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ABSTRACT

Genes involved in drug absorption, distribution, metabolism, and
excretion (ADME) are called ADME genes. Currently, 298 genes
that encode phase | and Il drug metabolizing enzymes, trans-
porters, and modifiers are designated as ADME genes by the
PharmaADME Consortium. ADME genes are highly expressed
in the liver and their levels can be influenced by liver dis-
eases such as hepatocellular carcinoma (HCC). In this study,
we obtained RNA-sequencing and microRNA (miRNA)-sequencing
data from 371 HCC patients via The Cancer Genome Atlas
liver hepatocellular carcinoma project and performed ADME
gene-targeted differential gene expression analysis and ex-
pression correlation analysis. Two hundred thirty-three of the
298 ADME genes (78%) were expressed in HCC. Of these
genes, almost one-quarter (58 genes) were significantly
downregulated, while only 6% (15) were upregulated in HCC
relative to healthy liver. Moreover, one-half (14/28) of the core

ADME genes (CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9,
CYP2C19, CYP2E1, CYP3A4, NAT1, NAT2, UGT2B7, SLC22A1,
SLCO1B1, and SLCO1B3) were downregulated. In addition,
about one-half of the core ADME genes were positively
correlated with each other and were also positively (AHR,
ARNT, HNF4A, PXR, CAR, PPARA, and RXRA) or negatively
(PPARD and PPARG) correlated with transcription factors
known as ADME modifiers. Finally, we show that most miRNAs
known to regulate core ADME genes are upregulated in HCC.
Collectively, these data reveal 1) an extensive transcription
factor-mediated ADME coexpression network in the liver
that efficiently coordinates the metabolism and elimination of
endogenous and exogenous compounds; and 2) a widespread
deregulation of this network in HCC, most likely due to
deregulation of both transcriptional and post-transcriptional
(miRNA) pathways.

Introduction

The liver expresses a variety of phase I and IT enzymes and
transporters and thus it is the primary organ of drug and
xenobiotic metabolism and clearance. Phase I enzymes mainly
perform oxidative, reductive, or hydrolytic reactions that
usually create or reveal a functional group (e.g., hydroxyl,
carboxyl, and amino) on a xenobiotic, whereas phase II
enzymes generally add a water-soluble group (e.g., glutathi-
one, sulfate, and glucuronic acid) directly to a xenobiotic or to a
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metabolite of phase I metabolism. The influx and efflux
transporters are responsible for the uptake and excretion
of various compounds (e.g., drugs) in and out of cells. The
group of genes involved in drug absorption, distribution,
metabolism, and excretion (ADME) consist mainly of genes
encoding phase I and II drug metabolizing enzymes, drug
transporters, and modifiers; the latter are a group of factors
that either modulate the expression of other ADME genes or
influence the biochemistry of ADME enzymes (www.phar-
maadme.org). Currently, 298 genes are classified as ADME
genes by the pharmaADME Consortium, including 32 core
ADME genes and 266 extended ADME genes (www.phar-
maadme.org). The combined activities of the ADME genes
determine the capacity of the liver to metabolize and clear
drugs and hence influence the efficacy of drug treatment.
The expression and activities of ADME genes are influenced
by liver diseases, such as viral infection, alcohol liver disease,
primary sclerosis cholangitis, nonalcoholic fatty liver disease,
and hepatocellular carcinoma (HCC) (Kurzawski et al., 2012;

ABBREVIATIONS: ABC, ATP-binding cassette; ADH, alcohol dehydrogenase; ADME, absorption, distribution, metabolism, and excretion; AKR,
aldo-keto reductases; ALDH, aldehyde dehydrogenase; CAR, constitutive androstane receptor; GST, glutathione S-transferase; HCC,
hepatocellular carcinoma; HT-seq, high-throughput sequencing; LIHC, liver hepatocellular carcinoma; miRNA, microRNA; miRNA-seq, microRNA
sequencing; P450, cytochrome P450; PXR, pregnane X receptor; RNA-seq, RNA sequencing; SLC, solute carrier; SULT, sulfotransferase; TCGA,
The Cancer Genome Atlas; TF, transcription factor; UGT, UDP-glucuronosyltransferase.
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Hardwick et al., 2013). For example, nonalcoholic fatty liver
disease significantly alters the expression of ADME genes
that encode a variety of phase I and II drug metabolizing
enzymes and drug transporters, including cytochrome P450
(P450) enzymes (Fisher et al., 2009), glutathione S-transferases
(GSTs) (Hardwick et al., 2010), UDP-glucuronosyltransferases
(UGTs) and sulfotransferases (SULTs) (Congiu et al., 2002;
Hardwick et al., 2013), and ATP-binding cassette (ABC)
transporters (Hardwick et al., 2011).

HCC is the fifth most common cancer and the third highest
cause of cancer-related death globally (Lin et al., 2012).
Common risk factors for HCC are viral infection, chronic
alcohol consumption, aflatoxin exposure, and cirrhosis (Farazi
and DePinho, 2006). Surgical resection, liver transplantation,
and ablation remain the only potentially curative treatments
for early stage HCC, whereas two multikinase inhibitors,
sorafenib and regorafenib, are the only approved systemic
drugs for treating advanced HCC (Llovet et al., 2008; Bruix
et al., 2017). The sequential use of sorafenib (front line) and
regorafenib (second line) provides a survival benefit in
advanced HCC (Bruix et al., 2017).

Several studies have investigated the differential expres-
sion of ADME genes in HCC relative to adjacent noncancerous
liver tissue. Many of these studies reported altered expression
of a single ADME gene or gene superfamily, such as P450s
(Chen et al., 2014; Yan et al., 2015a,b), ABC transporters
(Borel et al., 2012), or UGTSs (Yan et al., 2015a). Some high-
throughput studies using microarray-based gene expression
profiling (Okabe et al., 2001; Lee et al., 2004; Park et al., 2006;
Jin et al., 2015a), or more recently deep RNA sequencing
(RNA-seq) (Ho et al., 2015; Woo et al., 2017), have revealed
altered expression of ADME genes from a number of super-
families (e.g., P450s, UGTs, and GSTs); however, these
untargeted studies did not draw specific conclusions about
dysregulation of ADME pathways. Based on the limitations of
these previous studies, we sought to provide the first targeted,
yet comprehensive, dysregulation analysis of all known
ADME genes in HCC.

The Cancer Genome Atlas (TCGA) liver hepatocellular
carcinoma (LIHC) project contains RNA-seq data from
371 HCC patients including 50 paired HCC and corresponding
adjacent noncancerous liver tissues (https:/portal.gdc.cancer.
gov/). In the present study, we performed differential gene
expression analysis of the 50 paired HCC and noncancerous
tissues focusing on the defined ADME gene set. Key findings
were that one-half of the core ADME gene set and about
one-quarter of the extended ADME set were significantly
downregulated in HCC, while few genes were upregulated.
Furthermore, about one-half of the core ADME genes showed
significant correlation with each other and were also signifi-
cantly correlated with nine transcription factors (TFs) [AHR,
ARNT, HNF4A, pregnane X receptor (PXR), constitutive
androstane receptor (CAR), PPARA, PPARD, PPARG, and
RXRA], indicating coordinated regulation at the transcrip-
tional level. The study also identified specific microRNAs
(miRNAs) likely to be involved in ADME gene dysregulation
in HCC.

