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Fig. 6. In intestine, mRNA expression of mouse nuclear receptors, transporters, and enzymes in FRGN, mFRGN, and hFRGN mice (n = 4-8). Higher
levels of Car and Pxr in hFRGN intestine were observed. Higher levels of Mdrla, Mrp4, Gsta4-4, Sultlal, and Ugtlal were present in most intestinal
segments of hFRGN intestine, although higher Gsta4-4 and Sultlal expression, though lower Mrp3 and ileal Berp, was observed in mFRGN intestine
(mechanism unknown); other changes between FRGN and mFRGN were minor. *P < 0.05 denotes comparison between FRGN and mFRGN intestine of
same segment; *P < 0.05 denotes comparison between FRGN and hFRGN intestine of same segment; *P < 0.05, between FRGN duodenum and FRGN
jejunum or ileum, using two-tailed Student’s ¢ test.
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these deficiencies have been previously overlooked and not
properly addressed.

Dysregulated liver regeneration and deformity in hFRGN
livers were evidenced by the miscommunication between
human hepatocytes and murine stellate cells, leading to
substantial hepatocyte proliferation, reduced intracellular
spaces (Chow et al., 2016), and inhibited cholangiocyte
growth. The signaling in hepatocytes and nonparenchymal
cells between TGFBR2/TGF-B plays a critical role in liver
regeneration (Yoshizato et al., 2012). Studies with cultured
hepatocytes have shown that TGF-81 and TGFBR2 are anti-
mitogenic for hepatocytes. Under normal resting (physiologic)
condition, hepatocytes express TGFBR2, whereas nonparenchy-
mal cells express low levels of TGF-B1. When the liver is injured,
TGFBR2 expression in hepatocytes is reduced to initiate
proliferation. Once an adequate number of hepatocytes is
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Fig. 7. Schematics depicting the interaction between
(A) the murine intestine and murine liver and bile acids
(denoted as BA), and (B) the murine intestine and
humanized liver. (A) Normally, there are two major
pathways for Cyp7al regulation: 1) in liver, by the Fxr-
Shp-Lrh-1 or Hnf-4a cascade and 2) in murine intes-
tine by Fgfl5, secreted by the ileum and under Fxr
stimulation, to react with Fgfr4 in liver to repress
Cyp7al. (B) Owing to the over-production of murine bile
acids by the hFRGN liver, the conjugated MCAs that
are strong FXR antagonists, inhibited liver FXR,
whereas strong FXR ligands stimulated intestinal Fxr
targets: murine Shp, Fgf15, Ibabp, and Osta. However,
miscommunication between the murine intestinal
Fgfl5 and human FGFR4 and inhibition of the liver
FXR-SHP cascade failed to repress CYP7A1 expression.
Consequently, CYP7A1 expression levels remained
elevated for the synthesis of bile acids, and high BAs
prevailed in this vicious circle. Note that blue lines
represent stimulation, whereas red line represents
inhibition. Solid line denotes activation/increased path-
way, whereas dotted lines denote the absence/decrease
of the pathway.

produced, the stellate cells surround the hepatocytes and
produce TGF-B, which signals to hepatocytes to terminate
proliferation and negatively inhibit TGF-81 expression
(Yoshizato et al., 2012). Our results showed that hFRGN
livers consisted of remarkably lower TGFBR2 expression,
but an unchanged murine Tgf-81 expression compared to
that for FRGN livers (Fig. 3). Histopathologic images from
current (Fig. 1A) and previous studies (Chow et al., 2016)
support the evidence of unchecked hepatocyte proliferation
and densely populated liver (Fig. 1A). Invasive hepatocyte
proliferation and inhibited cholangiocyte growth (Fig. 3B)
resulted in reduced bile flow (Chow et al., 2016) and cholehe-
patic shunting and increased hepatic bile acid accumulation
and toxicity (Tables 4 and 5). The densely populated hFRGN
livers may further lead to ischemia within the acinus, a
condition that leads to inhibition of FXR (Cheng et al., 2013).
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The inability of humanized mouse livers to regulate
CYP7A1 expression led to high bile acid levels and toxicity.
