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ABSTRACT
Chronic obstructive pulmonary disease (COPD) is a chronic lung
diseasewith progressive airflow limitation and functional decline.
The pathogenic mechanisms for this disease include oxidative
stress, inflammatory responses, disturbed protease/antiprotease
equilibrium, apoptosis/proliferation imbalance, senescence, auto-
phagy, metabolic reprogramming, andmitochondrial dysfunction.
The Wnt signaling pathway is an evolutionarily conserved
signaling pathway that is abnormal in COPD, including chronic

bronchitis and pulmonary emphysema. Furthermore, Wnt signaling
has been shown to modulate aforementioned cellular processes
involved in COPD. From this perspective, we provide an updated
understanding of the crosstalk between Wnt signal and these
cellular processes, and highlight the crucial role of the Wnt signal
during the development of COPD.We also discuss the potential for
targeting theWnt signal in future translational and pharmacological
therapeutics aimed at prevention and treatment of this disease.

Introduction
Chronic obstructive pulmonary disease (COPD), a prevent-

able and treatable disease of respiratory system, is character-
ized by irreversible airflow obstruction and loss of functional
pulmonary tissue (Cabrera López et al., 2018). The main risk
factor for COPD is the exposure to tobacco smoking. Other
types of inhalations also contribute to the risk of developing
COPD, such as toxic particles and gases in biofuels and air
pollution. COPD will become the third ranked cause of death
by 2020 (Cabrera López et al., 2018). Currently, effective
treatments are limited to halting or reversing the progres-
sion of this disease. Therefore, understanding the molecular
mechanisms underlying lung injury and repair processes
would provide potential targets and strategies for intervening
in the progression of COPD.

Accumulating evidence shows that the Wnt signal path-
way is abnormal during the development of COPD (Wang
et al., 2011; Heijink et al., 2013; Baarsma et al., 2017;
Skronska-Wasek et al., 2017). In general, the Wnt canonical
pathway is downregulated, whereas noncanonical signal-
ing is upregulated in COPD. In this review, we discuss
the role of the Wnt signal in the pathogenesis of COPD and
potential therapeutics for this disease that target the Wnt
signal pathway.

Cellular Processes in the Pathogenesis of COPD
It is well known that oxidative stress, inflammatory

responses, protease/antiprotease imbalance, and disturbed
apoptosis/proliferation equilibrium are important contrib-
utors to the pathogenesis of COPD (Yao and Rahman, 2011).
To date, much research has focused on the roles of senescence,
autophagy, metabolism, and mitochondrial dysfunction in the
development of COPD (Yue and Yao, 2016; Zhao et al., 2018).
Nevertheless, further investigations are needed to determine
whether potential therapeutics can be developed for this
disease with these cellular processes as a basis.
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ABBREVIATIONS: AMPK, AMP-activated protein kinase; APC, adenomatous polyposis coli; CBP, CREB binding protein; CK1a, casein
kinase 1 a; COPD, chronic obstructive pulmonary disease; DAG, diacylglycerol; Dsh/Dvl, dishevelled; FZD, Frizzled; GSK3, glycogen
synthase kinase 3; IL, interleukin; IP3, inositol 1,4,5-trisphosphate; JNK, c-Jun-N-terminal kinase; LEF, lymphoid enhancer-binding factor;
MAPK, mitogen-activated protein kinase; MMPs, matrix metalloproteinases; PCP, planar cell polarity; ROS, reactive oxygen species; SFRP,
secreted frizzled-related protein; TCF, T cell-specific transcription factor; TLR, Toll-like receptor.
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Wnt Pathway and Regulation
Canonical and Noncanonical Wnt Signal Pathway.

