










assessed the potential CNS toxicity of this treatment with
mouse NPCs. We found that CBD both inhibits cell prolifera-
tion and kills all cells tested here with similar low micromolar
potencies, suggesting that the molecular mechanism of action
triggered byCBD that leads to the reduction of the proliferation
and viability of all cells is not affected by their genetic makeup.
Thus, it appears that CBD triggers a mechanism of action that
does not preferentially target cancer cells and will likely be
associated with NPC toxicity. Analyses of all dose responses
triggered by CBD indicated a cooperative/allosteric mechanism
of action. Together, these results suggest significant challenges
when considering the poor therapeutic index and steep dose
response of CBD used as a single agent to treat patients
diagnosed with GBM.
Several studies have shown that the biologic activity of CBD

is concentration dependent and likely mediated through mul-
tiple plasma membrane–associated receptors (Pertwee, 2008).
At nanomolar concentrations, CBD binds to GPR55 as de-
termined by in vitro radioligand binding assays (Ryberg et al.,

2007). Accordingly, CBDmodulatesGPR55 activity as shownby
1–3 mM CBD that blocks the L-a-lysophosphatidylinositol–
induced GPR55-mediated migration and polarization of
breast cancer cells (Ford et al., 2010), as well as inhibits the
proliferation of prostate cancer cells (Piñeiro et al., 2011). The
pharmacological activity of CBD at GPR55 appears complex
and likely cell dependent, as suggested by one study reporting
that this compound promotes cell proliferation via the extra-
cellular signal-regulated kinase pathway in glioma cells
(Andradas et al., 2011). Cannabinoid receptors 1 and 2 (CB1

and CB2, respectively) are the key receptors responsible for
the effects of cannabinoids (Mackie, 2006; Deng et al.,
2015a,b). Previous studies show that low micromolar concen-
trations of CBD bind CB1 and CB2 receptors, as measured by
radioligand binding assays (Petitet et al., 1998; Thomas et al.,
2007; Pertwee, 2008). Accordingly, 1–10 mM CBD triggers
apoptosis through CB2 receptors in leukemia cells (McKallip
et al., 2006); 10 mM CBD suppresses glioma cell proliferation,
and this response is partially blocked by a CB2 antagonist

Fig. 3. DNA-damaging agents on the cell viability of GBM cells and NPCs: single and CBD combination. (A–C) Dose response of TMZ (A), BCNU (B),
and CDDP (C) on inhibiting viability of (red) human GBM cells (T98G, U251, and U87MG) and (blue) mouse PDGF-GBM cells and NPCs at the 72-hour
time point. Data are expressed as means6 S.E.M. (n = 5 independent experiments, each in triplicate). Vehicle comprised 0.1% DMSO (A), 0.1% ethanol
(B), or 0.1% PBS (C). (D) Interactions between CBD and DNA-damaging agents on inhibiting viability (method 1). Percentage of synergy (white),
additivity (gray), and antagonism (black) occurred in the checkerboard assay. Synergy was defined as SFIC, 0.5, antagonism was defined as SFIC. 4,
and additivity was defined as 0.5 , SFIC , 4. Data are expressed as percentage of occurrence calculated using the mean SFIC from three independent
experiments, each in duplicate. Vehicle comprised 0.05% DMSO (vehicle in lieu of CBD) plus 0.05% DMSO, ethanol, or PBS (vehicle in lieu of TMZ,
BCNU, or CDDP, respectively). DMSO, dimethylsulfoxide.
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(Massi et al., 2004). Micromolar concentrations of CBD modu-
late the activity of several plasma membrane–associated
ion channel receptors, including TRPV1 receptors with an
EC50 of 3 mM (Bisogno et al., 2001; Iannotti et al., 2014),
TRPV2 receptors when applied at 10–30mM (Qin et al., 2008;
Nabissi et al., 2013), and serotonin 1A (5-HT1A) receptors
with an EC50 of 32 mM (Russo et al., 2005). CBD at 100 nM
also modulates that activity of intracellular transcription
factors such as peroxisome proliferator–activated receptor-g
(Esposito et al., 2011). It is important to emphasize that the
lipophilic nature of CBD triggers biologic responses that are
independent of protein-mediated mechanisms, including
rapid changes in both membrane lipid raft and cholesterol
metabolism when applied at 5–20 mM (Ligresti et al., 2006;
Rimmerman et al., 2011, 2013). Additional examples of the
protein-independent mechanism of CBD include increases in
oxidative stress resulting in apoptosis, DNA damage, and
autophagy in breast cancer cells (Shrivastava et al., 2011)
and in glioma cells (Bisogno et al., 2001; Massi et al., 2004;
Solinas et al., 2013; Soroceanu et al., 2013) when this
compound is applied at 5–40 mM. Thus, there is a wide range