Materials and Methods

Liver Hepatocellular Carcinoma Data Set of TCGA. The
Cancer Genome Atlas is a community resource project that collects

and analyzes cancer specimens from a variety of human cancers
(https://cancergenome.nih.gov). Data generated from TCGA projects
such as RNA-seq and miRNA sequencing (miRNA-seq) for various
human cancers are made freely available for browser, download, and
use for commercial, scientific, and educational purposes. The results
shown in the present study were mainly based on RNA-seq and
miRNA-seq data generated by the TCGA Research Network of the
LIHC project (https:/portal.gdc.cancer.gov/projects/TCGA-LIHC).
The TCGA LIHC project contains RNA-seq data of HCC tumors from
371 patients. RNA-seq data from normal liver tissues adjacent to the
corresponding tumors are also available for 50 of these patients. The
TCGA LIHC project also contains miRNA-seq data for these patients,
including paired normal and cancerous specimens from 49 patients.
As described in detail subsequently, the RNA-seq and miRNA-seq
data from the paired normal and cancerous specimens were used for
differential gene and miRNA expression analysis, respectively, and
the RNA-seq data from the 371 tumors were used for gene expression
correlation analysis.

The detailed clinical data for each of the 371 HCC patients are
available from the cBioportal (http:/www.cbioportal.org/study?
id=lihc_tcgattclinical). This cohort includes 250 male and 121 female
patients with the age at diagnosis ranging from 16 to 90 years. The
ethnicities of the subjects are available for 361 patients, including
Asians (158), Caucasians (184), Black or African Americans (17), and
American Indian or Alaska Native (2). The American Joint Committee
on Cancer proposes a staging grouping based on T, N, and M to define
the three stages of tumors: the primary tumor (T), regional lymph
nodes (N), and distant metastases (M) (Kamarajah et al., 2018). The
progression stages of the tumors are available for 368 patients.
According to this TNM staging system, all tumors were primary
hepatocellular carcinomas at stage T, including 181, 94, 80, and
13 tumors at stages T1, T2, T3, and T4, respectively. Tumors at stages
N and M were not included in the TCGA LIHC project. The TCGA
LIHC clinical data do not provide the details of the pre/postoperative
chemotherapeutic regimens of the patients.

ADME Genes Defined by the PharmaADME Consortium.
Thirty-two core and 266 extended ADME genes (a total of 298 genes)
are currently defined by the PharmaADME Consortium (http:/www.
pharmaadme.org). The core ADME gene set represents the most
important genes directly involved in drug metabolism/clearance; the
extended ADME gene set represents other genes related to drug
metabolism/clearance. Four extended ADME genes, either pseudo-
gene (CYP2D7P1), antisense gene (SLC22A18AS), or functionally
unknown genes (LOC728667 and LOC731931) were excluded from
analysis in this study. The remaining 294 ADME genes (32 core;
262 extended) are listed in Supplemental Table 1.

Download of the TCGA LIHC RNA-Seq and miRNA-Seq
Data. For differential gene expression analysis, TCGA LIHC RNA-
seq data from the 50 paired HCC and corresponding adjacent non-
cancerous liver tissues that have been mapped to the human genome
GRCh38 reference assembly were downloaded as high-throughput
sequencing (HT-seq) counts from the Genomic Data Commons Data
Portal (https://portal.gdc.cancer.gov/). The HT-seq counts contained
the raw read counts of each gene generated using a HT-seq tool (http://
htseq.readthedocs.io/en/release_0.9.1/) to measure gene expression
level from the Genomic Data Commons mRNA quantification analysis
pipeline (https:/docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/
Expression_mRNA_Pipeline/). The HT-seq counts of 609 genes that
were included in the analysis in this study are given in Supple-
mental Table 2.

For gene expression correlation analysis, the TCGA LIHC RNA-seq
data from 371 HCC tumors were downloaded in the form of HT-seq
counts from the Genomic Data Commons Data Portal (https:/portal.
gdc.cancer.gov/). Genes (protein coding and noncoding) with a mean of
less than 10 counts were discarded; the counts of the remaining genes
were normalized using the upper quantile normalization method. The
normalized read counts of the 609 genes that were included in the
analysis of this study are given in Supplemental Table 3.
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For differential miRNA expression analysis, TCGA LIHC miRNA-
seq data of the 49 paired HCC and corresponding adjacent non-
cancerous liver tissues were downloaded from The Cancer Genome
Atlas data portal (https://portal.gdc.cancer.gov/) and normalized using
the upper quantile normalization method. The normalized read counts
of miRNAs that were included in the analysis of this study are given in
Supplemental Table 4.

ADME Genes and Non-ADME Genes Analyzed in this
Study. Most of the 298 ADME genes belong to gene superfamilies
such as ABC transporters, P450 enzymes, solute carrier (SLC)
transporters, and UGT enzymes. However, many of these gene
superfamilies also contain members that are not involved in drug
absorption, distribution, metabolism, and excretion. These genes are
termed non-ADME genes in this study. The TCGA LIHC RNA-seq
data showed HT-seq counts for 743 genes, including 290 ADME
genes and 453 non-ADME genes. For quality control, genes with
HT-seq counts of <32 (equivalent to <5 of log 2-transformed counts)
were excluded from the analysis. Based on this cutoff criterion, a
total of 609 genes (Supplemental Table 2), including 233 ADME
genes and 376 non-ADME genes, were included in the final analysis.
Inclusion of the non-ADME genes in our analysis allowed us to
determine whether ADME genes were specifically dysregulated,
rather than whole gene superfamilies.

Statistical Analysis of the TCGA LIHC RNA-Seq Data and
miRNA-Seq Data. The downloaded RNA-seq (HT-seq counts) of the
50 paired HCC and corresponding adjacent normal liver tissues as
described previously were subjected to differential gene expression
analysis using the DESeq2 program (Love et al., 2014). Briefly,
DESeq2 takes the HT-seq counts per gene and normalizes gene
counts using a generalized linear model. After normalization, it
estimates negative binomial distribution and performs variance
shrinkage to determine the fold changes of genes between normal
and cancerous tissues. DESeq2 uses a Wald test for statistically
significant testing. Briefly, the shrunken estimate of log fold change
is divided by its S.E., resulting in a z-statistic, which is compared
with a standard normal distribution. The Wald test allows testing of
individual coefficients, or contrasts of coefficients, without the need
to fit a reduced model as with the likelihood ratio test. The Wald test
P values from the subset of genes that pass the independent filtering
step are adjusted for multiple testings using the Benjamini-
Hochberg test. As detailed in Supplemental Table 5, the final report
of the DESeq2 analysis included a log 2 fold change in the expression
level of each gene between the tumor and adjacent nontumor liver
tissues and the associated S.E. estimate for the log 2 fold change
estimate and the Wald test result (P value) and the Benjamini-
Hochberg test results (adjusted P values). An adjusted P value
of <0.05 was considered statistically significant. Differentially
expressed genes were defined by a log 2 fold change of >1 (equivalent
to an upregulation of >2-fold) or <—1 (equivalent to a down-
regulation of <2-fold). Supplemental Table 5 gives the final
results pertaining to the 609 genes that are included in analysis
in this study.

The normalized gene expression levels (read counts) of the 371 HCC
tumors as described previously were subjected to Spearman ranking
correlation analysis 1) between core ADME genes and 2) between core
ADME genes and nine ADME modifier transcription factors and NRF2
and its coregulatory KEAP1 using GraphPad Prism (version 7.03).
A P value of <0.05 was considered statistically significant.

The normalized expression levels of miRNAs of the 49 paired HCC
and corresponding adjacent normal noncancerous liver tissues as
described previously were analyzed using a paired ¢ test via GraphPad
Prism (version 7.03 GraphPad, LA Jolla, CA). A P value of <0.05 was
considered statistically significant.