The first Wnt gene, i.e., mouse Wnt1, was discovered in
1982 as a proto-oncogene in mammary tumors (Nusse and
Varmus, 1982). Wnt signals comprise a family of signal-
ing molecules that control a variety of developmental and
physiologic processes (Willert and Nusse, 2012). Wnt sig-
naling has been grouped into canonical (b-catenin-dependent)
and noncanonical (b-catenin-independent) signaling pathways
(Fig. 1). There are at least 19 Wnt ligands that trigger specific
and distinct Wnt pathways. In general, Wnt1, Wnt2, Wnt3A,
Wnt8, and Wnt10B induce the canonical Wnt pathway, with
Wnt3A themost studied ligand. In contrast,Wnt5A is the broadly
studied ligand for the noncanonical Wnt signal, although
Wnt4 andWnt11 also mediate this pathway (Baarsma et al.,
2013). Nevertheless, Wnt ligands are not intrinsically canon-
ical or noncanonical, as some Wnt ligands are able to activate
multiple signaling pathways.
Wnt canonical signaling is dependent on a transcription

coactivator, b-catenin, which is initiated by the binding ofWnt
ligands to their receptors, including a member of the Frizzled
(FZD) family of serpentine receptors and the coreceptor
LRP 5/6 (MacDonald and He, 2012; Baarsma and Konigshoff,
2017). This leads to the recruitment of the destruction complex
to the plasmamembrane and the inhibition of glycogen synthase
kinase 3 (GSK3). GSK-3 is recognized as a dual-specificity kinase
regulated by tyrosine and serine/threonine phosphorylation
(Tejeda-Muñoz andRobles-Flores, 2015). There are two different
genes that encode for GSK-3 isoforms (GSK-3a and GSK-3b)
(Woodgett, 1990; Shaw et al., 1998). Both isoforms function
redundantly in the destruction complex (Doble et al., 2007).

GSK3 inhibition results in reduced phosphorylation and
degradation of b-catenin, which enhances the transloca-
tion and accumulation of b-catenin into the nucleus, where
b-catenin binds to themembers of the T cell-specific transcription
factor/lymphoid enhancer-binding factor (TCF/LEF) family,
leading to transcription of targeting genes (Langton et al.,
2016;Muneer, 2017; Naspi et al., 2017; Skronska-Wasek et al.,
2018). In the condition of reduced Wnt signal, b-catenin is
phosphorylated and degraded via a proteasome-dependent pro-
cess by the b-catenin destruction complex, which includes the
scaffold proteinsAxin and adenomatous polyposis coli (APC), the
Ser/Thr kinases casein kinase 1, protein phosphatase 2A, and
GSK3 (Taelman et al., 2010; Kaidanovich-Beilin and Woodgett,
2011; van Kappel and Maurice, 2017). Axin phosphorylation in
both Wnt-off and Wnt-on states requires the tumor suppressor
APC in Drosophila, suggesting a more active and multifaceted
role for APC in Wnt signaling (Tacchelly-Benites et al., 2018).
The most studied noncanonical pathway is the planar cell

polarity (PCP) pathway acting via c-Jun-N-terminal kinase
(JNK) and the Wnt-Ca21, Ca21-dependent signal. Although
activation of noncanonical Wnt signaling also requires the
binding of specific Wnt ligands (e.g., Wnt-4 or Wnt-5A) to FZD
receptors, it seems to be independent of LPR5/6 coreceptors.
Wnt5A-dependent noncanonical Wnt signaling has been
shown to inhibit Wnt3A-induced Wnt/b-catenin signaling
(Bryja et al., 2007), suggesting that the PCP and Wnt/b-catenin
signaling can antagonize each other.
Regulation of b-Catenin Phosphorylation. In addition

to GSK3b, other kinases can also phosphorylate b-catenin.
AKT can directly phosphorylate b-catenin at serine 552 but
increases its cytoplasmic and nuclear accumulation (Fang
et al., 2007). Protein kinase A activation leads to b-catenin