Normally, Cyp7al/CYP7AL in liver is under Fxr/FXR and
Fgf15/FGF19 control (Fig. 7A). At high bile acid levels, Fxr/
FXR in the intestine activates intestinal Fgf15/FGF19, which
forges an interaction with Fgfr4/FGFR4 to repress Cyp7al/
CYP7A1 (Inagaki et al., 2005). In liver, the FXR-SHP-LRH-1
or FXR-SHP-HNF-4a cascade negatively controls CYP7A1l
(Goodwin and Kliewer, 2002). hFRGN mice displayed higher
levels of CDCA, DCA, and CA and their conjugates (Fig. 3B),
which are strong FXR/Fxr ligands (Makishima et al., 2002),
leading to intestinal Fxr activation and intestinal Fgfl5
induction (Fig. 5A). However, hFRGN livers exhibited high
CYP7A1 expression (Fig. 4A), suggesting that the signaling
pathway associated with Fgf15 appeared to be nonfunctional,
as shown by the unchanged ratio of pERK/total ERK (Fig. 5B),
suggestive of human hepatocytes and murine intestine mis-
communication. Additionally, SHP levels in hFRGN livers
(Fig. 3A) were lower, suggesting that high bile acid concen-
tration (Table 5) failed to activate hepatic human FXR to
suppress CYP7A1 in hFRGN livers. A plausible explanation
attributes this to the bile acid composition changes in hFRGN
livers: absence of CDCA and high levels of t3-MCA (29-fold)
and ta-MCA (42-fold) (Table 5), which are FXR antagonists
(Sayin et al., 2013). These differential abundances in tMCA
and CDCA appear to be the driving forces for decreased
hepatic FXR activation in hFRGN livers. High bile acid levels
could also induce toxicity by activating nuclear factor-kappa B
(NF-kB), which is associated with higher interleukin-6 and
COX-2 expression toward enhanced growth and apoptosis
resistance in cholangiocarcinoma cells; the release of cyto-
kines can also cause biliary damage (Liu et al., 2014).

High bile acid concentrations in hFRGN bile (Table 5) may
lead to gallbladder filling in hFRGN mice (Fig. 1A), in events
that are related to bile acid-mediated activation of Tgr5,
the transmembrane G-protein-coupled receptor expressed in
cholangiocytes and gallbladder epithelial cells (Li et al., 2011,
Keitel and Haussinger, 2013; Duboc et al., 2014). Activation of
the Tgr5 in gallbladder smooth muscle cells by bile acids,
especially lithocholic and deoxycholic acids and their tauro-
conjugates, would result in smooth muscle cell relaxation,
gallbladder filling, and gallbladder stasis (Lavoie et al., 2010;
Jones et al., 2015).

Even though high bile acid levels in hFRGN mice were ob-
served, plasma cholesterol level, which is maintained by the
low-density lipoproteins (LDL) and high-density lipoproteins
(HDL), remained unchanged, whereas liver cholesterol was
increased (Table 4). The exact mechanism for these changes
is currently unknown. Ellis et al. (2013) reported that LDL,
VLDL, and HDL fractions were shifted in chimeric mice,
suggesting possible differences of lipid formation and uptake
mechanism. Although murine/human 3-hydroxy-3-methyl-
glutaryl-CoA reductase (HMG CoA reductase; which synthe-
sizes cholesterol) levels (Fig. 3A) in hFRGN livers were similar
to those in human livers, cholesterol synthesis rates between
human and mouse may be different. Certainly, studies are
needed to evaluate the upstream pathways of cholesterol
synthesis in chimeric livers.

The recent TK-NOG chimeric model may be a better option
than hFRGN mice for control of the level of humanization
in the mouse liver (Kim et al., 2014). However, the same
disrupted signaling between the murine intestine and human
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hepatocytes and mouse nonparenchymal cells in TK-NOG
mouse would also exist. To alleviate elevated bile acids levels,
Naugler et al. (2015) suggest that human bile acid production
can be controlled by administration of exogenous FGF19
in chimeric mice. However, the dose and dosing regimen of
FGF19 administration and the associated effects on drug me-
tabolism and transport are unknown. In addition, the disrupted
signaling of human hepatocyte proliferation in the mouse liver
requires implantation of human Kupffer cells in mouse liver
(Wilson et al., 2014) or exogenous administration of human
TGF-B. Certainly, TGF-8 and FGF19 are some of the impor-
tant signaling mechanisms worth investigation for the opti-
mization of humanized mouse liver models.