of protein-dependent and protein-independent biologic ac-
tivities induced by CBD applied in the micromolar range.
Although the identification of the molecular target(s) and
signaling step(s) that mediates the inhibition of cell pro-
liferation and cell-killing activity of CBD reported here is
beyond the scope of this work, the allosteric response of CBD
that we measured in the 1- to 10-mM range in all cells
suggests the involvement of a single class of proteins that
mediate this activity.
Allosteric modulation plays an important role in the signal

transduction mechanism of many proteins by favoring protein
confirmations that enhance (i.e., positive allosteric modulator)
or reduce (i.e., negative allosteric modulator) activities, and
thus represents an active area of research for the development
of new therapeutics (Changeux andEdelstein, 2005;Melancon
et al., 2012). CBD at a concentration range of 0.1–5 mM is a
negative allosteric modulator of CB1 receptors signaling when
studied in human embryonic kidney 293 cells (Laprairie et al.,
2015). CBD at 3– 30 mMaffects TRPV1 and at 1–30 mMaffects
GPR55 activities (Bisogno et al., 2001; Ford et al., 2010;
Piñeiro et al., 2011; Iannotti et al., 2014), both of which contain

Fig. 4. Efficacy FIC analyses on interactive responses between CBD and DNA-damaging agents on GBM cells and NPCs (method 2). (A and B) Efficacy
FIC indices calculated from the combinations producing half maximal inhibitory effects on proliferation (A) and viability (B) when DNA-damaging
agents were combined with CBD at a fixed concentration of 1 mM. Synergy (white) was defined as an FIC index (SFIC) , 0.5, additivity (gray) was
defined as 0.5 , SFIC , 4, and antagonism (black) was defined as SFIC . 4. Data are expressed as means 6 S.E.M. (n = 3 independent experiments,
each in duplicate). Vehicle comprised 0.05% DMSO (vehicle in lieu of CBD) plus 0.05% DMSO, ethanol, or PBS (vehicle in lieu of TMZ, BCNU, or CDDP,
respectively). DMSO, dimethylsulfoxide.
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allosteric regulatory sites (Piñeiro et al., 2011; Anavi-Goffer
et al., 2012; Cao et al., 2013; Maione et al., 2013). At 100 mM,
CBD acts as a positive allosteric modulator of opioid m
receptors (Kathmann et al., 2006) but these high concentra-
tions suggest that this target is unlikely to mediate the
bioactivity of CBD. Thus, the 1–10 mM antineoplastic activity
of CBD reported here could bemediated through at least three
plasmamembrane targets (GPR55, CB1, and TRPV1) that are
known to both interact with CBD in this range of concentra-
tions and have allosteric regulatory sites. Whether any of
these targets mediate the response studied here still needs to
be determined.
A common strategy to improve the therapeutic index of

certain drugs is combined modality therapy, whereby treat-
ment with reduced concentrations of two drugs known to be
associated with side effects will result in enhancing overall
therapeutic efficacy while reducing the incidence of side
effects (Kummar et al., 2010). A recent study reported that
10 mM CBD exhibits synergistic GBM-killing activity when

combined with either 400 mM TMZ or 200 mM BCNU and
using U87MG cells as a model system (Nabissi et al., 2013).
Although we reproduced this result, a more quantitative and
unbiased analysis of the interaction between these modalities
using two independent methods of calculations (method
1 analyzes all concentrations and method 2 analyzes the
efficacy-related drug interactions) indicates that only a lim-
ited range of concentrations lead to synergistic responses. In
fact, the predominant range of concentrations that we tested
resulted in additive responses and a significant number of
combinations resulted in antagonism. Thus, our analyses of
the combined antineoplastic activity of CBD and DNA-
damaging agents suggests little improvement in their re-
spective therapeutic indices and, in some cases, loss in
therapeutic efficacy by antagonism.
We identified several interactions between CBD and DNA-

damaging agents occurring at select concentrations and in
certain GBM cells that provide insights into the antineoplastic
activity of these compounds. In mouse PDGF-GBM cells, we

TABLE 1
Quantitative efficacy FIC analyses of the interactive responses between CBD and DNA-damaging agents on cell proliferation of GBM cells and NPCs
(method 2)
Data are expressed as means 6 S.E.M. (n = 3 independent experiments, each in duplicate). CBD and IC50 values are given in molar concentrations (M).

