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ABSTRACT
Xenograft mice are largely used to evaluate the efficacy of
oncological drugs during preclinical phases of drug discovery
and development. Mathematical models provide a useful tool to
quantitatively characterize tumor growth dynamics and also
optimize upcoming experiments. To the best of our knowledge,
this is the first report where unperturbed growth of a large set of
tumor cell lines (n5 28) has been systematically analyzed using a
previously proposed model of nonlinear mixed effects (NLME).
Exponential growth was identified as the governing mechanism
in the majority of the cell lines, with constant rate values ranging
from 0.0204 to 0.203 day21. No common patterns could be
observed across tumor types, highlighting the importance of
combining information from different cell lines when evaluating

drug activity. Overall, typical model parameters were precisely
estimated using designs in which tumor size measurements
were taken every 2 days. Moreover, reducing the number of
measurements to twice per week, or even once per week for cell
lines with low growth rates, showed little impact on parameter
precision. However, a sample size of at least 50 mice is needed
to accurately characterize parameter variability (i.e., relative S.E.
values below 50%). This work illustrates the feasibility of
systematically applying NLME models to characterize tumor
growth in drug discovery and development, and constitutes a
valuable source of data to optimize experimental designs by
providing an a priori sampling window and minimizing the
number of samples required.

Introduction
Drug discovery and development costs have been rising over

the past years without translating into a larger number of
drugs approved by the regulatory agencies (see the Pharma-
ceutical Research andManufacturers of America 2016 profile;
http://phrma-docs.phrma.org/sites/default/files/pdf/biophar-
maceutical-industry-profile.pdf). This is especially relevant
in the oncology area, where the attrition rates are among the
highest (Hay et al., 2014). One approach to reducing these
alarming numbers is to look for strategies to better predict
clinical trial outcomes using early preclinical information
(Zhang et al., 2006).
Xenograft and syngeneic models are widely used in drug

development to evaluate the antitumor effects of oncological

compounds and guide the selection and development of drug
candidates (Sausville and Burger, 2006; Ocana et al., 2010). In
these experiments, compounds exhibiting promising in vitro
properties are tested on xenograft mouse experiments, typi-
cally across a small handful of different tumor cell lines.
Success is then measured in terms of achieved tumor regres-
sion/cure in the treatment group compared with the control
group.
Many experimental variables such as cell line aggressive-

ness, tumor size at dosing time, dose intensity, and dose
frequency can significantly affect the evolution of tumor size
over time, and consequently the outcome of these experiments
in terms of observed shrinkage. Making an adequate choice of
design can lead to more informative studies, with the addi-
tional benefit of reducing the number of animals, samples, or
repetitions needed, and consequently reducing experimental
costs, as recently illustrated by Lestini et al. (2016). However,
pharmacokinetics, pharmacodynamics, and disease progres-
sion properties of the systems are rarely taken into account
when designing xenograft experiments (Simeoni et al., 2013).
In this regard, semimechanistic pharmacokinetics/

pharmacodynamic analysis could constitute a powerful
tool to integrate information from multiple experiments, and
obtain design-independent model parameters that would then
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enable the in silico exploration and optimization of potentially
relevant scenarios. Nonlinear mixed effects (NLME) modeling
represents a suitable methodology in this context to quanti-
tatively describe not only the typical pharmacokinetics/
pharmacodynamic profile but also to identify and quantify
the different sources of variability (i.e., across animals and
experiments), thus allowing for better data description and
understanding.
To characterize tumor size data from xenograft mice

experiments, a model that considers two different processes
in the natural course of tumor progression (exponential and
linear) (Simeoni et al., 2004) is commonly used. This model
describes tumor growth dynamics in the absence or presence
of anticancer treatment and enables the computation of a
threshold concentration, such that if drug steady-state con-
centrations above that threshold are reached, the model will
predict tumor shrinkage and eventually eradication. Indeed,
Rocchetti et al. (2007) demonstrated a good correlation be-
tween the threshold concentration and the active dose used in
clinic for severalmarketed drugs, thus suggesting its potential
for scaling efficacy from animal toman, further supporting the
use of this preclinical model. To the best of our knowledge, the
NMLEmethodology has been seldom used in pharmacokinetics/
pharmacodynamic analyses of mice xenograft data, and when
usedmost of the studies focused on a limited number of cell lines
or tumor types only (Bueno et al., 2008; Parra-Guillen et al.,
2013; Tate et al., 2014, 2016).
In this setting, the overall goal of our work was to illustrate

how NLME modeling and optimal design theory can be
systematically applied during the preclinical evaluation of
new drug candidates to maximize the information that can be

extracted from xenograft experiments and enable its sub-
sequent use in the design of future protocols. An accurate
description of the tumor dynamics in the absence of drug is a
key step before characterizing tumor growth inhibition drug
effects. Therefore, unperturbed tumor growth data from a
large set of tumor cell lines representing several cancer types
was initially selected in this work with the following goals in
mind: 1) to characterize tumor growth dynamics in the
absence of active treatment; 2) to evaluate the impact of study
design and number of animals on the precision of parameter
estimates; and 3) to assess the potential benefit of optimizing
the sampling time points.

