounds of cell division and/or prolonged drug
exposure were needed to produce cancer growth inhibition
(Lloyd et al., 2020).
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Fig. 4. The RMSE values of each of the nine treatments for each of the model variations (with and without certain drug effects). Here, the x-axis
represents different treatment combinations, and the y-axis represents the RMSE value.
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Fig. 5. Model estimation: The cell confluency over 310 hours of the simulation (solid lines) in comparison with the experimental in vitro data
(dashed lines) of the treatments used for the parameter estimation. Error bars are mean ± S.E.M. (n 5 3). Corresponding parameter values are
given in Tables 1 and 2.
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The data shows the caspase 3/7–stained cells at each time
point, meaning the experimental data are not cumulative like
the in silico model. Therefore, both the data and simulation
cell death values have been normalized between 0 and 1 for
ease of comparison. Neither the details of caspase 3/7 nor cyto-
tox markers were incorporated into the model, so we could not
quantitatively compare our in silico results to the in vitro
data. Instead, we showed that the mathematical model can
qualitatively show the same trend as the experimental data.
Figure 7 shows the normalized cell death data measured via

caspase 3/7 on the left and the normalized model simulations
of cell death on the right. Each of the plots represents different
drug treatments, where the black line represents no treat-
ment, the blue line represents ceralasertib monotherapy, the
red line represents olaparib monotherapy, and the green line
represents combination therapy. We can see from Fig. 7 that
the model is capable of capturing the cell death trend. Al-
though the model does underestimate the amount of death af-
ter 0.1 lM ceralasertib (the data suggests a value of 0.6,
whereas the simulation gives a value of roughly 0.45), overall,
the model is able to qualitatively capture the trends of the cell
death data measured by caspase 3/7.

Model Analysis: Investigating Drug Synergy

Based on the experimental evidence, Lloyd et al. (2020) pro-
posed that there is a synergy between ATR and PARP inhibi-
tors in ATM-deficient cancers. One way to include these
effects into the model is by using an explicit synergistic drug
action term (Greco et al., 1995). However, here we have not
used any synergistic drug action term within the model for
drug combination; hence, it is reasonable to understand
whether the model does indeed show a synergistic response
to the drugs studied or whether its effects are additive. To
analyze this, we compared the results of the cell confluency
for the model as it is now (solid lines in Fig. 8) with the re-
sults, assuming the effects were additive (dashed lines in

Fig. 8). This is also evident in Fig. 9, where we visualize the
cell confluency at the end time of the experiment (pink and
blue bars represent the simulations synergy and the ex-
pected results if the drugs were additive).
We deduced from Figs. 8 and 9 that the model shows a syn-

ergistic drug response when both drugs are combined. Here,
the model results for the combinations have a lower cell con-
fluence compared with the additive results, showing a better
cell response to the drugs when combined (as seen in experi-
mental data).

Model Analysis: Investigating Combination Therapy

Cancer is often targeted with multimodality treatments,
and here, we study the effects of two DDR-inhibiting drugs
that are given in combination. When such combinations are
used to target cancer, it is useful to study their optimum com-
binations, dosage, and scheduling to maximize their effects.
Here, we use the developed mathematical model, calibrated
with experimental data, to investigate other combinations of
olaparib and ceralasertib. Although results obtained from the
modeling studies can often guide further experimental studies,
any conclusions should be substantiated with experiments.
The experimental data shows that using both drugs in com-

bination allowed for lower doses of the drugs to be used for
shorter treatment periods to induce growth inhibition and cy-
totoxicity of cancer cells (Lloyd et al., 2020). Since we were
able to capture the higher value of olaparib using the esti-
mated parameters (see Model Analysis: Cell Confluence Data),
we studied what combining even higher doses of olaparib
given with both the calibrated values of ceralasertib (namely,
0.1 lM and 0.3 lM ceralasertib) would do to the cell conflu-
ency. Figure 10 shows the effect of combining 0.1 lM (left plot)
and 0.3 lM (right plot) of ceralasertib with new doses of ola-
parib to the cell confluency over 310 hours. The dashed lines
represent the combinations for which we have data. The differ-
ent colored solid lines represent the newly investigated
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Fig. 6. Model comparison (cell confluency): The cell confluency over 310 hours of the simulation (solid lines) in comparison with the experimental
in vitro data (dashed lines) of the treatments estimated using the parameters given in Tables 1 and 2. Error bars are mean ± S.E.M. (n 5 3).
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combinations, namely adding 0.5 lM, 0.8 lM, 1 lM, 1.5 lM, 2
lM, and 5 lM of olaparib to both ceralasertib doses. As ex-
pected, increasing the olaparib dose lowers the cell confluency
significantly. Especially adding to 0.3 lM ceralasertib (right

plot of Fig. 10), we see cell confluency values of approximately
10% (the initial confluency), showing the cytotoxic nature of the
drugs. The results show that using higher doses of the drugs in-
duced cell death and growth inhibition in a much shorter time.
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Fig. 7. Model comparison (cell death): On the left, we have the cell death measured by caspase 3/7 intensity from the experimental data, and on
the right, we have the model simulation of total cell death over 310 hours. Both are normalized between 0 and 1 for ease of comparison.
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Fig. 8. Drug synergy: The cell confluency output of the model (solid lines) compared with if the results were additive (dashed lines) for each treat-
ment type showing that the model is synergistic.
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Discussion
In this study, we developed a mechanistic model representing