Analysis of Microarray-Based Gene Expression Profiles of
Hepatocellular Carcinoma. Most of the results reported in this
study were obtained from the analysis of the TCGA LIHC RNA-seq
data and miRNA-seq data as described previously. To support the
findings from this data set, we further analyzed microarray-based
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whole genome gene expression profiles from four other studies
(Chen et al., 2002; Wurmbach et al., 2007; Roessler et al., 2010) via
Oncomine, a publicly accessible database (Rhodes et al., 2007). As
stated by Oncomine (www.oncomine.org), Roessier et al. (2010)
analyzed 225 HCC and 220 adjacent nontumor liver tissues using
the Affymetrix human genome 96 HT HG-U133A 2.0 microarray
platform (GSE14520). Using the same U133A 2.0 microarray,
Wurbach et al. (2007) studied 35 HCC tumors and 10 heathy liver
tissues (GSE6764). Chen et al. (2002) analyzed HCC tumor liver
tissues (71-76 specimens) and adjacent nontumor liver tissues
(98-104 specimens) using custom-made ¢cDNA microarrays contain-
ing 23,075 cDNA probes, representing 17,400 genes. Thurnherr et al.
(2016) studied 100 paired HCC tumor and adjacent nontumor liver
tissues using Agilent’s 60-mer oligo microarray (Agilent Technolo-
gies, Santa Clara, CA) (GSE62043).

Results

Deregulation of ADME and Non-ADME Genes in
HCC. This study examined the expression of 233 ADME
genes (Supplemental Table 6) in 50 paired HCC and corre-
sponding noncancerous liver tissues using the TCGA LIHC
RNA-seq data set. Three hundred seventy-six non-ADME
genes from ADME gene superfamilies that are not involved
in drug metabolism and clearance were also analyzed for
comparison. Overall, of the 609 genes analyzed, 109 genes
(18%) were downregulated (Supplemental Table 7) and
55 genes (9%) were upregulated (Supplemental Table 8) in
HCC. Among the 233 ADME genes, 58 genes (24%) were
downregulated (Supplemental Table 9) and 15 genes (6%)
were upregulated (Supplemental Table 10) in HCC, whereas
out of the 376 non-ADME genes, 51 genes (14%) were
downregulated (Supplemental Table 11) and 40 genes
(11%) were upregulated (Supplemental Table 12) in HCC.
Chi-square tests showed that ADME genes were signifi-
cantly more likely to be downregulated than upregulated
(P < 0.0001), and that ADME genes were significantly more
likely to be downregulated than non-ADME genes (P < 0.001).

Deregulation of Core ADME Genes in HCC. The
PharmaADME Consortium (www.pharmaadme.org) cur-
rently defines 32 core ADME genes (Supplemental Ta-
ble 13), four (GSTT1, SLC15A2, SLC22A2, and SLC22A6)
of which were not expressed in the TCGA HCC specimens.
Of the remaining 28 core ADME genes, 14 (50%) were
significantly downregulated in HCC tissues compared with
paired adjacent noncancerous liver tissues, including eight
phase I enzymes (CYP1A2, CYP2A6, CYP2B6, CYP2CS8,
CYP2C9, CYP2C19, CYP2E1, and CYP3A4), three phase II
enzymes (NAT1, NAT2, and UGT2B7), and three trans-
porters (SLC22A1, SLCO1B1, and SLCO1B3) (Fig. 1;
Table 1). None of the core ADME genes were upregulated.
Chi-square tests showed that core ADME genes were signif-
icantly more likely to be downregulated relative to extended
ADME genes (P < 0.01) or non-ADME genes (P < 0.0001).
Our analyses of four other microarray gene expression
profiling studies of HCC (Chen et al.,, 2002; Wurmbach
et al., 2007; Roessler et al., 2010; Thurnherr et al., 2016)
showed that each of the 14 downregulated core ADME genes
was reported to be downregulated in HCC in at least one of
these other studies (Table 2).

Deregulation of ADME Genes Coding for Phase I
Drug Metabolism Enzymes in HCC. One hundred and
thirty of the 298 ADME genes code for phase I drug
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Fig. 1. Deregulation of core ADME genes in HCC. The TCGA LIHC RNA-seq data set representing 50 paired HCC cancerous and corresponding
adjacent noncancerous liver tissues was downloaded from the Genomic Data Commons Data Portal (https://portal.gdc.cancer.gov/) and subjected to
differential gene expression analysis using the DESeq2 program as described in Materials and Methods. The box-and-whisker plot shows the log
2-transformed expression levels (minimum, first quartile, median, third quartile, and maximum) of 28 core ADME genes in 50 HCC cancer tissues
and their corresponding adjacent noncancerous liver tissues. *P < 0.05; ***P < 0.001. N, noncancerous liver tissues; T, HCC cancerous liver

tissues.

metabolizing enzymes (PharmaADME). Of these genes,
106 (82%) were expressed in the TCGA HCC specimens,
including 34 downregulated genes (32%) (Table 1) and five
upregulated genes (5%): ALDH3A1, CBR3, CYP17A1, NOS2A,
and CYP7A1. Among the downregulated genes, 27 encode
members of three enzyme superfamilies, cytochromes P450
enzymes, alcohol dehydrogenases (ADHs), and aldehyde dehy-
drogenases (ALDHs). The remaining seven genes were AOX1,
DHRS1, EPHX2, PLGLB1, PON1, PON3, and XDH.

There are 57 putatively functional CYP genes in the human
genome that are grouped into 18 families and 44 subfamilies
based on sequence similarity (Nelson et al., 2004). Forty-seven
CYP genes are classified as ADME genes (PhamaADME). Of
these ADME CYP genes, 37 were expressed in the TCGA HCC
specimens: two of these were upregulated (CYP7A1 and
CYP17A1) and 17 were downregulated (Fig. 2A; Table 1).
The downregulated CYP genes included the eight aforemen-
tioned downregulated core ADME CYP genes (Fig. 1) and nine
other CYP genes (CYP2C18, CYP3A7, CYP3A43, CYP4All,
CYP4F2, CYP4F12, CYP8BI1, CYP26A1, and CYP39A1).

The human genome has seven functional ADH genes (1A,
1B, 1C, 4, 5,6, and 7) that are all classified as ADME genes
based on their roles in drug clearance (Edenberg, 2007). Of
these ADH genes, six (1A, 1B, 1C, 4, 5, and 6) were
expressed in the TCGA HCC specimens, five of which (1A,
1B, 1C, 4, and 6) were significantly downregulated in HCC,
consistent with the findings of recent reports (Wei et al.,
2012; Shang et al., 2017).

There are 19 ALDH genes in humans (Marchitti et al.,
2008), 15 of which are classified as ADME genes (www.
pharmaadme.org). Of the ADME ALDH genes, 14 were
expressed in the TCGA HCC specimens, including five genes
that were downregulated (ALDHI1A3, 1B1, 2, 6A1, and 8A1)
and one that was upregulated (ALDH3A1) in HCC (Fig. 2B;

Table 1). The downregulation of ALDH1B1 (Yang et al., 2017)
and ALDH2 (Jin et al., 2015b) in HCC was consistent with
recent reports, whereas the downregulation of ALDHIAS3,
ALDH6A1, and ALDHS8A1I and the upregulation of ALDH3A1
in HCC were novel findings.

Deregulation of ADME Genes Coding for Phase II
Drug Metabolism Enzymes in HCC. Sixty-eight of the
298 ADME genes encode for phase II drug metabolizing
enzymes (PharmaADME). Of these ADME genes, 52 (76%)
were expressed in the TCGA HCC specimens, including
11 genes (23%) that were downregulated and three genes
(6%) that were upregulated in HCC. Seven downregulated
genes encode for members of three enzyme superfamilies
(GSTs, SULTs, and UGTSs), as described in detail sub-
sequently, and the other four genes were carbohydrate
(N-acetylglucosamine 6-O) sulfotransferase 4 (CHST4), nic-
otinamide N-methyltransferase (NNMT), and two arylamine
N-acetyltransferases (NAT1 and NATZ2). The upregulated
genes were CHST10, SULT1C2, and UGT2B11.