Fig. 1. Switch-on and switch-off of canonical and noncanonical Wnt signal pathway. During canonical Wnt pathway, in the absence of Wnt ligand,
b-catenin is phosphorylated and degraded by a destruction complex that includes the scaffold proteins Axin and adenomatous polyposis (APC), the
Ser/Thr kinases casein kinase 1 and glycogen synthase kinase 3 (GSK3). UponWnt activation, b-catenin translocates to the nucleus and then associates
with TCF/LEF family transcription factors to activate target gene expression. The two noncanonical pathways are Wnt/calcium and PCP pathways.
For Wnt/calcium pathway, Wnt stimulates calcium release, activating PLC and subsequent the transcription factor NFAT. The Wnt/PCP pathway is
mediated by the activation of JNK. Dsh/Dvl: dishevelled; PLC: phospholipase C; IP3: inositol 1,4,5-triphosphate-3; DAG: diacylglycerol; NFAT: nuclear
factor of activated T cells.
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phosphorylation at Y654 and S675, which also promotes
nuclear translocation of b-catenin (Liu and Habener, 2008;
Bellei et al., 2011; Law et al., 2013). There is a functional
cooperation between JNK and b-catenin (Nateri et al., 2005;
Lee et al., 2009). Activated JNK promotes b-catenin degra-
dation, which is associated with increased b-catenin phos-
phorylation at ser33 and ser37 residues by GSK3b (Hu et al.,
2009). This is corroborated by the finding that high levels of
nuclear JNKactivity in earlyXenopus embryos blocked nuclear
accumulation of b-catenin (Liao et al., 2006). AMP-activated
protein kinase (AMPK) enhances b-catenin phosphorylation at
Ser33, Ser37, and Thr41 residues and promotes the protein
degradation of b-catenin by GSK3b in Saos-2 cells (Takatani
et al., 2011). On the contrary, AMPK phosphorylates b-catenin
at Ser552, which stabilizes b-catenin and enhances b-catenin/
TCF-mediated transcription in rat mesenchymal cells (Zhao
et al., 2010). These findings suggest that the b-catenin
phosphorylation on its stability is residue-specific.

Wnt Pathway in COPD
Previous studies have shown that adult lung tissues express

a variety of Wnt ligands (e.g., Wnt3, Wnt4, Wnt5a, Wnt7a,
Wnt7b, Wnt10b, and Wnt 11), receptors (e.g., FZD3, FZD6,
and FZD7), and signal components (e.g., Dvl and Dickkopf).
In general, b-catenin, TCF, and Frizzled-4 are reduced in
patients with pulmonary emphysema compared with normal
donors (Wang et al., 2011; Skronska-Wasek et al., 2017). In
contrast, Wnt4, Wnt5a, Wnt5b, and Wnt10b are increased in
patients with pulmonary emphysema (Heijink et al., 2013,
2016; Baarsma et al., 2017) (Table 1). Interestingly, secreted
frizzled-related protein 1 (SFRP1), a Wnt inhibitor, is increased
in lung tissues from patients with pulmonary emphysema,
whereas Frizzled-8 is upregulated in patients with chronic
bronchitis (Foronjy et al., 2010; Wang et al., 2011) (Table 1).
Wnt/b-catenin activation by lithium chloride attenuates

airspace enlargement and lung function decline in mice with
pulmonary emphysema, whereas Wnt-5a overexpression in
lung type II cells aggravated airspace enlargement in elastase-
induced pulmonary emphysema in mice (Kneidinger et al.,
2011; Baarsma et al., 2017; Cui et al., 2018). The mechanisms
are associated with the regulation of cellular processes in-
volved in COPD as we discuss below (Fig. 2).
Oxidative Stress. Exogenous and endogenous generation

of reactive oxygen species (ROS) has been shown to cause lung
injury and subsequent COPD. Increased oxidative stress is

also attributable to a reduced antioxidant system, including
Nrf2, HO-1, superoxide dismutase (SOD), and glutathione,
during the development of COPD.
It has been shown that H2O2 induces dephosphorylation

and stabilization of b-catenin (Funato et al., 2006; Kajla et al.,
2012), suggesting the link between oxidative stress and the
Wnt/b-catenin pathway. Treatment with antioxidantN-acetyl
cysteine suppresses Wnt3a-induced dephosphorylation of
b-catenin in endothelial cells (Vikram et al., 2014). This may
have been the result of reduced NADPH oxidase-4-derived
ROS by N-acetyl cysteine in response to Wnt3a treatment.
Further study showed that mitochondrial ROS promoted the
dissociation of Dishevelled from its complex with nucleore-
doxin, which augments Wnt/b-catenin signaling efficiency
(Rharass et al., 2014). This was also corroborated by findings
that SOD3 knockdown in mice activated Wnt2/b-catenin
signaling (Thimraj et al., 2017). Nrf2 also has the ability to
inhibit Wnt/b-catenin pathway (Manigandan et al., 2015),
which is associated with the direct interaction between
b-catenin N-terminus and b-TrCP1, an antagonist of both
Nrf2 and b-catenin (Long et al., 2017).
Constitutively active b-catenin expression in the endo-