Materials and Methods
Experimental Data

Data were used from several experiments in which tumor volume
(TV) measurements had been obtained from control mice. A total of
28 cell lines from 10 different tumor types were available for the
analysis (see Table 1 for an overview of the experimental data).
Briefly, tumor cells were subcutaneously inoculated into athymic nude
mice, weighing a mean of 23 g (16–32 g). Tumor size was measured
with a caliper at regular times, and TV was computed assuming the
tumor has an ovoid form: (l x w2)/2 (Pierrillas et al., 2016), where l is
the length and w the width of the tumor in millimeters (l . w). Mice
were sacrificed when the measured TV exceeded a prespecified upper
limit. All animal experiments were approved by the Eli Lilly and
Company Institutional Animal Care and Use Committee.

Unperturbed Tumor Growth Modeling

The model first proposed by Simeoni et al. (2004) was used to
characterize the unperturbed tumor growth dynamics in all cell lines

TABLE 1
Summary of the experimental data available for each of the tumor cell lines
The Tmax value represents the latest sampling time available in the experiment; the Tmin value represents the time at
which the tumor could start to be measured.

Tumor Cell Number of Studies Number of Mice Number of Samples
Number of Days

Tmin Tmax

Breast MB-231 1 45 423 11 45
Colon COLO205 5 85 668 6 120
Colon HCT116 1 10 25 7 17
Glioblastoma U-87 MG 3 100 382 7 63
Leukemia MV411 2 33 388 7 73
Lung A549 2 33 389 7 69
Lung Calu-6 2 25 288 7 59
Lung DMS53 1 6 120 7 98
Lung H1650 2 21 277 7 62
Lung H1975 3 61 361 7 41
Lung H2122 8 92 763 7 50
Lung H358 1 8 160 10 88
Lung H441 17 287 3391 3 98
Lung H460 1 13 109 8 47
Lung HCC827 1 8 99 10 55
Lymphoma JEKO-1 4 31 312 7 46
Lymphoma OCI-LY-19 2 38 178 7 32
Lymphoma WILL-2 1 24 80 7 23
Melanoma A2058 2 20 177 7 35
Melanoma A375 8 104 840 3 69
Melanoma GAK 2 15 181 8 56
Melanoma SK-MEL-30 2 24 229 0 45
Ovarian A2780 1 8 68 8 37
Ovarian SKVO-3 1 8 104 7 47
Pancreas MIA PaCa-2 1 8 64 11 41
Renal 786-o 4 52 740 6 76
Renal ACHN 3 50 604 7 60
Renal Caki-1 1 13 116 13 51
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evaluated. Briefly, the model describes an initial exponential increase
in TV followed by linear growth, assuming no spontaneous tumor cell
death and homogenous tumor cell behavior:

dTV
dt

5
l0 � TVn

11 ½ðl0=l1Þ � TV�c
o1=c (1)

where TV is the tumor volume at any time after cell inoculation; and
l0 and l1 are the zero- and first-order rate constants characterizing
the exponential and linear growth kinetics, respectively. The transi-
tion from exponential to linear growth occurs when the TV reaches the
value of the tumor volume threshold (TVth), which can be expressed as
l1/l0. The shape factor (c) is fixed to the value of 20, ensuring a rapid
transition between the two different growth rates once the TV reaches
the TVth. The initial condition of the system is given by the initial
tumor volume (TV0), defined as the TV immediately after tumor cell
inoculation.

NLME modeling was used to analyze the data. The first-order
conditional estimation method with an interaction algorithm imple-
mented in NONMEM 7.3 (Icon Development Solutions, Ellicott City,
MD) was selected. During the analysis, the typical population
parameters TV0, l0, and l1 were estimated. Interanimal (IAV) and
interstudy variability (ISV) were explored using the three estimated
typical parameters assuming a lognormal distribution of the individ-
ual parameters:

ui 5 upop � expðhiÞ (2)

where ui is the individual model parameter of mouse i; upop is the
population parameter (i.e., TV0, l0, or l1); and hi is the associated
random effect of mouse i obtained from a normal distribution with
mean 0 and estimated variance of the interindividual variability (v2).