Cell CBD
TMZ BCNU CDDP

IC50 Value FIC Index IC50 Value FIC Index IC50 Value FIC Index

Human cell lines
T98G 1.00E-06 3.71E-03 6 2.14E-03 3.46 6 1.88 4.42E-04 6 4.19E-05 1.13 6 0.09 3.99E-05 6 2.02E-05 1.78 6 0.80

3.00E-06 1.25E-03 6 2.25E-04 1.69 6 0.20 3.61E-04 6 1.08E-04 1.35 6 0.23 3.74E-05 6 1.10E-05 2.08 6 0.44
U251 1.00E-06 1.01E-03 6 4.08E-07 1.17 6 0.00 1.84E-04 6 7.38E-05 1.01 6 0.36 1.43E-05 6 3.35E-06 2.23 6 0.49

3.00E-06 1.07E-03 6 4.08E-06 1.47 6 0.00 1.93E-04 6 4.85E-05 1.29 6 0.24 2.39E-05 6 5.07E-06 3.89 6 0.75
U87MG 1.00E-06 5.73E-04 6 1.53E-04 1.10 6 0.25 4.65E-04 6 1.38E-04 0.86 6 0.21 2.19E-06 6 4.26E-07 1.08 6 0.18

3.00E-06 2.45E-04 6 5.75E-05 0.86 6 0.10 2.16E-04 6 8.03E-05 0.78 6 0.12 2.73E-06 6 8.56E-07 1.62 6 0.36
Mouse primary cells

PDGF-GBM 1.00E-06 6.66E-04 6 1.85E-04 1.59 6 0.35 7.78E-05 6 3.14E-05 1.40 6 0.71 4.88E-06 6 1.82E-06 2.24 6 0.72
3.00E-06 1.44E-04 6 1.39E-05 1.23 6 0.03 6.22E-05 6 1.65E-05 2.25 6 0.34 2.85E-06 6 1.73E-06 2.08 6 0.68

NPCs 1.00E-06 1.57E-03 6 1.03E-03 0.66 6 0.27 8.39E-05 6 3.50E-05 2.78 6 1.03 5.85E-06 6 9.08E-07 2.17 6 0.29
3.00E-06 1.09E-05 6 5.39E-07 1.00 6 0.00 5.43E-05 6 5.33E-05 2.57 6 1.56 1.98E-06 6 1.01E-06 1.60 6 0.32

When DNA-damaging agents were combined with CBD at a fixed concentration of 1 or 3 mM, IC50 values of the DNA-damaging agents and the efficacy FIC indices were
calculated from the combinations producing half maximal inhibitory effects on inhibiting cell proliferation of human GBM cell lines, primary mouse PDGF-GBM cells, and
NPCs. Synergy was defined as SFIC , 0.5, additivity was defined as 0.5 , SFIC , 4, and antagonism was defined as SFIC . 4. The vehicle comprised 0.05%
dimethylsulfoxide (vehicle in lieu of CBD) plus 0.05% dimethylsulfoxide, ethanol, or PBS (vehicle in lieu of TMZ, BCNU, or CDDP, respectively).

TABLE 2
Quantitative efficacy FIC analyses of the interactive responses between CBD and DNA-damaging agents on cell viability of GBM cells and NPCs
(method 2)
Data are expressed as means 6 S.E.M. (n = 3 independent experiments, each in duplicate). CBD and IC50 values are given in molar concentrations (M).