thelium increased vascular ROS and impaired endothelium-
dependent vasorelaxation (Vikram et al., 2014). We have
shown that Wnt3a/b-catenin pathway activation increases
Nrf2 and HO-1 levels in bronchial epithelial cells after
cigarette smoke exposure, and protects against pulmonary
emphysema induced by elastase in mice (Cui et al., 2018).
Both Wnt and Nrf2 are reduced in retinal pigment epithelial
cells when mice are exposed to chronic cigarette smoke, which
is associated with GSK3b phosphorylation (Ebrahimi et al.,
2018). In addition to b-catenin, Gsk3b activation via p-Gsk3b
(tyr216) is able to phosphorylate Nrf2 leading to Nrf2 degrada-
tion independent of a kelch-like ECH-associated protein 1 path-
way (Rada et al., 2011). This is in agreement with findings that
Wnt3a regulates an Axin1/Nrf2 complex in hepatocytes (Rada
et al., 2015). All these findings suggest a bidirectional feedback
loop between Wnt and Nrf2 through phosphorylated GSK3b.
The different regulation between Nrf2 and Wnt may also
be owing to different cell types. Overall, targeting the Wnt/
b-catenin pathway and oxidative stress would be a promising
strategy to attenuate the lung damage in COPD.
Inflammation. Abnormal inflammatory responses are ob-

served in patients with COPD. This is the result of increased
infiltration of inflammatory cells as well as release of
proinflammatory mediators. Increased inflammatory response

TABLE 1
The changes of Wnt signal molecules in patients with chronic bronchitis and pulmonary emphysema

Disease Molecule Change Reference

Chronic bronchitis Frizzled-8 Increase in bronchial epithelial cells Spanjer et al., 2016
Pulmonary emphysema SFRP1 Increase in lung homogenates Foronjy et al., 2010
COPD Wnt4 Increase in bronchial epithelial cells, stromal cells Durham et al., 2013; Heijink et al., 2013

Wnt5a Increase in lung homogenates and oncosomes van Dijk et al., 2016; Feller et al., 2018
Wnt5b Increase in bronchial epithelial cells Heijink et al., 2016
Wnt10b Increase in lung homogenates Kneidinger et al., 2011
b-catenin Decrease in small-airway epithelium and lung

homogenates; reduction in nuclear b-catenin-
positive alveolar epithelial cells

Kneidinger et al., 2011; Wang et al., 2011;
Baarsma et al., 2017

Frizzled-4 Decrease in alveolar epithelial cells Skronska-Wasek et al., 2017
TCF7L1 Decrease in lung homogenates Wang et al., 2011
SFRP2 Increase in small airway epithelium and lung

homogenates
Wang et al., 2011; Baarsma et al., 2017
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could lead to irreversible and progressive airflow limitation
and lung function decline (Barnes, 2016). The mechanisms
underlying abnormal inflammatory response are associated
with activation of Toll-like receptor (TLR), mitogen-activated
protein kinase (MAPK), protein kinase A, and nuclear factor
(NF)-kB signal pathways.
Lipopolysaccharide-induced acute lung injury is associated

with suppression of Wnt/b-catenin pathway (Suo et al., 2018).
Enhancing Wnt signaling is capable of attenuating TLR
signaling and mediating the inflammatory response in lung
alveolar epithelial cells (Li et al., 2014). In macrophages,
Wnt5a induces inflammatory response via FZD5, whereas
Wnt3a, a ligand of FZD1, mediates anti-inflammatory effects
on mycobacteria-infected macrophages via the Wnt/b-catenin
signaling pathway by regulating the TLR/NF-kB pathway
(Schaale et al., 2011). Treatment with recombinant Wnt5a or
Wnt5b increased interleukin (IL)-6 and IL-8 release, which is
higher in lung fibroblasts from COPD patients than non-COPD
controls (van Dijk et al., 2016). Likewise, the noncanonical Wnt
pathway activation by Wnt4 increases IL-8, IL-6, RANTES
(regulated on activation normal T cell-expressed and secreted),
andmonocyte chemotactic protein-1 in bronchial epithelial cells
(Heijink et al., 2013). This is associated with activation of p38
and JNK-MAPK pathways, leading to neutrophil infiltration
and inflammation in COPD (Durham et al., 2013). This is in
agreement with the finding that the proinflammatory role
for the FZD-8 receptor in mucus hypersecretion by increasing
MUC5AC expression during chronic bronchitis (Spanjer et al.,
2016). In contrast, cigarette smoke exposure reduces the activity
of Wnt/b-catenin signaling in both bronchial epithelial cells
and mice. Treatment with b-catenin activator SB216763
significantly reduces cigarette smoke extract–induced secre-
tion of the inflammatory cytokines tumor necrosis factor a and
IL-1b in bronchial epithelial cells by modulating peroxisome