The TV data were logarithmically transformed for the analysis, and
residual variability (taking into account the discrepancy between
individual predictions and observations) was described using an
additive error model on the logarithmic scale:

log
�
TVi;j

�
5 log

�
f
�
ui;tj

��
1 «i;j (3)

whereTVi,j represents the TV observations for the ith animal at the jth
measurement time; f(ui, tj), corresponds to the predicted TV for mouse
ith at time jth resulting from the vector of the ith individual
parameters ui related as shown in eq. 1; and « is the difference
between the logarithm of the individual observed and predicted TVs.
The set of « values is independent between them and corresponds to a
random variable mean 0 and estimated variance of the residual
variability (s2).

Upper welfare limits for tumor size were not available for all of the
different studies, neither were the reasons for dropouts. Therefore, no
censoring or dropout model was considered in the analysis.

Model Selection and Evaluation. Different statistical models
(i.e., IAV parameters, ISV parameters, and correlation between
individual parameters) were explored and compared in terms of
minimum value of the objective function value provided by NONMEM
(approximately 22 log likelihood), precision of parameter estimates
when obtained, and goodness of fit. A decrease in the objective function
value of 3.84 between two nestedmodels was considered significant at
the 5% level.

Model performance was evaluated using the simulation-based
diagnostics visual predictive checks generated with PsN version
4 (Lindbom et al., 2005) and the Xpose4 R package (Jonsson and
Karlsson, 1999). For each cell line, 1000 studies with the same design
characteristics as the original experiments were simulated. For each
simulated scenario (tumor cell line) and measurement interval (or
bin), the 2.5th, 50th, and 97.5th percentiles of the simulated TV values
were calculated, and then the 95% confidence intervals of the
aforementioned predicted percentiles were obtained and presented
graphically together with the 2.5th, 50th, and 97.5th percentiles of the
raw data.

Design Evaluation and Optimization

According to the Cramér-Rao inequality, the inverse of the Fisher
information matrix is the lower bound of the variance/covariance
matrix of any unbiased parameter estimate (Radhakrishna Rao, 1945;
Cramér, 1946). Therefore, the S.E. value can be obtained from the
square root of the diagonal elements of the inverse of the Fisher
informationmatrix. The optimal design R package POPED (Foracchia
et al., 2004) was used to compute parameter precision—i.e., relative
standard errors (RSEs) calculated as the ratio between the S.E. values
and the parameter estimates obtained for the different studied cell
lines—given the selected model, the final set of parameter estimates,
and an experimental design.

Parameter precision was evaluated under three distinct sam-
pling schemas: 1) the standard schema of TV measurements taken
every 2 days; 2) samples taken twice per week (i.e., two samples per
week on days 1 and 4); or 3) once per week (i.e., one sample per week
on day 1). For all of the evaluations, the original number of mice per
study (ranging from 7 to 287) and the sampling window (see
Table 1) were kept unchanged. Note that although the selected
criteria commonly refer to the frequency of dose administration, in
this context they are used to indicate the frequency at which TV
measurements were taken. The RSEs obtained for the different
model parameters across cell lines and evaluated sampling designs
were analyzed.

In a second step, the sampling timeswere optimized assuming eight
samples in all cases and allowing for only one tumor size sample per
day. The study duration and the number of animals were not
optimized, i.e., original designs were used. The adaptive random
search methods implemented in POPED were used in the optimiza-
tion step.

Results
Unperturbed Tumor Growth. The unperturbed tumor

growth model proposed by Simeoni et al. (2004) provided a
good description of the data for all tumor cell lines, as
illustrated in Fig. 1 for the case of lung cancer cell lines and
in Supplemental Fig. 1 for the rest of tumor cell lines.
Parameter estimates can be found in Table 2. The estimates
of the zero-order rate constant [reflecting the linear tumor
growth (l1)] ranged from 2.58 to 464 mm3/day. With respect
to l0, taking into account the exponential growth, and TV0,
the corresponding ranges were much smaller, varying from
0.0204 to 0.203 day21 and 16 to 148 mm3, respectively. Only
in the case of MB231 did the estimate for l0 have to be fixed
to a high value of 0.5 day21, indicating that only linear
growth was observed in the measurable range (TVth of
5 mm3).
IAV for the l0 and/or TV0 parameters was identified in