Cell CBD
TMZ BCNU CDDP

IC50 Value FIC Index IC50 Value FIC Index IC50 Value FIC Index

Human cell lines
T98G 1.00E-06 9.19E-04 6 7.50E-05 0.76 6 0.05 2.81E-04 6 8.78E-05 1.10 6 0.30 4.34E-05 6 1.84E-05 5.73 6 2.36

3.00E-06 6.83E-04 6 1.55E-04 0.90 6 0.10 1.94E-04 6 1.08E-04 1.09 6 0.37 3.92E-05 6 2.12E-05 5.48 6 2.73
U251 1.00E-06 7.78E-04 6 8.00E-05 1.86 6 0.18 1.66E-04 6 4.25E-05 1.26 6 0.29 4.42E-05 6 2.22E-05 4.24 6 2.08

3.00E-06 8.99E-04 6 8.54E-07 2.34 6 0.00 2.40E-04 6 2.75E-05 1.99 6 0.19 5.99E-05 6 7.51E-06 5.93 6 0.70
U87MG 1.00E-06 9.17E-04 6 1.79E-04 1.16 6 0.19 5.86E-04 6 8.58E-05 1.34 6 0.17 2.48E-04 6 5.15E-05 3.76 6 0.74

3.00E-06 1.52E-03 6 1.16E-03 2.19 6 1.22 5.01E-04 6 1.46E-04 1.57 6 0.29 1.75E-04 6 9.19E-06 3.11 6 0.13
Mouse primary cells

PDGF-GBM 1.00E-06 5.43E-04 6 9.26E-05 10.78 6 1.80* 1.78E-05 6 7.04E-07 2.14 6 0.07 2.05E-06 6 3.97E-07 2.72 6 0.48
3.00E-06 1.20E-04 6 6.86E-05 3.06 6 1.33 1.47E-05 6 4.44E-06 2.29 6 0.47 3.14E-06 6 5.68E-07 4.53 6 0.69

NPCs 1.00E-06 1.24E-04 6 4.55E-05 3.07 6 1.01 3.29E-05 6 1.81E-05 3.58 6 1.79 8.32E-07 6 1.56E-07 1.72 6 0.26
3.00E-06 4.99E-05 6 4.84E-05 2.05 6 1.08 8.71E-06 6 4.49E-06 1.80 6 0.45 6.00E-07 6 2.74E-07 1.95 6 0.46

When DNA-damaging agents were combined with CBD at fixed concentration of 1 or 3 mM, IC50 values of the DNA-damaging agents and the efficacy FIC indices were
calculated from the combinations producing half maximal inhibitory effects on inhibiting cell viability of human GBM cell lines, primary mouse PDGF-GBM cells, and NPCs.
Synergy was defined as SFIC, 0.5, additivity was defined as 0.5, SFIC, 4, and antagonism was defined as SFIC. 4. Vehicle comprised 0.05% dimethylsulfoxide (vehicle in
lieu of CBD) plus 0.05% dimethylsulfoxide, ethanol, or PBS (vehicle in lieu of TMZ, BCNU, or CDDP, respectively).

*P , 0.05, mouse PDGF-GBM cells versus mouse NPCs.
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found that CBD/TMZ combinations antagonize their antipro-
liferative response while triggering an additive cell-killing
response. This result suggests a clear dichotomy in the
antiproliferative and cell-killing mechanism of action trig-
gered when combining CBD and TMZ in mouse PDGF-GBM
cells. In U87MG cells, combining CBD and DNA-damaging
agents induced synergistic cell killing, but only additive
inhibition of cell proliferation. This result suggests that the
cell killing produced by these combinations does not rely on
their ability to simply reduce cell proliferation and is likely
independent. Thus, our results provide examples in which
drug treatments exhibit dissociated and even opposite re-
sponses on cell proliferation and viability of GBM cells.
Several studies have shown that regimented treatment of

glioma xenograft models with CBD significantly reduces
tumor growth (Massi et al., 2004, 2008; Torres et al., 2011;
Soroceanu et al., 2013). CBD is currently being tested in
human clinical trials for the treatment of patients with GBM
and the vast majority of this patient population will likely also
be treated with standard-of-care DNA-damaging modalities
(Saklani and Kutty, 2008). Our study provides a quantitative
and unbiased evaluation of the antineoplastic activity of CBD
alone and in combination with DNA-damaging agents in cell
culture models of GBM, which suggests using caution when
considering this phytocannabinoid for the treatment of pa-
tients diagnosed with GBM and treated with standard-of-care
DNA-damaging agents.
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