The human genome contains 25 GST genes (www.gene-
names.org), 21 of which are classified as ADME genes (www.
pharmaadme.org). Of these ADME GST genes, 17 genes from
three GST subfamilies (cytosolic, mitochondrial, and micro-
somal) were expressed in the TCGA HCC specimens, in-
cluding two GST genes (GSTM5 and GSTZI) that were
significantly downregulated in HCC (Fig. 3A). GSTZI1 down-
regulation in HCC was recently reported (Jahn et al., 2016).
The downregulation of GSTAI (Li et al., 2008) and GSTP1
(Zhong et al., 2002; Zhang et al., 2005; Shen et al., 2012) and
the upregulation of GST1A4 (Liu et al., 2017) in HCC were
also previously reported. There was no overall significant
deregulation of these three GST genes in HCC, but we
observed reduced GSTA1l and GSTP1 mRNA levels and
increased GST1A4 mRNA levels in HCC tumor tissues
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TABLE 1

Deregulation of ADME Genes in Hepatocellular Carcinoma

Twenty-eight core ADME genes and 205 extended ADME genes that are expressed in TCGA HCC cohort
and their deregulation in HCC tumor tissues compared with corresponding adjacent noncancerous liver

tissues

Downregulated genes are bold and upregulated genes are bold with an asterisk.

Phase I Enzyme Phase II Enzyme Transporter Modifier
Core ADME Genes
CYP1A1 GSTM1 ABCB1
CYP1A2 GSTP1 ABCC2
CYP2A6 NAT1 ABCG2
CYP2B6 NAT2 SLC22A1
CYP2C19 SULT1A1 SLCO1B1
CYP2C8 TPMT SLCO1B3
CYP2C9 UGT1A1
CYP2D6 UGT2B15
CYP2E1 UGT2B17
CYP3A4 UGT2B7
CYP3A5
DPYD
Extended ADME Genes
ADHI1A, CYP51A1 CHST1 ABCA1 AHR
ADHI1B, CYP7A1* CHST10* ABCA4* ARNT
ADHI1C, CYP7B1 CHST11 ABCBI11 ARSA
ADH4, CYPS8B1 CHST12 ABCB4 ATP7A
ADHS5, DDO CHST13 ABCB6 ATP7B
ADH6, DHRS1 CHST2 ABCB7 CAT
ADHFE1, DHRS12 CHST3 ABCBS8 CDA
ALDH1A1, DHRS13 CHST4 ABCC1 HNF4A
ALDH1A2, DHRS2 CHST7 ABCC10% KCNJ11*
ALDH1A3, DHRS3 CHST9 ABCC11 MAT1A
ALDH1B1, DHRS4 GSTA1 ABCC3 NR1I2
ALDH2, DHRS4L1 GSTA2 ABCC4* NR1I3
ALDH3A1*, DHRS4L2 GSTA4 ABCC6 POR
ALDH3A2, DHRS7 GSTCD ABCC9 PPARA
ALDH3B1, DHRS7C GSTK1 ABCG1 PPARD
ALDH4A1, DHRS9 GSTM2 SLC10A1 PPARG
ALDH5A1, DHRSX GSTM3 SLC13A2 RXRA
ALDHG6A1, EPHX1 GSTM4 SLC13A3 SERPINA7
ALDH7A1, EPHX2 GSTM5 SLC15A1 SOD1
ALDHS8A1, FMO1 GSTO1 SLC16A1 SOD2
ALDH9A1, FMO3 GSTO2 SLC19A1 SOD3
AOX1, FMO4 GSTZ1 SLC22A10
CBR1, FMO5 HNMT SLC22A11%
CBR3*, GPX1 MGST1 SLC22A15%
CES1, GPX2 MGST2 SLC22A17
CES2, GPX3 MGST3 SLC22A18
CYB5R3, GPX4 NNMT SLC22A3
CYP11A1, GPX7 SULF1 SLC22A4*
CYP17A1%, GSR SULT1A2 SLC22A5
CYP1B1, GSS SULT1B1 SLC22A7
CYP20A1, HAGH SULT1C1 SLC22A9
CYP21A2, HSD11B1 SULT1C2* SLC27A1
CYP26A1, HSD17B11 SULTI1E1 SLC28A1
CYP27A1, HSD17B14 SULT2A1 SLC29A1
CYP2A13, METAP1 UGT1A3 SLC29A2
CYP2A7, NOS1 UGT1A4 SLC2A4
CYP2C18, NOS2A* UGT1A6 SLC5A6
CYP2J2, NOS3 UGT1A9 SLC7A5
CYP2R1, PDE3A UGT2A1 SLC7A7
CYP2S1, PDE3B UGT2B10 SLC7A8
CYP39A1, PLGLB1 UGT2B11* SLCO1A2
CYP3A43, PON1 UGT2B4 SLCO2A1*
CYP3A7, PON2 SLCO2B1
CYP46A1, PON3 SLCO3A1
CYP4Al1, XDH SLCO4A1
CYP4F11 SLCO04C1
CYP4F12 TAP1 (ABCB2)
CYP4F2 TAP2 (ABCB3)
CYP4F3
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compared with corresponding adjacent normal liver tissuesin  these SULT genes, six (IA1, 1A2, 1B1, 1C2, 1E1, and 2A1)
nearly 50% of the patients (data not shown). were expressed in the TCGA HCC specimens, including three

There are 13 SULT genes in the human genome, 10 of which  genes that were downregulated (1A2, 1E1, and 2A1) and one
are classified as ADME genes (Blanchard et al., 2004). Of gene that was upregulated (I1C2) in HCC (Fig. 3B). In
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TABLE 2

Downregulation of 14 core ADME genes in hepatocellular carcinoma

The fold change of gene expression and related significant P values from four studies (Chen et al., 2002; Wurbach et al., 2007; Roessler et al., 2010; Thurnherr et al., 2016) were
obtained from the publicly accessible database Oncomine (www.oncomine.org). Of note, data for several genes were not available in one or two studies. GSE62043, GSE14520,

and GSE6764 are the Gene Expression Omnibus accession numbers for related studies.

TCGA HCC [This Study;

Thurnherr et al. (2016)

Roessler et al. (2010) [T (225)/

Wurmbach et al. (2007)

Chen et al. (2002)

T (50)/N (50)] [T (100)/N (100); GSE62043] N (220); GSE14520] [T (85)/N (10); GSE6764] [T (98-104)/N (71-76)]
Gene
Fold Fold Fold Fold Fold

Change P Value Change P Value Change P Value Change P Value Change P Value
CYP1A2 -5.79 8.05x 107”7 -725 106 x 10733 -1887 150 x 107131 -23814 1.69 x 107°
CYP2A6 -2.08 0.021 -6.07 335x107° -1133 7.21x10 "2 -6.53 6.56 x 1071°
CYP2B6 -568 126x107% —-152 485 x 1072 -10.80 3.59 x 1071 -2.95 951 x 1077
CYP2C8 -540 667 x107Y -788 510 x 103 -3.561 269 x 107° -5.76 2.32 x 1072
CYP2C9 -4.09 175x107¥  -511 148 x 107 —4.87 2.89 x 107%® -5.60 1.33 x 107°
CYP2C19 -624 6.06 x 1078 -4.87 1.15x 10797
CYP2E1 -2.03 0.028 -434 443 x 107V —8.69 3.46 x 10738 -3.825 248 x 107°
CYP3A4 -3.32 0.00027 -4.00 7.87x 107 -7.09 3.85x 10 " -253 3.17 x 10°1°
NAT1 -237 210x107%  -159 1.11x107%® —2.67 6.34 x 10752 -256  6.33 x 107 -3.04 4.67 x 107
NAT?2 -764 323x107¥ 562 258 x10%° -1399 7.61x 10197 -36.89 454 x 10 -8.02 2.07 x 10734
SLC22A1 -5.29 986 x 10  -6.2 156 x 1072 -1690 9.61 x 107%° -1541 1.23 x 107 -11.38 1.94 x 10-21
SLCOIB1 -216 7.08x10°% -363 350x 101 -2.88 8.83 x 10732
SLCO1B3 —4.16 4.37 x 10°° -829 189 x 107 -1148 297 %105 -1697 2.04 x 107°
UGT2B7 -361 194x1072 -364 598 x 1072 -3.35 17.99 x 1072

N, normal; T, Tumor.

agreement with these findings, the downregulation of
SULTIE1 and SULT2A1 in HCC was recently reported
Xie et al., 2017).