all tumor cell lines, with a low-to-moderate magnitude
ranging from 8% to 70% and 12% to 61%, respectively. IAV
in the l1 parameter could be estimated only in 10 out of
28 cell lines, with values ranging from 42% to 88% (Fig.
2A). This is due to the fact that for most of the cell lines
little information was available over TVth (marking the
shift from exponential to linear growth), thus limiting the
identification of IAV variability in l1. A correlation be-
tween individual parameters was explored during the
modeling process and found to be significant only for the
A549 and MV411 cell lines (Table 2).
There were no relevant relationships between the magni-

tude of the different variability parameters and its typical
estimate or the experimental size (Fig. 2B). Inclusion of ISV
did not show significance for the case of lung and melanoma
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cell lines, for which a large number of studies were available
(P . 0.05).
Design Evaluation and Optimization. POPED was

used to evaluate the adequacy of the original experimental

designs to precisely estimate all model parameters. In gen-
eral, good precision (RSE below 10% in average) was obtained
for the typical parameters when samples were measured
every 2 days (Fig. 3A; Supplemental Table). The largest

Fig. 1. Visual predictive checks of the unperturbed tumor growth model corresponding to lung tumor cell lines. Lines represent the 2.5th (dashed), 50th
(solid), and 97.5th (dashed) percentiles of raw data. Gray areas correspond to the 95% confidence interval of the 2.5th, 50th, and 97.5th percentiles
computed from 1000 simulated studies. Black lower marks indicate the used binning intervals for plotting.

TABLE 2
Model parameter estimates corresponding to all the tumor cell lines analyzed
The model parameters are defined in Materials and Methods.

Tumor Line Cell Line

Parameter

l0 l1 TV0 TVth IAV l0 IAV l1 IAV TV0 RUV

day21 mm3/day mm3 mm3 CV% CV% CV% Log mm3

Lung A549 0.051 58.5 48.2 1150 19.8a 29.5a 0.205
Lung H460 0.104 237 71.3 2280 25.2 25.9 0.148
Lung HCC827 0.100 35.1 21.8 351 16.9 0.194
Lung Calu-6 0.0875 126 49.9 1440 27.2 53.2 12.6 0.147
Lung DMS53 0.0438 27.6 16.0 630 11.0 0.316
Lung H1650 0.0575 48.0 50.6 835 20.1 12.8 0.201
Lung H1975 0.104 188 46.3 1810 14.8 0.202
Lung H358 0.0204 115 88.6 5640 30.0 0.129
Lung H441 0.0342 75.0 69.6 2190 68.6 40.1 0.223
Lung H2122 0.103 42.6 60.2 414 20.4 45.1 23.0 0.151
Renal ACHN 0.0249 12.8 123 514 68.7 42.5 19.7 0.162
Renal CAKI-1 0.0265 64.2 102 2420 14.3 0.239
Renal 786-o 0.0489 29.5 82.4 603 22.4 67.7 26.4 0.176
Melanoma A2058 0.129 55.9 64.7 433 8.20 39.6 0.154
Melanoma A375 0.0948 101 69.3 1070 39.8 67.2 36.3 0.193
Melanoma GAK 0.0277 19.0 88.8 686 45.5 17.6 0.191
Melanoma SK-MEL-30 0.0640 84.8 148 1330 45.9 23.7 0.200
Lymphoma JEKO-1 0.0825 217 62.9 2630 10.5 19.3 0.284
Lymphoma OCI-LY-19 0.138 464 30.0 3360 9.70 0.320
Lymphoma WILL-2 0.203 352 25.3 1730 28.0 0.263
Colon COLO205 0.106 31.9 65.6 301 25.1 88.1 61.5 0.211
Colon HCT116 0.121 176 67.5 1460 19.3 0.409
Glioblastoma U-87-MG 0.0547 51.9 80.4 949 38.9 29.0 0.400
Leukemia MV411 0.0695 66.5 44.3 957 25.4b 72.6b 34.7 0.194
Ovarian A2780 0.103 254 59.0 3660 23.8 0.216
Ovarian SKVO-3 0.0798 55.4 61.4 694 10.0 0.203
Breast MB231 0.500 FIX 2.58 81.9 5.00 41.8 23.6 0.122
Pancreas MIA PaCa-2 0.120 21.6 43.1 180 58.2 15.4 0.114