The distension of the gallbladder, the unchecked hepatocyte
proliferation and liver deformity, and miscommunication be-
tween liver cell types in the humanized liver and between the
mouse intestine and humanized liver, as well as the lack of
negative feedback control of the FXR-SHP cascade on bile acid
homeostasis (Fig. 7B) would bring about liver toxicity and
model instability. These problems will exist not only in the
hFRGN mice, but also in other chimeric (humanized) mice
such as the PXB and TK-NOG chimeric mice. The dysregula-
tion of bile acid production in h-chimeric mice and physiologic
changes that accompany the accumulation of highly toxic bile
acids will further contribute to changes in expression of
transporter and enzyme in extrahepatic tissues (Fig. 6 and
Supplemental Figs. 1 and 2), which would constitute another
important consideration in pharmacokinetics and drug
disposition studies. Activation of other nuclear receptors,
Pxr and Car, owing to elevated bile acids, LCA, and the
metabolite 3-keto-58-cholanic acid (Goodwin and Kliewer,
2002) may result in changes in transporters and enzymes.
Bile acids, especially the tMCAs and elevated bilirubin levels
in hFRGN livers will further contribute to varying extent of
Fxr and Car induction in extrahepatic tissues (Huang et al.,
2003; Chen et al., 2011). These translate to induction of
targeted transporters and enzymes such as Mrp2, Mrp3,
Mrp4 and Mdrla, Gst4-4, Sultlal, and Ugtlal (Huang
et al., 2003; Zollner et al., 2006; Zollner and Trauner, 2009;
Wagner et al., 2011) in hFRGN intestine, kidney or brain
(Figs. 6 and Supplemental Figs. 1 and 2) and drug
dispositional changes. To conclude, instability of the hFRGN
liver and extrahepatic tissue with respect to nuclear receptor
activation by the dramatic production of differential human
(CDCA and CA) and murine (tMCAs) bile acids, both FXR
agonists and antagonists, followed by stimulation of the
murine intestine and miscommunication among liver cell
types and between intestine and humanized liver will induce
toxicity and instability issues in this preparation for human
drug metabolism studies.
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Supplementary Table 1.  Mouse and human primer sequences for gPCR
Gene Bank Number Forward (5°— 3’ Sequence) Reverse (5°— 3’ Sequence)
hABCAl NM _005502.3 CACCCTATGAACAACATGAATGCCA CAGGAGTCGGGTAACGGAAA
hABCGS NM_022436.2 TGGACGCTGGGCTTACATC GCCAAGAGAGCAGCAGAAAAAT
hABCGS NM_022437.2 AGCAGCTGGGTCTAAGAGAG CTGGAGGCCCGAGGTATC
hAlbumin NM_000477.5 AGGGGTGTGTTTCGTCGAG AAAGGCAATCAACACCAAGGCT
hBCRP NM _004827.2 GCATCCTGAGATCCTGAGCC TCTGGAGAGTTTTTATCTTTTCAGC