There are 21 functional UGT genes in the human genome
that are subdivided into four families: UGT1, UGT2, UGTS3,
and UGT8 (Hu et al, 2014a). Eighteen UGT genes are
classified as ADME genes, including four core ADME genes
(1A1, 2B15, 2B17, and 2B7) and 14 extended ADME genes
(1A3-10, 2A1, 2B4, 2B10, 2B11, 2B28, and UGT8) (www.
pharmaadme.org). Of the ADME UGT genes, 12 (1A1, 1A3,
1A4, 1A6, 1A9, 2A1, 2B4, 2B7, 2B10, 2B11, 2B15, and 2B17)
were expressed in the TCGA HCC specimens (Fig. 3C;
Table 1). We show here for the first time, UGT2B10 down-
regulation and UGT2B11 upregulation in HCC (Fig. 3C). We
also show UGT2B7 downregulation in HCC, a finding that
was recently reported by others (Lu et al., 2015; Yan et al.,
2015a). Previous studies have also reported downregulation of
three other UGTs (1A1, 1A4, and 1A9) in HCC (Lu et al., 2015;
Yan et al., 2015a). There was no overall significant deregula-
tion of these three UGT genes in the TCGA HCC specimens
(Fig. 3C) but their mRNA levels were decreased in HCC
compared with paired adjacent noncancerous liver tissues in
nearly 50% of the patients (Supplemental Fig. 1). As expected,
the mRNA levels of the three extrahepatic UGTs (1A7, 1AS8,
and 1A10) were extremely low in the TCGA HCC specimens
(data not shown).

Deregulation of ADME Genes Coding for Drug
Transporters in HCC. Seventy-seven ofthe 298 ADME
genes encode for drug transporters (PharmaADME) that
belong to two transporter superfamilies: ABC and SLC
transporters. Of these ADME genes, 54 (70%) were expressed
in the TCGA HCC specimens, including nine genes (17%)
that were downregulated and seven genes (13%) that were
upregulated in HCC. The details of the deregulation of ABC
and SLC genes are described subsequently.

The human genome contains 48 functional ABC genes (Dean
et al., 2001; Wlcek and Stieger, 2014), among which 26 genes
are defined as ADME genes (PharmaADME). Of these ADME
ABC genes, three (ABCA4, ABCC4, and ABCC10) were upre-
gulated and one (ABCC9) was downregulated in HCC tumor

(Fig. 4A). The expression of three core ADME genes (ABCBI,
ABCC2, and ABCG2) showed high interindividual variabilities
in HCC cancerous and noncancerous liver tissues (Chou et al.,
1997; Richart et al., 2002; Zollner et al., 2005), and the
degregulation of these ABC genes in HCC has also been
reported (Moustafa et al., 2004; Zollner et al., 2005; Borel
et al., 2012). Indeed, we observed similar high interindivid-
ual expression variabilities for these three genes in the
TCGA HCC specimens with upregulation or downregulation
in HCC relative to corresponding adjacent noncancerous
liver tissue in nearly 30% of the patients (data not shown).
The human genome contains 395 SLC genes (Hediger
et al., 2013), among which 51 genes are defined as ADME
genes (PharmaADME). Ofthese ADME SLC genes, 34 were
expressed in the TCGA HCC specimens, including four
genes that were upregulated (SLC22A4, SLC22A11,SLC22A15,
and SLCO2A1) and eight genes that were downregulated
(SLC10A1, SLC22A1, SLC22A10, SLC7A8, SLCO1BI1,
SLCO1B3, SLCO2B1, and SLCO4C1I) in HCC (Fig. 4B;
Table 1). The downregulation of three SLC genes (SLC22A1,
SLCO1B1, and SLCO1B3) in TCGA HCC was consistent
with recent reports (Vavricka et al., 2004; Vander Borght
et al., 2005; Tsuboyama et al., 2010; Heise et al., 2012). The
downregulation of SLC22A3 in HCC was also reported (Heise
et al., 2012). This gene was downregulated in nearly 50% of the
TCGA HCC specimens. Northern blot analysis showed that
SLCO4C1 is only expressed in kidney, and thus is considered a
kidney-specific SLC (Mikkaichi et al., 2004). We showed here
that this gene was abundantly expressed in noncancerous liver
tissues but was significantly downregulated in HCC (Fig. 4B).
Deregulation of ADME Genes Coding for Modifiers
in HCC. Twenty-four of the 298 ADME genes encode for
modifiers that either modulate the expression of ADME genes
or affect the biochemistry of ADME enzymes (PharmaADME).
Of these ADME modifiers, 21 were expressed in TCGA HCC
specimens, including nine transcription factors (AHR, ARNT,
HNF4A, PXR, CAR, PPARA, PPARD, PPARG, and RXRA)
(Fig. 5; Table 1). Among these expressed modifier genes, four
(catalase, cytidine deaminase, MATIA, and PXR) were down-
regulated in HCC and one (KCN<J11) was upregulated in HCC.
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Fig. 2. Deregulation of phase I drug metabolizing enzymes in HCC. The TCGA LIHC RNA-seq data set representing 50 paired HCC cancerous and
corresponding adjacent noncancerous liver tissues was downloaded from the Genomic Data Commons Data Portal (https:/portal.gdc.cancer.gov/) and
subjected to differential gene expression analysis using the DESeq2 program as described in Materials and Methods. The box-and-whisker plot shows

the log 2-transformed expression levels (minimum, first quartile, median,

third quartile, and maximum) of 29 ADME genes (A) and six ADH and

14 ALDH genes (B) in 50 HCC cancer tissues and their corresponding adjacent noncancerous liver tissues. *P < 0.05; ***P < 0.01; ***P < 0.001. CYP,
cytochrome P450. N, noncancerous liver tissues; T, HCC cancerous liver tissues.

The upregulation of KCNJ11 (Zhang et al., 2018) and the
downregulation of catalase (Cho et al., 2014), PXR (Chen
et al., 2014), or cytidine deaminase (Nwosu et al., 2017) in
HCC have been recently reported. KCNJ11 is an HCC
oncogene and its overexpression in HCC promotes cell pro-
liferation and tumor progression (Zhanget al., 2018). MATI1A

upregulation in HCC was also recently reported (Nwosu
et al.,, 2017); however, the expression of this gene was
significantly downregulated in the TCGA HCC specimens.
This discrepancy awaits further investigation.

In addition to the nine transcription factors defined as
ADME modifiers by the PharmaADME Consortium, many
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Fig. 3. Deregulation of phase II drug metabolizing enzymes in HCC. The TCGA LIHC RNA-seq data set representing 50 paired HCC cancerous and
corresponding adjacent noncancerous liver tissues was downloaded from the Genomic Data Commons Data Portal (https:/portal.gdc.cancer.gov/) and
subjected to differential gene expression analysis using the DESeq2 program as described in Materials and Methods. The box-and-whisker plot shows
the distribution (minimum, first quartile, median, third quartile, and maximum) of the log 2-transformed expression levels of (A) 17 GST genes of three
subfamilies (cytosolic, mitochondrial, and microsomal), (B) six SULT genes, and (C) 12 UGT genes in 50 HCC cancer tissues and their corresponding
adjacent noncancerous liver tissues. ***P < 0.001. N, noncancerous liver tissues; T, HCC cancerous liver tissues.

other transcription factors are involved in transcription
regulation of ADME genes (Hu et al., 2014a; Zanger and
Schwab, 2013). For example, a large number of ADME genes
are regulated by the oxidative stress-responsive transcrip-
tion factor Nrf2 (Hayes and Dinkova-Kostova, 2014). Muta-
tions of NRF2 and its negative regulator KEAPI in HCC have
been reported (Guichard et al., 2012). There was no signif-
icant overall deregulation of NRF2 and KEAPI in TCGA
HCC specimens (Fig. 5); however, we show here that NRF2
had reduced mRNA levels in HCC in 42 of the 50 patients
(Supplemental Fig. 2).