RUV, residual unexplained variability.
aCorrelation between IAV l0 and IAV TV0 of 290%.
bCorrelation between IAV l0 and IAV l1 of 100%.
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imprecision was detected in the linear growth rate (l1) for
those tumorswith a large tumor threshold (TVth). On the other
hand, larger RSEs were observed for the variability parame-
ters (Fig. 3A). Precision of the IAV parameters was highly
dependent on the number of experimental mice (Fig. 4),
regardless of the sampling schema evaluated. For a standard
experimental size of 8–10 mice, RSEs between 50% and 60%
would be observed. This clear trend was not significant for
typical parameters and was independent of the value of IAV
precision.
Similarly, the influence of reducing the number of sampling

time measurements on parameter precision was evaluated.
The twice per week sampling schema (i.e., two samples per
week) showed little impact on parameter precision, with a

mean absolute loss ,5% and a relative loss ,25% for all
parameters, except for the residual error estimate (i.e., the
residual unexplained variability) (Fig. 3B, Supplemental
Table 3). Further reducing to one sample per week worsened
the precision of the typical parameter estimates, showing
mean absolute and relative losses .10%, but also more
heterogeneous results (Fig. 3B; Supplemental Table 3) highly
dependent on the rate of tumor growth. This loss was less
pronounced for the variability parameters, especially for l0.
Optimizing the sampling times assuming a design of eight

samples per study provided results similar to assuming a fixed
twice per week schema (Fig. 3B). A wide range of sampling
times, depending on the individual cell growth kinetics, was
observed (Supplemental Fig. 2). However, in most of the cases

Fig. 2. (A) Graphical representation of the parameter estimates for the different tumor cells lines categorized by the number of studies available and the
associated variability magnitude. (B) Relation between the estimate of the different IAVs and the number of mice included in the analysis of each cell
line.
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clusters of sampling points around the earliest sampling
time point, the tumor threshold (TVth, when relevant), and
the latest possible collection sampling time were observed, as
illustrated for three cell lines in Fig. 5.

Discussion
Although there is an on-going discussion regarding the capa-

bility of xenograft mouse models to generate meaningful data for

human extrapolations, they are frequently used to evaluate the
efficacy of anticancer drugs early in discovery and development.
To overcome some of the limitations of these approaches,
mathematical models have been proposed as a tool to derive
meaningful parameters independent of the experimental set-
tings, which can be later used to optimize upcoming experiments
or guide dose rationale in humans (Simeoni et al., 2013).
In this work, tumor growth dynamics of several tumor cell

lines representing different tumor types were modeled in the

Fig. 3. (A) Box plot of the relative S.E. (RSE) values for the structural and variability model parameters (parameter definition provided inMaterials and
Methods) of the different cell lines assuming samples taken every 2 days (Q2D). (B) Box plot representing the predicted precision when evaluating the
sampling designs twice per week (BIW), once per week (QW), or the optimized sampling schema (OPT8) with respect to the Q2D reference design. The
box represents the interquartile range (IQR) and the whiskers expand up to 1.5 times the IQR range. Dots represent outliers; RUV denotes residual
unexplained variability.

Fig. 4. Relative S.E. values of the typical (upper panels) or IAV (lower panels) model parameters vs. the number of mice included in the analysis of the
different cell lines. BIW, tumor size samples taken twice per week; Q2D, tumor size samples taken every two days; QW, tumor size samples taken every
week.

Unperturbed Tumor Growth Modeling and Design 101

 at A
SPE

T
 Journals on A

pril 20, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/


absence of drug using the model proposed by Simeoni et al.
(2004). This model was selected as a common structure to
systematically analyze our data given its flexibility and
proven capability to characterize tumor growth data from
different xenograft mouse experiments, as supported by its
extended literature use. This work adds to previous efforts
characterizing tumor growth dynamics with a common model
(Wong et al., 2012; Delgado-SanMartin et al., 2015), and
represents the first report whereNLMEmodeling and optimal
design techniques have been undertaken to quantitatively
evaluate a large set of tumor cell lines.
The model proposed by Simeoni et al. (2004) allowed for an

adequate description of the unperturbed tumor growth under
the different scenarios analyzed. The obtained exponential
growth rates (l0) were in good agreement with published
estimates available for some cell lines (Simeoni et al., 2004;
Rocchetti et al., 2005, 2007; Haddish-Berhane et al., 2013;
Terranova et al., 2013; Tate et al., 2014, 2016). It should be
highlighted that in some cases data did not fully support the
two mechanisms of tumor growth. In those situations, model
structure could have been simplified to consider just linear or
exponential growth resulting in little impact on the rest of the
parameter estimates, as was done for the case of MB211. The
maximum tumor burden allowed or dropout information was
not available, and therefore was not included in the analysis.
This could have potentially induced some parameter estima-
tion bias, especially for l1 (Martin et al., 2016; Pierrillas et al.,
2016). However, given the large tumor size values observed in
our experiments, the large number of mice available for some
studies, and the lack of obvious trends or misspecifications
observed for the larger tumor size predictions (Fig. 1; Supple-
mental Fig. 1) we believe that considering the upper welfare
limit in the analysis would have had little impact.
Given the availability of several independent experiments