hB-KLOTHO NM 175737.3 CTCAGTCTCCCAGTTCAAGCTAA CCCCGTTGGACATTGTATTCCTA
hBSEP NM_003742.2 AAAACCGAGGTTGGAAAAGGTT CCAACGACCCTGTGAATATGAA
hCAR NM 005122.4 CTTCTCTCCTGACCGACCTG TCGCATACAGAAACCGATCC
hCYP1A1 NM_000499.3 CTACACTGATCATGCTTTTCCCAATC GCCCTGATTACCCAGAATACCAGA
hCYP2B6 NM_000767.4 CCGGGGATATGGTGTGATCTT AGTGGTCACAGAGAATCGCC
hCYP2C9" NM_000771.3 Hs04260376_m1 (Cat. # 4331182)
hCYP2C19 NM_000769.1 TCAGGATTGTAAGCACCCCC CCCGGGAAATAATCAATGATAGTG
hCYP2D6 NM 001025161.2 GCTTCGACCAGTTGCGGC AGCCCATTGAGCACGACC
hCYP2E] NM_000773.3 CTGTGTCATTCCCCGCTCAT TGAGAAATCCTGACCTCAAACA
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hCYP27A41 NM_000784.3 GAGGACCTATCCCGGTGTGG CTTGGTCTGAACTCTGGGCG
hCYP3A44 NM_017460.5 CATTCCTCATCCCAATTCTTGAAGT CCACTCGGTGCTTTTGTGTATCT
hCYP741 NM_000780.3 GAATGCTGGTCAAAAAGTC TGAAATCCTCCTTAGCTGT
hCYP7B1 NM_004820.4 GGGAGACCACGGTGACATTC TACTTTCCACCAAGAAGAACTGTG
hCYPS8BI NM_004391.2 GTGCCAGCTACTCCTTCCTG AGTTCGGAGGCCATTTCTGG
hFGF19 NM_005117.2 TCCCTGAGCAGTGCCAAAC GGAAATGAGAGAGTGGAAGAAAGC
hFGFR4 NM_022963.2 TCAAGATGCTCAAAGACAACGC CCACGATCACGTACAGGGG
hFXR NM 001206993.1 TGGGGAACTGAAAATGACTC ACAGGCAAAGTGTTGAGGAT
hGAPDH NM_002046.4 GAAGGTGAAGGTCGGAGTC GAAGATGGTGATGGGATTTC
hGSTA4-4 NM_001512.3 AAGAATGGGCAGGATCTCTTGTT AAAATTAGGCAGAGACTGGAGGG
hHMG CoA Reductase NM_000859.2 CTCCGAGCGTGCGTAAGG CCTTGGATCCTCCAGATCTCACTA
hHNF-1o. NM_000545.5 CCTGTCCCAACACCTCAACAA TTGAAACGGTTCCTCCGC
hHNF-4o. NM_001258355.1 AAGAGGAACCAGTGCCGCTA CGCATTGATGGAGGGCAG
hLRH-1 NM_001276464.1 TACCGACAAGTGGTACATGGA CGGCTTGTGATGCTATTATGGA
hLXRa NM_001251935.1 GACCGACTGATGTTCCCACG CCATCCGGCCAAGAAAACAG
hMDRI NM_000927.4 TGCTCAGACAGGATGTGAGTTG AATTACAGCAAGCCTGGAACC
hMRP2 NM_000392.3 CAAACTCTATCTTGCTAAGCAGG TGAGTACAAGGGCCAGCTCTA
hMRP3 NM_003786.3 CTTAAGACTTCCCCTCAACATGC GGTCAAGTTCCTCTTGGCTC
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hMRP4 NM_005845.3 AATGTGACCGTCCATCCTCC AGGTTTGGCCTTCTTGGGA
hNTCP NM_003049.3 GGATGCCAAAATGTCCAACT TGAGGTGCCATTTCCCAGA
hOATPIB3 NM_019844.3 GGGTGAATGCCCAAGAGATA ATTGACTGGAAACCCATTGC
hOATP2B1 NM_001145211.2 TGATTGGCTATGGGGCTATC CATATCCTCAGGGCTGGTGT
hOATPI1BI NM_006446.4 GCCCAAGAGATGATGCTTGT ATTGAGTGGAAACCCAGTGC
hOST-o NM_152672.5 TGTTGGGCCCTTTCCAATAC GGCTCCCATGTTCTGCTCAC
hOST-p NM_178859.3 CAGGCAAGCAGAAAAGAAAAG CCGGAAGGAAAACTGACA
hPPARy NM 138711.3 AAGACCACTCCCACTCCTTTG TTTGATTGCACTTTGGTACTCTTGA
hPXR NM_022002.2 CAAGCGGAAGAAAAGTGAACG CACAGATCTTTCCGGACCTG
hSHP NM_021969.2 GGCTTCAATGCTGTCTGGAGT CCCTTTCAGGCAGGCATATT
hSULTIAI NM_177530.2 AACCCTATGACCAACTACACCA CACAGCTCAGAGCGGAAG
hSULTIA2 NM_177528.2 CATGGCCAAAGTGTACCCTCA GGACCCATAGGACACTTCTCCA