Correlation Analyses Between Core ADME Genes
and Nine ADME Modifiers Coding for Transcription
Factor Genes in HCC. As mentioned previously, nine

ADME modifiers (AHR, ARNT, HNF4A, PXR, CAR, PPARA,
PPARD, PPARG, and RXRA) are transcription factors that are
believed to be able to alter the expression of other ADME
genes. Indeed, three of these modifiers (PXR, CAR, and
HNF4A) are involved in transcriptional regulation of some
ADME genes in liver (Xu et al., 2005; Congiu et al., 2009;
Zhong et al., 2017). Analysis of TCGA RNA-seq data from
371 HCC tumor tissues revealed that most of the core ADME
genes were significantly positively correlated to five TF
modifiers (HNF4A, PXR, CAR, PPARA, and RXRA), and that
about one-half of the core ADME genes were significantly
positively correlated to two other TF modifiers (AHR and
ARNT) (Supplemental Table 14). In particular, PXR was
significantly positively correlated with 25 core ADME genes
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Fig. 4. Deregulation of drug transporter genes in HCC. The TCGA LIHC RNA-seq data set representing 50 paired HCC cancerous and corresponding
adjacent noncancerous liver tissues was downloaded from the Genomic Data Commons Data Portal (https:/portal.gdc.cancer.gov/) and subjected to

differential gene expression analysis using the DESeq2 program as de

scribed in Materials and Methods. The box-and-whisker plot shows the

distribution (minimum, first quartile, median, third quartile, and maximum) of the log 2-transformed expression levels of (A) 20 ABC transporter genes

and (B) 37 SLC transporter genes in 50 HCC cancer tissues and their corres
liver tissues; T, HCC cancerous liver tissues.

(Fig. 6). By contrast, PPARD was only positively correlated
with one core ADME gene (DPYD) but was negatively
correlated to 17 core ADME genes (Fig. 7). Similarly, PPARG
was positively correlated with only four core ADME genes
(ABCC2, CYP2E1, SLCO1B3, and UGT1A1) but negatively
correlated with 14 core ADME genes (Supplemental Table 14).
Of note, GSTP1 was the only core ADME gene that was
significantly negatively correlated with most of the modifier
TFs (seven out of nine) (Fig. 8). We further examined whether

ponding adjacent noncancerous liver tissues. ***P < 0.001. N, noncancerous

these TF's were differentially expressed in HCC in individual
patients relative to their paired adjacent noncancerous liver
tissues. As expected from an overall downregulation of PXR in
HCC (Fig. 5), it was downregulated in HCC in almost all
patients (Supplemental Fig. 2). There was no significant
overall deregulation of AHR, CAR, PPARD, and PPARG
(Fig. 5), but we show here that AHR and CAR were down-
regulated in HCC in nearly 50% of the patients, and that there
was upregulation of PPARD and PPARG in HCC in nearly
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Fig. 5. Deregulation of genes coding for nine ADME modifier transcrip-
tion factors and NRF2 and its negative regulator KEAP1 in HCC. The
TCGA LIHC RNA-seq data set representing 50 paired HCC cancerous and
corresponding adjacent noncancerous liver tissues was downloaded from
the Genomic Data Commons Data Portal (https:/portal.gdc.cancer.gov/)
and subjected to differential gene expression analysis using the DESeq2
program as described in Materials and Methods. The box-and-whisker plot
shows the distribution (minimum, first quartile, median, third quartile,
and maximum) of the log 2-transformed expression levels of nine
transcription factors that are classified as ADME modifiers. ***P < 0.001.

N, noncancerous liver tissues; T, HCC cancerous liver tissues.

50% of the patients (Supplemental Fig. 2). Taken together,
about one-half of core ADME genes are positively correlated to
seven ADME TFs (AHR, ARNT, HNF4A, PXR, CAR, PPARA,
and RXRA) and negatively correlated to two ADME TFs
(PPARD and PPARG) in HCC. Furthermore, NRF2 was also
positively correlated with more than 20 core ADME genes
(Supplemental Table 14). Given that six of these 11 transcrip-
tion factors and their coregulators are deregulated in HCC, it
is likely that they contribute to the widespread downregula-
tion of core ADME genes in HCC.

The Expression Levels of Core ADME Genes Are
Correlated with Each Other in HCC. The correlation of
the core ADME genes with ADME TFs described previously
suggested that core ADME genes are coregulated. To examine
this idea, we performed expression correlation analysis of all
28 core ADME genes. Twenty-two core ADME genes (ABCB1,
ABCC2, ABCG2, CYPIA1l, CYP1A2, CYP2A6, CYP2Bs,
CYP2C8, CYP2C9, CYP2D6, CYP3A4, CYP3A5, NATI,
NAT2, SLC22A1, SLCOI1B1, SULTI1A1, TPMT, UGTIA1,
UGT2B7, UGT2B15, and UGT2B17) were significantly posi-
tively correlated with at least 20 other core ADME genes
(Supplemental Table 15); five core ADME genes (CYP2C19,
CYP2E1, DPYD, GSTM1, and SLCO1B3) were significantly
positively correlated with about one-half of the core ADME
genes (Supplemental Table 15). For instance, UGT2B7 was
significantly positively correlated with 25 core ADME genes
(Fig. 9). GSTP1 was the only core ADME gene that was
significantly negatively correlated to more than one-half of
the core ADME genes (Supplemental Table 15), consistent with
the aforementioned negative correlation of GSTP1 with seven

ADME TFs. Taken together, the widespread expression corre-
lation of core ADME genes with each other and with transcrip-
tion factors as summarized in Supplemental Table 16 support
the hypothesis that ADME genes are coordinately regulated by
transcription factors in the liver.

Deregulation of miRNAs that Are Known to Regulate
Core ADME Genes in HCC. miRNAs generally repress
gene expression through mRNA degradation or translational
repression. Therefore, the upregulation of miRNAs that
regulates ADME genes might contribute to their downregu-
lation in HCC. To test this hypothesis, we examined the
expression levels of 12 miRNAs (miR-132, miR-128, miR-130b,
miR-29a-3p, miR-27a, miR-107, miR-25, miR-629, miR-103-
5p, miR-378a, miR-126, and miR-142) (Supplemental Table 4)
that are reported to target the downregulated core ADME
genes (CYP1A2, CYP2C9, CYP2C9, CYP2C19, CYP3A4,
CYP2C8,CYP2B6,SLCO1B3, CYP2C8,CYP2E1, CYP2A6,
and UGT2B7, respectively) in HCC and paired adjacent
noncancerous liver tissues (Mohri et al., 2010; Zhang et al.,
2012; Nakano et al., 2015; Rieger et al., 2015; Shi et al., 2015;
Yu et al., 2015a,b; Higuchi et al., 2016; Jin et al., 2016; Chen
et al., 2017; Papageorgiou and Court, 2017). Strikingly, most
(eight out of 12) of these miRNAs were upregulated in HCC
tumors (Fig. 10), suggesting that they may play an important
role in core ADME gene dysregulation in HCC.