for the same cell line, inclusion of ISV in addition to IAV was
explored. ISV did not provide further explanation of param-
eter variability, supporting study reproducibility. Therefore,
this work provides valuable information in relation to antic-
ipating the dynamics of tumor growth in xenograft mice and
supporting experimental design.

The dynamics of tumor growth in the absence of drug
treatment varied widely across the 28 different cell lines.
The lower growth rate values were observed for the renal
tumor type. However, no additional common patterns could be
detected across cell lines for the same type of tumor. Indeed, a
large range of tumor growth rate values was observed for lung
cancer cell lines. This variability observed across cell lines
suggests that information from multiple cell lines obtained
during preclinical studies should be integrated to improve
extrapolation of results to clinical setting, rather than relying
on single cell line experiments. Similar results have been
recently illustrated by García-Cremades et al. (2016) for
ovarian and pancreatic cancer. A natural extension of this
work would be to collect genetic, mutation, and tumor
histology information of different cell lines and perform a
bioinformatic analysis to identify (if any) common patterns
that could account for similarities and differences in growth
rates across the different cell types. This information could be
potentially used to anticipate growth dynamics of new cell
types based on their genetic signature.
An essential aspect when interpreting modeling results is

the reliability of the obtained parameter estimates, i.e., large
parameter imprecision translates into high uncertainty in
model predictions and therefore limited extrapolation capa-
bility. In this regard, the experimental design plays an
essential role in parameter estimates (al-Banna et al., 1990).
Measuring tumor size twice per week allowed for a precise
estimation of typical model parameters in all evaluated cell
lines, with small precision loss compared with measuring
every 2 days. However, further reducing the sampling schema
to once per week showed a less consistent impact on precision
loss with lower impact on parameter precision in slow growing
tumors compared with fast growing tumors. The results from
this evaluation design exercise showed that the underlying
properties of the cell line can be used to guide experimental
design, in terms of sampling intensity and/or size of the
experiment.
Among the unperturbed growth model parameters, special

attention should be paid to l0, since this parameter is
potentially used to predict the target human exposure of a

Fig. 5. TV profiles for three selected cell lines. Lines represent model predictions and dots represent the optimized sampling times.
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candidate drug (Rocchetti et al., 2007). Except for MIA PaCa-2
cell line, where linear rather than exponential growth was the
predominant mechanism, the RSE of l0 was always below 20%,
regardless of the experimental setting (e.g., number ofmice and
parameter value) and sampling schema. These observations
illustrate the adequacy of the NLME approach to precisely
characterize and rank the typical exponential growth rate of the
different cell lines. Another important aspect to consider, due to
its impact on the confidence interval around the predicted
tumor size profiles, is the precision of the estimated variability.
The accuracy of the IAV parameters was largely driven by the
number of mice rather than the sampling schema or the IAV
magnitude, with approximately 50 animals required for
RSE ,50%. The NLME model represents a suitable approach
to achieve such large sample size, since it enables the in-
tegration of data from multiple experiments and even control
and treatment groups. In addition, the parameters reported in
this study could be used as prior information to further reduce
the size of control groups.
One step further in the application of optimal design theory

is the optimization of the selected sampling times, i.e.,
identifying those times that, given a model structure and
some design constrains, provide the maximum possible in-
formation for the estimation of the different model parame-
ters. Optimal design strategies applied to xenograft data have
been recently proposed by Lestini et al. (2016). Their results
showed how optimal sampling schemas can improve the
information obtained from experimental data and highlight
the importance of early and late sampling for adequate
parameter characterization. Comparable results were
obtained in our analysis of control groups, identifying clusters
of points at early sampling times (informed about TV0), late
sampling times (informed about the linear growth), or TVth