proliferator-activated receptor d and the p38 MAPK pathway
(Guo et al., 2016). Further study is required to determine how
canonical and noncanonical Wnt signal pathways differentially
modulate MAPK-dependent inflammatory responses and
whether this is cell-specific.
Matrix Metalloproteinases. Imbalance of matrix metal-

loproteinases (MMP)/tissue inhibitor of metalloproteinases
toward increased MMPs is thought to contribute to the
destruction of alveoli, resulting in emphysema (Stockley
et al., 2013). Findings from human disease and experimental
models suggest that MMP-7, MMP-9, MMP-10, MMP-12, and
MMP-28 participate in the development of COPD (Skjot-Arkil
et al., 2012; Kaur et al., 2016). Both MMP-2 and MMP-9
promoters contain LEF/TCF binding sites, and Wnt activa-
tion through FZD receptor induces MMP-2 and MMP-9 gene
expression in T cells (Wu et al., 2007). SFRPs can bind soluble
Wnt and inhibit Wnt’s interaction with FZD receptors, which
antagonizes their action. SFRP1 and SFRP2 are upregulated
in lung tissues of patients with pulmonary emphysema, which
is associated with increased MMP-1 and MMP-9 levels
(Foronjy et al., 2010; Wang et al., 2011). Although SFRP2 is
specifically upregulated in the ciliated epithelial cells from
healthy smokers and smokers with COPD (Wang et al., 2011),
Heijink et al. (2013) were not able to detect SFRP2 expression in
the epithelial cell lines. This difference could be owing to different
factors present in the epithelial microenvironment (Heijink et al.,
2013). Wnt5B increases levels of MMP-2 and MMP-9 in human
bronchial epithelium (Heijink et al., 2016). However, exogenously
added Wnt4 does not affect the genes of MMP2 and MMP9 in
human bronchial epithelium after cigarette smoke exposure
(Heijink et al., 2013). These findings suggest that Wnt signal
regulates MMP expression in a ligand-specific manner.
Apoptosis/Proliferation. Apoptosis of lung structural

cells, including epithelial cells, endothelial cells, and fibroblasts,

Fig. 2. Regulation of Wnt signal in the development of COPD/emphysema. Cigarette smoke exposure causes the dysregulation of canonical and
noncanonical Wnt signal pathways, which results in the alteration of oxidative stress, apoptosis/proliferation, inflammation, mucus hypersecretion,
protease/antiprotease imbalance, autophagy, senescence, metabolism reprograming, mitochondrial dysfunction, or stem-cell/progenitor-cell renewal. All
of these cellular processes participate in the pathogenesis of chronic bronchitis or pulmonary emphysema through increased lung injury and impaired
lung repair.
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contributes to the process of lung damage in COPD. This is
imbalanced by reduced proliferation leading to impaired repair
after lung injury. Reduced or delayed apoptosis of neutro-
phils is observed in COPD (Hoenderdos and Condliffe, 2013),
leading to increased inflammatory responses.
FZD4 is reduced in type II cells in patients with COPD

compared with nonsmokers or smokers. Overexpression of
FZD4 activates the Wnt/b-catenin pathway, and promotes
type II cell proliferation and transdifferentiation into type I
cells (Skronska-Wasek et al., 2017). This is corroborated by
the findings that single-cell Wnt signaling niches maintain
stemness of alveolar type II cells (Nabhan et al., 2018). This
provides a potential therapeutic avenue for replenishment
of alveolar type II cells by maintenance of canonical Wnt
signal in COPD. Furthermore, treatment of MRC-5 fibro-
blast using basic fibroblast growth factor, a well known
proliferation inducer in COPD, enhanced Wnt5a and b-catenin
expressions (Ge et al., 2016). These findings suggest an
important role for the Wnt canonical pathway in enhancing
lung repair after injury.
Senescence. Senescence occurs in patients with COPD