Deregulation of Aldo-Keto Reductases in HCC. Aldo-
keto reductases (AKRs) are involved in the phase I metabo-
lism of numerous endogenous and xenobiotic compounds
including steroids, carbohydrates, prostaglandins, alde-
hydes, ketones, and many therapeutic drugs such as
the cytotoxic anthracyclines (e.g., doxorubicin, daunorubicin,
and idarubicin) (Novotna et al., 2008; Skarka et al., 2011;
Matsunaga et al., 2012; Penning, 2015). There are 15 AKR
genes in the human genome (Penning, 2015) but none of
these genes are classified as ADME genes by the Phar-
maADME consortium (pharmadame.org). We show here
that 11 human AKR genes (e.g.,, AKR1IA1,AKR1B1,AKRIBI0,
AKRI1C1, AKR1C2, AKRIC3, AKR1C4, AKR1D1, AKRIE?2,
AKR7A2, and AKR7A3) were expressed in TCGA HCC speci-
mens (Fig. 11). Of these genes, AKRIB10 and AKR1C3 were
significantly upregulated, whereas AKR1D1 and AKR7A3 were
significantly downregulated in HCC. AKR1B10 upregulation is
consistent with the overexpression of AKR1B10 enzyme in
HCC as reported recently in an immunohistochemistry study
(Matkowskyj et al., 2014). AKR7A3 downregulation in HCC
(Chow et al., 2016) and AKR1C3 upregulation in prostate and
breast cancer (Lin et al., 2004; Fung et al., 2006) has also been
reported.

Discussion

ADME genes are involved in drug absorption, distribution,
metabolism, and excretion and are abundantly expressed in
the liver, the major organ of drug metabolism and clearance in
humans. Although several studies have investigated the
deregulation of subsets of ADME genes in HCC (Okabe
et al., 2001; Lee et al., 2004; Park et al., 2006; Borel et al.,
2012; Chen et al., 2014; Ho et al., 2015; Jin et al., 2015a; Yan
et al., 2015a,b; Woo et al., 2017), there has been no systematic,
targeted analysis of the entire ADME gene set. In this study,
our comprehensive analysis of paired cancerous and non-
cancerous specimens from the TCGA HCC data set identified
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Fig. 6. Correlation analysis between PXR and core ADME genes in HCC. The TCGA LIHC RNA-seq data set representing 371 HCC tumors was
downloaded from the Genomic Data Commons Data Portal (https:/portal.gdc.cancer.gov/) and subjected to Spearman’s ranking correlation analysis
using GraphPad Prism version 7.03. The graphs shown are the correlation analyses of the expression (mRNA) levels between PXR and 28 core ADME
genes. A P value of <0.05 was considered statistically significant. r, correlation coefficient.
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Fig. 7. Correlation analysis between PPARD and core ADME genes in HCC. The TCGA LIHC RNA-seq data set representing 371 HCC tumors was
downloaded from the Genomic Data Commons Data Portal (https:/portal.gdc.cancer.gov/) and subjected to Spearman’s ranking correlation analysis
using GraphPad Prism version 7.03. The graphs shown are the correlation analyses of the expression (mRNA) levels between PPARD and 28 core ADME
genes. A P value of <0.05 was considered statistically significant. r, correlation coefficient.
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r, correlation coefficient.

for the first time the complete list of ADME genes that are
deregulated in HCC. Overall, around one-quarter of all ADME
genes were downregulated while only 6% were upregulated
in HCC. The deregulated genes included members of all four
groups of ADME genes, namely, phase I (CYPs, ADHs, and
ALDHs) and phase II (GSTs, SULTs, and UGTs) drug
metabolizing enzymes, drug transporters (ABCs and SLCs),
and modifiers. Moreover, one-half of the core ADME genes
were significantly downregulated in HCC. Among the ADME
gene superfamilies, CYPs were the most significantly down-
regulated. Our analyses of four other microarray gene expres-
sion profiling reports of HCC observed similar downregulation
of these core ADME genes in HCC (Chen et al., 2002;
Wurmbach et al., 2007; Roessler et al., 2010; Thurnherr
et al., 2016). The deregulation of many other ADME genes
reported by us in the present study is consistent with the
findings of previous studies as already discussed comprehen-
sively. However, we report in the present study for the first

time on the deregulation of a variety of ADME genes in HCC,
suchasAKR1C3,AKRID1,ALDHI1A3,ALDH3A1,ALDH6A1,
ALDH8A1, UGT2B10, and UGT2B11. Most ADME genes
belong to superfamilies that also contain non-ADME members
(for example, genes that mediate biosynthetic processes or
transport endobiotics). To better understand the specificity of
ADME deregulation, we compared the ADME gene set to non-
ADME genes from the same superfamilies. Our results
showed that the ADME genes were far more likely to be
downregulated than non-ADME genes in HCC. We further
performed unbiased pathway analysis (Reactome) (https:/
reactome.org) using the entire ADME and non-ADME gene set
(609 genes) and found that the downregulated gene set was
significantly more enriched for drug metabolism pathways
than the unchanged or upregulated gene sets (data not
shown). Together with the data on ADME TFs and miRNAs
discussed subsequently, this supports the idea that ADME-
specific regulatory pathways are deregulated in HCC.
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Fig. 9. Correlation analysis of the expression levels between UGT2B7 and 27 other core ADME genes in HCC. The TCGA LIHC RNA-seq data set
representing 371 HCC tumors was downloaded from the Genomic Data Commons Data Portal (https:/portal.gdc.cancer.gov/) and subjected to
Spearman’s ranking correlation analysis using GraphPad Prism version 7.03. The graphs shown are the correlation analyses of the expression (mRNA)
levels between UGT2B7 and 27 other core ADME genes. A P value of <0.05 was considered statistically significant. r, correlation coefficient.
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Fig. 10. Deregulation of miRNAs in HCC. The TCGA LIHC miRNA-seq data set representing 49 paired HCC and corresponding adjacent noncancerous
liver tissues was downloaded from The Cancer Genome Atlas Data Portal (https:/gdc-portal.nci.nih.gov/) and normalized using the upper quantile
normalization method. The differences in the expression levels of 12 miRNAs between HCC cancerous and corresponding adjacent normal noncancerous
liver tissues were statistically assessed using GraphPad Prism (version 7.03) (¢ test). A P value of <0.05 was considered statistically significant.
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Fig. 11. Deregulation of AKRs in HCC. The TCGA LIHC RNA-seq data
set representing 50 paired HCC cancerous and corresponding adjacent
noncancerous liver tissues was downloaded from the Genomic Data
Commons Data Portal (https:/portal.gdc.cancer.gov/) and subjected to
differential gene expression analysis using the DESeq2 program as
described in Materials and Methods. The box-and-whisker plot shows the
distribution (minimum, first quartile, median, third quartile, and
maximum) of the log 2-transformed expression levels of 11 human
AKR genes in 50 HCC cancer tissues and their corresponding adjacent
noncancerous liver tissues. ***P < 0.001. N, noncancerous liver tissues;
T, HCC cancerous liver tissues.

Decreased expression of genes encoding hepatocyte-specific
gene products (e.g., albumin) and detoxification enzymes
(CYPs) and associated loss of liver-specific functions are
recognized phenomena in HCC and are in part due to
de-differentiation of cancer cells (Okabe et al., 2001; Park
et al., 2006; Andrisani et al., 2011; Obaidat et al., 2012). The
widespread downregulation of ADME genes in HCC shown
herein is likely part of this de-differentiation. The molecular
mechanisms underlying de-differentiation are not completely
understood but could be related to epigenetic (chromatin)
modifications or deregulation of transcription factors and
miRNAs that regulate liver-specific genes. The deregulation
of TFs and miRNAs in HCC, as we showed herein in this study,
supports this assumption. Briefly, we found that most of the
miRNAs known to regulate the downregulated core ADME
genes were upregulated in HCC. Furthermore, transcription
factors (PXR, AHR, and CAR) that are positively correlated
with core ADME genes were downregulated in HCC, whereas
the transcription factors (PPARD and PPARG) that are
negatively correlated with core ADME genes were upregu-
lated. The recent reports of DNA hypermethylation at the
promoters of three downregulated core ADME genes
(CYP1A2, CYP2(C9, and SLC22A1) in HCC links epigenetic
modifications to their deregulation in this cancer (Schaeffeler
et al., 2011; Shen et al., 2012).