(exponential and linear growths) (Fig. 5; Supplemental Fig. 2).
Similarities or differences between optimal times across cell
types are therefore explained by the similarities or differences
in their growth behavior. Nonetheless, evaluation of experi-
mental designs that can be systematically applied under
different conditions might be of more relevance than optimiz-
ing the sampling times for each of the cell lines, especially
given the low cost and time consumption for obtaining tumor
size measurements, and the convenience of standard designs
in terms of experimental organization.
In conclusion, a common structure based on the model

proposed by Simeoni et al. (2004) characterized well the
typical and dispersion tendencies of the longitudinal TV data
obtained from a wide range of tumor cell lines providing a
robust and general platform: 1) to quantify and compare
tumor growth, and possibly 2) to design future treatment
experiments based on information from treated groups,
in vitro data regarding drug potency, and drug pharmacoki-
netics. Experimental designs measuring tumor size twice
weekly, or even once a week for slow growing tumors, are
sufficient for accurate characterization of the tumor growth
dynamics. However, analyses of pooled experiments to in-
crease the number of mice are required for adequate quanti-
fication of variability. The approach presented here can be
easily extrapolated also to drug studies, where modeling and
simulation together with design optimization is anticipated to
have a more relevant role given the greater experimental
study alternatives, e.g., dose level, dose intensity, or group
size.

Acknowledgments

We thank Andrew Hooker, France Mentré, and Giulia Lestini for
the support received in the use of optimal design theory.

Authorship Contributions

Participated in research design: Parra-Guillen, Mangas-Sanjuan,
Garcia-Cremades, Troconiz, Mo, Pitou, Iversen, Wallin.

Conducted experiments: Parra-Guillen, Mangas-Sanjuan, Garcia-
Cremades, Troconiz, Mo, Pitou, Iversen, Wallin.

Performed data analysis: Parra-Guillen, Mangas-Sanjuan, Garcia-
Cremades, Troconiz, Mo, Pitou, Iversen, Wallin.

Wrote or contributed to the writing of the manuscript: Parra-
Guillen, Mangas-Sanjuan, Garcia-Cremades, Troconiz, Mo, Pitou,
Iversen, Wallin.

References

al-Banna MK, Kelman AW, and Whiting B (1990) Experimental design and efficient
parameter estimation in population pharmacokinetics. J Pharmacokinet Biopharm
18:347–360.

Bueno L, de Alwis DP, Pitou C, Yingling J, Lahn M, Glatt S, and Trocóniz IF (2008)
Semi-mechanistic modelling of the tumour growth inhibitory effects of LY2157299,
a new type I receptor TGF-b kinase antagonist, in mice. Eur J Cancer 44:142–150.

Cramér H (1946) Methods of Mathematical Statistics, Princeton University Press,
Princeton, NJ.

Delgado-SanMartin JA, Hare JI, de Moura AP, and Yates JW (2015) Oxygen-driven
tumour growth model: a pathology-relevant mathematical approach. PLOS Com-
put Biol 11:e1004550.

Foracchia M, Hooker A, Vicini P, and Ruggeri A (2004) POPED, a software for op-
timal experiment design in population kinetics. Comput Methods Programs
Biomed 74:29–46.

Garcia-Cremades M, Pitou C, Iversen PW, and Troconiz IF (2016) A comparison of
different model-based approaches to scale preclinical to clinical tumour growth
inhibition in gemcitabine-treated pancreatic cancer, in Abstracts of the Annual
Meeting of the Population Approach Group in Europe, Abstract 5704.

Haddish-Berhane N, Shah DK, Ma D, Leal M, Gerber HP, Sapra P, Barton HA,
and Betts AM (2013) On translation of antibody drug conjugates efficacy from
mouse experimental tumors to the clinic: a PK/PD approach. J Pharmacokinet
Pharmacodyn 40:557–571.

Hay M, Thomas DW, Craighead JL, Economides C, and Rosenthal J (2014) Clinical
development success rates for investigational drugs. Nat Biotechnol 32:40–51.

Jonsson EN and Karlsson MO (1999) Xpose—an S-PLUS based population phar-
macokinetic/pharmacodynamic model building aid for NONMEM. Comput Meth-
ods Programs Biomed 58:51–64.

Lestini G, Mentré F, and Magni P (2016) Optimal design for informative protocols in
xenograft tumor growth inhibition experiments in mice. AAPS J 18:1233–1243.

Lindbom L, Pihlgren P, and Jonsson EN (2005) PsN-Toolkit—a collection of computer
intensive statistical methods for non-linear mixed effect modeling using NONMEM
[published correction appears in Comput Methods Programs Biomed (2005) 80:
277]. Comput Methods Programs Biomed 79:241–257.