cancer cells progressing through the cell cycle in damaged and
undamaged states to account for the effects of DNA damage re-
sponse pathway–inhibiting drugs. We compared the in silico re-
sults to experimental in vitro data provided by AstraZeneca
(Lloyd et al., 2020). The model was adapted from a previous or-
dinary differential equation model developed by Checkley et al.
(2015), who studied the ATR inhibitor drug ceralasertib as a
monotherapy and in combination with ionizing radiation. The
model was extended to study the effects and responses of ola-
parib and ceralasertib as monotherapies and in combination.
By incorporating what we believed to be the most prominent
drug interactions and damaged states into the cell cycle model,
we could calibrate and validate our model.
Our in silico model results were consistent with the experi-

mental in vitro data, showing that the combination of olaparib
and ceralasertib induced greater or equal cytotoxicity and
growth inhibition of cancer cells at lower doses and for shorter
treatment times compared with either monotherapy. Although
one could better fit the data by calibrating the model to all
treatment data at once, we decided to use part of the data
to compare the parameterized model results to study the
model’s usefulness to simulate new combinations. The devel-
oped model showed synergistic interactions between the

drugs, allowing us to study other potential doses of the drugs
to optimize treatment.
We performed local and global sensitivity analysis, allowing

us to study the biological mechanisms of the drugs by seeing
which parameters, when perturbed by ± 20% of the optimized
parameter value, affected the model output and which param-
eters, when varied in value, have no significant effect on the
output of the model. Each drug acted in two places in the
model; namely, ceralasertib both inhibited the repair of repli-
cation damage and released damaged cells from G2 arrest (re-
leasing cells from G2D in the model). Olaparib both increased
the number of damaged cells during replication and inhibited
the repair of G2/M-damaged cells. The sensitivity analysis al-
lowed us to explore how each of these drug effects affected the
model by studying the parameters involved in each of the ef-
fects. The analysis implied that certain drug actions were
more prominent than others, amplifying the importance of cer-
tain drug mechanisms. For example, we saw that the cerala-
sertib cell death–related drug effect was more important than
the ceralasertib-inhibiting effect of replication damage.
Including every drug mechanism into the model and the

in-depth nature of the DNA damage was elusive, so we
tried capturing only the most important interactions and
damage. Since our model was already fairly complex, we
attempted to reduce the model by exploring different drug
effects. We calibrated alternative models using only a part
of the experimental data (namely, all treatments exclud-
ing 0.3 lM olaparib) and used the rest of the data to vali-
date the model. All alternative models resulted in a larger
total RMSE of all treatments, showing that the best model
fit to show the synergistic interactions of olaparib and ce-
ralasertib was the current model, with both drugs acting
in two places within the model. Consistent with the sensi-
tivity analysis, the inhibitory effects of ceralasertib affect-
ing repair from SD to S resulted in a similar total RMSE
to the current model. However, since this effect was the
only drug effect in the model proposed by Checkley et al.
(2015), and the RMSE was slightly worse than the current
model, we decided to keep this effect to ensure there is bio-
logic meaning to the model.
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Fig. 9. Drug synergy: The cell confluency output of the model at the
end time of the experiment showing that the model is synergistic.
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Fig. 10. Investigating combination therapy: On the left, we have the cell confluency of different doses of olaparib given with 0.1 mM ceralasertib.
On the right, we have the cell confluency of different doses of olaparib given with 0.3 mM ceralasertib. Dotted lines represent the combination
treatments that we have data for.
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We assumed that drugs are given at the initial time of the
experiment when the initial cell count is 1500 cells. There is a
potential to expand this model to investigate different se-
quencing and schedules of the drugs to better get the optimal
treatment strategy for cytotoxic and growth-inhibitory effects
of cancer cells. The results from well calibrated and validated
models can often guide further experimental investigations
into drug doses, effects, and combinations that can result in a
maximum effect while keeping the tolerated levels. However,
the results from the models should be experimentally vali-
dated before any further application.
To conclude, this deterministic model, incorporating appro-

priate biologic details, was able to capture the quantitative na-
ture of the cell confluency data and the qualitative trends of
the cell death data found in vitro well. By doing so, we ex-
plored a range of new combinations of olaparib and ceralaser-
tib, which cause an even greater cancer growth inhibition and
more cell death. One potential future direction is to study the
effects of these drugs in combination with radiation as radia-
tion induces more DNA damage, and these DDR-inhibiting
drugs reduce the likelihood of repairing any damages, thus in-
creasing cell death. The model could be adjusted to study
in vivo experimental data, allowing us to investigate optimal
scheduling, sequencing, and dosage of the drugs, which can
then inform clinicians on the optimal treatment of clinical tri-
als involving olaparib and ceralasertib. Mathematical models
with a similar nature to what is described in this paper, such
as Checkley et al. (2015), have been used to inform starting
doses of phase I clinical trials of ceralasertib monotherapy and
in combination with ionizing radiation.
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