and in mice with emphysema (Yao et al., 2012; Ahmad et al.,
2015). There are a few studies investigating the link between
Wnt signal and lung aging (Kneidinger et al., 2011; Hofmann
et al., 2014; Kovacs et al., 2014). For instance, a decrease in
canonical Wnt signaling (e.g., Wnt3a) and an increase of
noncanonical pathway (e.g., Wnt5A) are observed in aged
lungs. In addition, expression of Wnt pathway-related genes
are altered in lung tissues of old mice. The levels of Tle1, Tef1,
and Nkd1 are decreased, whereas Frzb is increased, in lungs
of older mice (36 months old) compared with young mice
(5 months old) (Hofmann et al., 2014). Further studies on the
role of Wnt signal in lung aging/senescence during the devel-
opment of COPD may uncover novel mechanisms for this
disease.
Autophagy. Autophagy, including mitophagy and ciliaph-

agy, has been shown to modulate the development of COPD
(Cloonan et al., 2014; Ahmad et al., 2015). Autophagy negatively
regulates Wnt signaling by promoting Dishevelled degradation
(Gao et al., 2010), whereas inhibition of Wnt/b-catenin signaling
upregulates SQSTM1/p62 and sensitizes glioblastoma cells for
proliferation and apoptosis to autophagy blockers (Nàger
et al., 2018). Although SB216763, a selective small-molecule
inhibitor of GSK3, protects against bleomycin-induced pul-
monary fibrosis via activation of autophagy (Gurrieri et al.,
2010), it remains elusive whether there is an interaction
between autophagy and Wnt signaling during the develop-
ment of COPD.
Mitochondrial Dysfunction. Mitochondrial dysfunction

occurs in patients with COPD, and this includes abnormal
mitochondrial biogenesis, fusion/fission, and mitophagy
(Mizumura et al., 2014; Ahmad et al., 2015). Wnt signaling
has been shown to regulate mitochondrial biogenesis and
fusion/fission, which is cell- and organ-specific (An et al.,
2010; Yoon et al., 2010; Godoy et al., 2014; Bernkopf and
Behrens, 2018; Singh et al., 2018). For instance, activation
of Wnt signal by Wnt3a results in an increase in mitochon-
dria in human osteosarcoma cell. Wnt5a ligand modulates
mitochondrial fission-fusion in rat hippocampal neurons.
These findings suggest that the Wnt signal regulates
mitochondrial function in a ligand-specific manner. Fur-
ther investigation of the role of Wnt signal in cigarette

smoke-induced mitochondrial dysfunction would provide
novel insights into molecular mechanisms for COPD.
Metabolism. Lung epithelial cells exposed to cigarette

smoking have shown a decrease in glycolysis but an increase
in fatty acid oxidation, suggesting that metabolic dysregulation
may regulate lung destruction and impaired repair in COPD
(Agarwal et al., 2014; Jiang et al., 2017; Cruickshank-Quinn
et al., 2018). Exposure of human lung fibroblast to cigarette
smoke inhibits oxidative phosphorylation complex III (Lei
et al., 2017). Proteomic analysis of livers from liver-specific
APC knockout mice has shown dysregulated proteins in-
volved in mitochondrial dysfunction and carbohydrate me-
tabolism, suggesting that defects in Wnt signaling may
contribute to a metabolic switch in fuel utilization toward
glycolysis and away from fatty acid oxidation (Chafey et al.,
2009). This is corroborated by the findings that Wnt signal-
ing activates TP53-induced glycolysis (Liu et al., 2019). The
mechanisms are associated with transcription factors FOXO1
and TIGAR, or direct target genes, includingmonocarboxylate
transporter 1 and pyruvate dehydrogenase kinase 1 (Liu et al.,
2011; Pate et al., 2014; Sprowl-Tanio et al., 2016). Nevertheless,
it is not knownwhetherWnt regulatesmetabolic reprogramming
in response to cigarette smoke exposure or in the development
of COPD.
Stem Cell Renewal. Inadequate lung tissue repair after