Martin EC, Aarons L, and Yates JWT (2016) Accounting for dropout in xenografted
tumour efficacy studies: integrated endpoint analysis, reduced bias and better use
of animals. Cancer Chemother Pharmacol 78:131–141

Ocana A, Pandiella A, Siu LL, and Tannock IF (2010) Preclinical development of
molecular-targeted agents for cancer. Nat Rev Clin Oncol 8:200–209.

Parra-Guillen ZP, Berraondo P, Ribba B, and Trocóniz IF (2013) Modeling tumor
response after combined administration of different immune-stimulatory agents. J
Pharmacol Exp Ther 346:432–442.

Pierrillas PB, Tod M, Amiel M, Chenel M, and Henin E (2016) Improvement of
parameter estimations in tumor growth inhibition models on xenografted animals:
a novel method to handle the interval censoring caused by measurement of smaller
tumors. AAPS J 18:404–415.

Radhakrishna Rao C (1945) Information and the accuracy attainable in the estima-
tion of statistical parameters. Bull Calcutta Math Soc 37:81–91.

Rocchetti M, Poggesi I, Germani M, Fiorentini F, Pellizzoni C, Zugnoni P, Pesenti E,
Simeoni M, and De Nicolao G (2005) A pharmacokinetic-pharmacodynamic model
for predicting tumour growth inhibition in mice: a useful tool in oncology drug
development. Basic Clin Pharmacol Toxicol 96:265–268.

Rocchetti M, Simeoni M, Pesenti E, De Nicolao G, and Poggesi I (2007) Predicting the
active doses in humans from animal studies: a novel approach in oncology. Eur J
Cancer 43:1862–1868.

Sausville EA and Burger AM (2006) Contributions of human tumor xenografts to
anticancer drug development. Cancer Res 66:3351–3354 [discussion 3354].

Simeoni M, De Nicolao G, Magni P, Rocchetti M, and Poggesi I (2013) Modeling of
human tumor xenografts and dose rationale in oncology. Drug Discov Today
Technol 10:e365–e372.

Simeoni M, Magni P, Cammia C, De Nicolao G, Croci V, Pesenti E, Germani M,
Poggesi I, and Rocchetti M (2004) Predictive pharmacokinetic-pharmacodynamic
modeling of tumor growth kinetics in xenograft models after administration of
anticancer agents. Cancer Res 64:1094–1101.

Tate SC, Burke TF, Hartman D, Kulanthaivel P, Beckmann RP, and Cronier DM
(2016) Optimising the combination dosing strategy of abemaciclib and vemurafenib
in BRAF-mutated melanoma xenograft tumours. Br J Cancer 114:669–679.

Tate SC, Cai S, Ajamie RT, Burke T, Beckmann RP, Chan EM, De Dios A, Wishart
GN, Gelbert LM, and Cronier DM (2014) Semi-mechanistic pharmacokinetic/
pharmacodynamic modeling of the antitumor activity of LY2835219, a new

Unperturbed Tumor Growth Modeling and Design 103

 at A
SPE

T
 Journals on A

pril 20, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

http://jpet.aspetjournals.org/lookup/suppl/doi:10.1124/jpet.118.248286/-/DC1
http://jpet.aspetjournals.org/


cyclin-dependent kinase 4/6 inhibitor, in mice bearing human tumor xenografts.
Clin Cancer Res 20:3763–3774.

Terranova N, Germani M, Del Bene F, and Magni P (2013) A predictive pharmacokinetic-
pharmacodynamic model of tumor growth kinetics in xenograft mice after administration
of anticancer agents given in combination. Cancer Chemother Pharmacol 72:471–482.

Wong H, Choo EF, Alicke B, Ding X, La H, McNamara E, Theil FP, Tibbitts J,
Friedman LS, Hop CE, et al. (2012) Antitumor activity of targeted and cytotoxic
agents in murine subcutaneous tumor models correlates with clinical response.
Clin Cancer Res 18:3846–3855

Zhang L, Sinha V, Forgue ST, Callies S, Ni L, Peck R, and Allerheiligen SRB (2006)
Model-based drug development: the road to quantitative pharmacology. J Phar-
macokinet Pharmacodyn 33:369–393.

Address correspondence to: Johan E. Wallin, Eli Lilly and Company,
Gustav III Boulevard 42, P.O Box 721, SE 169 27 Solna, Sweden. E-mail:
wallinjo@lilly.com

104 Parra-Guillen et al.

 at A
SPE

T
 Journals on A

pril 20, 2024
jpet.aspetjournals.org

D
ow

nloaded from
 

mailto:wallinjo@lilly.com
http://jpet.aspetjournals.org/