hSULTIEI NM_005420.2 GGTGATGTGGAAAAGTGCAAAGA GTTCAGGTGGCAAATGAGTCTTC
hSULT2A1 NM_003167.3 TCGTGATAAGGGATGAAGATGTAATAA TGCATCAGGCAGAGAATCTCA
hTGFBR2 NM_11024847.2 GTCTGTGTGGCTGTATGGAGA TTGGGGTCATGGCAAACTGT
hUGTIAI NM_000463.2 CCCATGCTGGGAAGATACTGTT GCGTCAGGTGCTAGGACAAC
mp-actin NM_007393.3 TGGAATCCTGTGGCATCCATGAAAC TAAAACGCAGCTCAGTAACAGTCCG
mAsbt (for intestine) NM_011388.2 GATAGATGGCGACATGGACCTC CAATCGTTCCCGAGTCAACC
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mAsbt (for liver) NM 011388.3 TTGCCCTTGGAATGATGCCT GCAACCAGAGAAATACCAATGC
mBaat NM_007519.3 AGTGTTGTCAGAGCCTTGGTT CACCAAAACAGTAGTTTTACAGCA
mBcrp NM_011920.3 AAATGGAGCACCTCAACCTG CCCATCACAACGTCATCTTG
mCar NM_001243063.1 TCAACACGTTTATGGTGCAA CTGCGTCCTCCATCTTGTAG
mCK19 NM_008471.3 GGACCCTCCCGAGATTACAAC AGGCGTGTTCTGTCTCAAACT
mCxcll6 NM_023158.6 TTCTTGTTGGCGCTGCTGAC TGCGCTCAAAACAGTCCACTAG
mCyclophilin” NM_011149.2 GGAGATGGCACAGGAGGAA GCCCGTAGTGCTTCAGCTT
mCyplal NM _001136059.2 GGAGACCTTCCGGCATTCA GCCATTCAGACTTGTATCTCTTGTG
mCypla2 NM_009993.3 GAGAGATACAATTCTTTCCCCATTT TTATGGGGTGAACATGATAGACACT
mCyp2el NM_021282.2 CTTGGAAAAGCCAAGGAACACC TCCTGCAAAGAACAGGTCGG
mCyp27al NM_024264.4 CTGCGTCAGGCTTTGAAACA TCGTTTAAGGCATCCGTGTAGA
mCyp3all NM_007818.3 AGAACTTCTCCTTCCAGCCTTGT GAGGGAGACTCATGCTCCAGTTA
mCyp7bl NM_007825.4 CTTGGTCTGCCTGGAAAGCA AAAGGAGACGGCAGAATCGG
mFxr NM_001163700.1 CGGAACAGAAACCTTGTTTCG TTGCCACATAAATATTCATTGAGATT
mGsta3-3 NM_001077353.1 CCCAAGCAACTGCTGCCAT CCACCGGATAGGCTCCATTC
mGsta4-4 NM _010357.3 AGAGGCTTTTCTCGTTGGCA AAGCACGCTGCACTAGAACT
mHnf-4a NM_008261.2 CCAAGAGGTCCATGGTGTTTAAG GTGCCGAGGGACGATGTAGT
mlbabp* NM_008375.2 CAAGGCTACCGTGAAGATGGA CCCACGACCTCCGAAGTCT
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mLrh-1 NM _001159769.2 CCCTGCTGGACTACACGGTTT CGGGTAGCCGAAGAAGTAGCT
mLxra NM_001177730.1 GGATAGGGTTGGAGTCAGCA GGAGCGCCTGTTACACTGTT
mMdrla NM_011076.2 ATGGTGTTTAATCCAAGTCAAAAGGA CAAAGCCTCTGAAGACTCTAAACC
mMrpl© NM_008576.3 AGGTCGTACGGGAGCTGGGAAATCAT CCAGGGCCATCCAGACTTCTTCATCA
mMrp2 NM _013806.2 GCTTCCCATGGTGATCTCTT CTTGGATTGTGGCTTCCAAG
mMrp3 NM_029600.3 TATGGGATGGCCAAGGATGC GGCCATCGAGTCCATCTGAC
mMrp4 NM_001163676.1 CACACCGAGGTGAAACCCAA AGTCTCCGCTTATGACCAGTTTT
mOatl* NM_008766.3 ATCAACTGCATGACACTAAACATGG ACATAGCCAATCAAGGTGCCC
mOat3° NM_031194.5 ATCCAGCTCCAACCACCAGTTTT TGCTTCCAACACGGTCCAGAA
mQatplal NM_013797.5 TGAGAAAGACAGCAGTAGGACT AAGAATCTGCCTTCTTGTGTTGC
mQatpla4 NM_030687.1 GGCTCCTTCATGTGTGGACTT TCGCCACCTTGAAGATTCCTTT
mQatp2bl NM 001252531.1 GCTGCTTTCAATGAGGTAGGGAA CGATCATCCGGGGTCTGTG
mOst-o. NM_145932.3 TTGGAAGGAAGGGTTGGGTAG GGTCCCTTCCACCTCTTTCAG
mOst-f NM_178933.2 CAATCAGGAGCAGAAACATGGAC GAATAATTCCAAGGAGCCGCATC