injury contributes to the development of COPD (Bagdonas
et al., 2015). In the normal condition, lung tissue turnover is
slow. However, after lung injury in COPD, lung stem cells or
progenitor cells are activated to replace damaged lung tissue
via lung regeneration (Kokturk et al., 2018). Wnt/b-catenin
signaling is involved in regulating the stem cell in the renewal
of lung epithelium (Wang et al., 2009; Sun et al., 2014),
suggesting that enhancing canonical Wnt signal would pro-
mote lung repair in COPD. Interestingly, knockout b-catenin
in bronchiolar epithelium did not affect maintenance and
repair following naphthalene-induced airway injury, indicat-
ing that b-catenin is not necessary for maintenance or
repair of bronchiolar epithelium (Zemke et al., 2009). This
is corroborated by the findings that low-dose Wnt treat-
ment enhanced stem-cell proliferation, whereas high-dose
treatment inhibited the proliferation of stem cells (De Boer et al.,
2004). This could be attributable to the temporal and spatial
effects of Wnt signaling for regenerating epithelium or endo-
thelium after injury. Further studies are required to explore
whether and how Wnt/b-catenin signaling modulates stem-cell
or progenitor-cell renewal for repairing lung tissues in COPD.
Differentiation of the alveolar type I cell lineage is an

important step for the formation of distal lung saccules during
the embryonic stage. Systemic activation of Wnt signaling at
specific stages of lung development can partially rescue the
type I cell differentiation and lung alveolarization (Wang
et al., 2016). However, inhibiting Wnt/b-catenin pathway by
ICG-001 compound attenuates hyperoxia-induced simplifica-
tion of alveolarization in neonatal rats (Alapati et al., 2014),
whereas inhibition of Wnt receptor LRP5/6 by Mesd does
not improve alveolarization during hyperoxia (Alapati et al.,
2013). Accumulating evidence suggests that neonatal lung
injury, such as bronchopulmonary dysplasia, can evolve into
COPD. Hence, it is possible that COPD develops as a result of
neonatal lung injury leading to aberrant Wnt signaling and
thus lung repair capacity. This requires long-term follow-up
studies in infants with bronchopulmonary dysplasia.
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Pharmacologically Targeting Wnt Signal
Pathway

There are numerous pharmacological compounds targeting
the Wnt signal pathway. Table 2 shows the compounds and
their targets in Wnt signal pathway. Except for GSK3
inhibitors activating the canonical Wnt signal, most are
inhibitors of theWnt signal pathway. These compounds are
either FDA-approved or in clinical trials as tumor treat-
ments or at preclinical stages. A few groups report using
GSK3 inhibitors to activate Wnt pathway to attenuate
cigarette smoke–induced lung inflammation and injury
(Baarsma et al., 2011; Kneidinger et al., 2011; Guo et al.,
2016; Cui et al., 2018). Their findings suggest potential
therapies for preventing or treating COPD using Wnt-signal
modulators. The Wnt signal plays important roles in tissue
homeostasis and cancer stem-cell proliferation and renewal in
multiple organs, including lung (Wang et al., 2018). Therefore,
the side effects should be considered during the development of
therapeutic strategies to activate the Wnt pathway for COPD.

Conclusion and Future Directions
COPD is a chronic respiratory disease characterized by loss

of parenchymal alveolar tissue and impaired tissue repair.
Therapeutic targets are limited. Several studies have revealed
that the Wnt signaling pathway is involved in lung develop-
ment, homeostasis, and the lung epithelial injury and repair
process in COPD. Targeting the Wnt signal would provide
novel therapeutics to intervene in the development of COPD.
Yet, the molecular mechanisms underpinning the pathogen-
esis of Wnt signaling components in COPD, including the
destructive complex, remain largely unclear. Wnt signaling is
temporal, and both the activation and subsequent reduction of
Wnt signaling are required for normal homeostasis or repair
after injury. Thus, it is important to study the dynamics of
Wnt signal during the development of COPD. b-catenin is able
to bind to a variety of transcription factors other thanTCF/LEF,
which modulate a broad spectrum of downstream biologic
processes. Therefore, it is important to determinewhether any
of these therapeutic agents that specifically target the Wnt
pathway will be beneficial for COPD/emphysema and have an
acceptable safety profile.
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