There are no curative therapeutic options for advanced
HCC (Llovet et al., 2008). Most of the clinical trials evaluat-
ing anticancer agents in chemotherapy, hormone therapies,
and immunotherapy have failed to show convincing survival
benefits for patients with advanced HCC (Llovet et al., 2008;
Llovet and Hernandez-Gea, 2014). The failure of these trials
might be related to the expression of nearly 80% of ADME
genes (233 out 0f298) in HCC as we found in the present study.
Two multikinase inhibitors, sorafenib and regorafenib, are

currently the only two drugs approved by the Food and Drug
Administration for treating advanced HCC (Llovet et al.,
2008; Bruix et al., 2017). The deregulation of the ADME genes
involved in the metabolism and clearance of these two drugs
may help to explain their relative efficacy. The key ADME
genes involved in the metabolism and clearance of sorafenib
and regorafenib in liver include the enzymes CYP3A4
(Ghassabian et al., 2012) and UGT1A9 (Peer et al., 2012;
Miners et al., 2017), influx transporters (SLCOI1BI,
SLCO1B3, and SLC22A1) (Swift et al., 2013; Zimmerman
et al., 2013; Ohya et al., 2015), and efflux transporters
(ABCBI1, ABCC2, and ABCG2) (van Erp et al., 2009; Ohya
et al., 2015). While the efflux transporters were not signifi-
cantly altered in HCC, the expressions of CYP3A4, UGTI1A9,
SLCO1B1, SLCOI1B3, and SLC22A1 were all significantly
downregulated in HCC, consistent with previous observations
(Vander Borght et al., 2005; Tsuboyama et al., 2010; Heise
et al., 2012; Ye et al., 2014). The downregulation of CYP3A4
and UGT1A9 could reduce the metabolism of sorafenib and
regorafenib, and hence enhance therapeutic efficacy; how-
ever, the downregulation of influx transporters (SLCO1B1,
SLCO1B3, and SLC22A1) may decrease the cellular uptake
and reduce efficacy. Ultimately, the combined effects of
deregulated uptake and metabolism will determine the
therapeutic efficacy of sorafenib and regorafenib. The oppos-
ing influence of ADME gene deregulation on the therapeutic
efficacy of this effective HCC therapeutic regimen warrants
further investigation.

Our observation of deregulated UGT expression may also
provide some insights into cytotoxic drug efficacy in HCC. The
chemotherapy regimen epirubicin, 5-fluoruracil, and cisplatin
has been found to be poorly effective as a first line therapy for
HCC; however, it did provide survival benefits when used as a
second line therapy for advanced sorafenib-resistant HCC
(Lee et al., 2014). UGT2B7 is the only UGT known to mediate
epirubicin conjugation (Innocenti et al., 2001), and this me-
tabolism is suggested to be responsible for its lower systemic
toxicity relative to doxorubicin (Hu et al., 2014b). We observed
downregulation of UGT2B7 in HCC as well as upregulation of
UGT2B11. In recent studies performed in vitro, we found that
UGT2B11 inhibits the ability of UGT2B7 to glucuronidate
epirubicin (Meech et al, manuscript in preparation). Thus, the
combined downregulation of UGT2B7 and upregulation of
UGT2B11 could reduce intratumoural epirubicin conjugation
and clearance, and this may contribute to the modest efficacy
of this regimen in advanced HCC.

CBR1 and multiple AKR subfamily 1 enzymes (AKR1A1l,
AKR1B1, AKR1B10, AKR1C3, and AKR1C4) are involved
in metabolism of doxorubicin, a common cytotoxic drug for
treating HCC (Kassner et al., 2008; Novotna et al., 2008). We
show in this study that all of these enzymes were highly
expressed in HCC and two of them (AKRIB10 and AKR1C3)
were significantly upregulated in TCGA HCC specimens. The
abundant expression of these enzymes and their deregulation
in HCC may contribute to the development of cancer re-
sistance to doxorubicin-containing HCC chemotherapeutic
regimens (Le Grazie et al., 2017).

It has been proposed that the process of absorption,
distribution, metabolism, and excretion of xenobiotics (e.g.,
drugs and dietary constituents) is coordinated in the liver
mainly through the coregulation of ADME genes by transcrip-
tion factors (Congiu et al., 2009) (Fig. 12). The direct evidence
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Fig. 12. Coordinated regulation of ADME genes in the
liver (hepatocytes) and its deregulation in HCC. (A) It is
believed that the process of absorption, distribution,
metabolism, and excretion of xenobiotics (e.g., drugs and
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dietary constituents) is coordinated efficiently in the
liver upon exposure to endogenous and exogenous
compounds such as dietary constituents and therapeutic
drugs. (B) This coordinated process is mainly mediated
through the coregulation of ADME genes by ADME
modifiers, including liver-enriched (e.g., HNF4A,
PPARA, PPARD, and PPARG) and xenobiotic-acti-
vated (e.g., AHR, PXR, and CAR) transcription factors.
The deregulation of these transcription factors,
miRNAs, and epigenetics (e.g., hypermethylation) lead
to wide spread deregulation of ADME genes in HCC.

Hepatocyte

to support this hypothesis came from the discoveries that
a large number of ADME genes (e.g., CYP, UGT, ABC, and
SLC transporters) are induced (rarely repressed) by ligand-
activated transcription factors (e.g., PXR, FXR, CAR, PPAR,
AhR, and Nrf2) upon exposure to xenobiotics (e.g., drugs)
(Scotto, 2003; Chen et al., 2013; Zanger and Schwab, 2013; Hu
et al., 2014a). Further indirect evidence to support this
hypothesis came from the studies that have shown positive
correlation of the mRNA levels between ADME genes and
transcription factors such as PXR, CAR, and HNF4A in
normal (Slatter et al., 2006; Wortham et al., 2007) and non-
HCC diseased (Congiu et al., 2002, 2009; Kurzawski et al.,
2012) liver tissues. However, these correlation studies mainly
relied on quantitative real-time polymerase chain reaction to
measure gene expression levels and thus only analyzed a
limited number of ADME genes. In this study, a comprehen-
sive expression correlation analysis of the TCGA HCC RNA-
seq data showed for the first time that most core ADME genes
were significantly positively correlated with each other. We
further showed for the first time that the expression levels of
about one-half of the core ADME genes were significantly
positively (AHR, ARNT, HNF4A, PXR, CAR, PPARA, and
RXRA) or negatively (PPARD and PPARG) correlated with
those of the nine transcription factors that are classified as
ADME modifiers. Collectively, these observations provide
compelling evidence supporting a coordinated hepatic regula-
tion of the broader ADME transcriptome. Moreover, this study
suggests that the coordinate regulation model of ADME genes
may also extend to post-transcriptional regulation by miRNAs
(Fig. 12); however, further work will be required to define the
ADME gene/miRNA regulatory network.

In conclusion, this study reveals a widespread deregulation
of ADME genes in HCC and widespread expression correla-
tions of ADME genes to each other and with transcription
factors. The deregulation of ADME genes represents part of
the de-differentiation of liver function in HCC and is likely due
to deregulation of epigenetics, transcription factors, and
miRNAs. The coregulation of ADME genes mediated by
liver-enriched (e.g., HNF4A, PPARA, PPARD, and PPARG)
and xenobiotic-activated (e.g., AHR, PXR, CAR, and NRF2)

transcription factors ensures that the process of absorp-
tion, distribution, metabolism, and excretion is coordinated
efficiently upon exposure to endogenous and exogenous
compounds such as dietary constituents and therapeutic
drugs (Fig. 12).
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