mPepTI¢ NM_053079.2 CCACAATGGGGATGTCCAAGTCT CATTGACCACGATGAAGAAGATGC
mPepT2° NM 021301.3 ATGAGTCCAAGGAAACGCTCTT AGAGCTTCGGAGTTGACTTCTTT
mPxr NM_010936.3 GCCGATGTGTCAACCTACAT CTCAGGATGCACATCTCAAA
mShp NM_011850.2 CAGCGCTGCCTGGAGTCT AGGATCGTGCCCTTCAGGTA
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mSultlal NM_133670.1 TCCCCCCAGGTCTTGAAACT TAAGGACAAGGGCAGATGTGTCT
mTgr5 NM_174985.1 GCGATGTACCCTCAACCCTG CGCTCATAGGCCAAGACTGA
mTgf-p1 NM_011577.2 GTCACTGGAGTTGTACGGCA GGGCTGATCCCGTTGATTTC
mUgtlal NM_201645.2 GGCTGTTAGTGTTCCCTATGGATG GATTAAAGGCAGTCCGTCCAAGT
mVdr* NM_009504.4 GAGGTGTCTGAAGCCTGGAG ACCTGCTTTCCTGGGTAGGT
mVegf-a NM_001025257.3 CCACGTCAGAGAGCAACATC TTGTTCTGTCTTTCTTTGGTCTGC
mVegf-c NM_009506.2 TGCACTTGCTGTGCTTCTTGT TCTTTGCCTTCAAAAGCCTTGAC
mVillin® NM_009509.2 TCCTGGCTATCCACAAGACC CTCTCGTTGCCTTGAACCTC

h, human; m, mouse;
* denotes that primer set is for Taqgman probe detection;

® denotes that the gene cross-react between human and mouse;
¢ denotes primers that were not tested for specificity for human and mouse
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Supplemental Figure 1. In kidney, mRNA expression of mouse nuclear receptors,
transporters, and enzymes in FRGN, mFRGN, and hFRGN mice (n=4-8). In mFRGN kidneys,
renal gene expression was generally similar to those of FRGN kidneys, except the slightly higher
expression in Lxra, Pxr, Oaptlal, Oatpla4, Ost-B, Oatl, and Oat3 and lower expression of Sultlal.
Renal mRNA expression levels of Car, Pxr, Osta, Ostp, Oat3, Mrp2, Mrp3, and Mrp4 and Gsta4-4 in
hFRGN kidneys were, however, significantly higher compared to those of FRGN kidneys; Oaptla4
expression was slightly higher whereas Fxr, Lxra, Vdr, Oaptlal, Oatl, PepT2, and Cyp2el
expression was lower. * P<0.05 denotes comparison between FRGN and mFRGN kidneys using 2-
tailed Student’s #-test. # P<0.05 denotes comparison between FRGN and hFRGN kidneys using 2-
tailed Student’s #-test. 7
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Supplementary Figure 2. In brain, mRNA expression of mouse nuclear receptors,
transporters, and enzymes in FRGN, mFRGN, and hFRGN mice (n=4-8). In mFRGN brains,
mRNA expression of Cypla2, Cyp2el, Cyp3all, Gsta3-3, and Ugtlal were significantly lower
compared to those of FRGN brains, although those for Oatpla4 and Mdrla expression were higher.
In hFRGN brains, mRNA expression of Cypla2, Cyp2el, and Cyp3all were significantly lower
compared to those of FRGN brains. *, P<(0.05 between FRGN and mFRGN brains and #, P<0.05

between FRGN and hFRGN brains, using the 2-tailed Student’s #-test.



