






Fig. 6. In intestine, mRNA expression of mouse nuclear receptors, transporters, and enzymes in FRGN, mFRGN, and hFRGN mice (n = 4–8). Higher
levels of Car and Pxr in hFRGN intestine were observed. Higher levels of Mdr1a, Mrp4, Gsta4-4, Sult1a1, and Ugt1a1 were present in most intestinal
segments of hFRGN intestine, although higher Gsta4-4 and Sult1a1 expression, though lower Mrp3 and ileal Bcrp, was observed in mFRGN intestine
(mechanism unknown); other changes between FRGN and mFRGNwere minor. *P, 0.05 denotes comparison between FRGN and mFRGN intestine of
same segment; #P , 0.05 denotes comparison between FRGN and hFRGN intestine of same segment; aP , 0.05, between FRGN duodenum and FRGN
jejunum or ileum, using two-tailed Student’s t test.
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these deficiencies have been previously overlooked and not
properly addressed.
Dysregulated liver regeneration and deformity in hFRGN

livers were evidenced by the miscommunication between
human hepatocytes and murine stellate cells, leading to
substantial hepatocyte proliferation, reduced intracellular
spaces (Chow et al., 2016), and inhibited cholangiocyte
growth. The signaling in hepatocytes and nonparenchymal
cells between TGFBR2/TGF-b plays a critical role in liver
regeneration (Yoshizato et al., 2012). Studies with cultured
hepatocytes have shown that TGF-b1 and TGFBR2 are anti-
mitogenic for hepatocytes. Under normal resting (physiologic)
condition, hepatocytes express TGFBR2, whereas nonparenchy-
mal cells express low levels of TGF-b1.When the liver is injured,
TGFBR2 expression in hepatocytes is reduced to initiate
proliferation. Once an adequate number of hepatocytes is

produced, the stellate cells surround the hepatocytes and
produce TGF-b, which signals to hepatocytes to terminate
proliferation and negatively inhibit TGF-b1 expression
(Yoshizato et al., 2012). Our results showed that hFRGN
livers consisted of remarkably lower TGFBR2 expression,
but an unchanged murine Tgf-b1 expression compared to
that for FRGN livers (Fig. 3). Histopathologic images from
current (Fig. 1A) and previous studies (Chow et al., 2016)
support the evidence of unchecked hepatocyte proliferation
and densely populated liver (Fig. 1A). Invasive hepatocyte
proliferation and inhibited cholangiocyte growth (Fig. 3B)
resulted in reduced bile flow (Chow et al., 2016) and cholehe-
patic shunting and increased hepatic bile acid accumulation
and toxicity (Tables 4 and 5). The densely populated hFRGN
livers may further lead to ischemia within the acinus, a
condition that leads to inhibition of FXR (Cheng et al., 2013).

Fig. 7. Schematics depicting the interaction between
(A) the murine intestine and murine liver and bile acids
(denoted as BA), and (B) the murine intestine and
humanized liver. (A) Normally, there are two major
pathways for Cyp7a1 regulation: 1) in liver, by the Fxr-
Shp-Lrh-1 or Hnf-4a cascade and 2) in murine intes-
tine by Fgf15, secreted by the ileum and under Fxr
stimulation, to react with Fgfr4 in liver to repress
Cyp7a1. (B) Owing to the over-production of murine bile
acids by the hFRGN liver, the conjugated MCAs that
are strong FXR antagonists, inhibited liver FXR,
whereas strong FXR ligands stimulated intestinal Fxr
targets: murine Shp, Fgf15, Ibabp, and Osta. However,
miscommunication between the murine intestinal
Fgf15 and human FGFR4 and inhibition of the liver
FXR-SHP cascade failed to repress CYP7A1 expression.
Consequently, CYP7A1 expression levels remained
elevated for the synthesis of bile acids, and high BAs
prevailed in this vicious circle. Note that blue lines
represent stimulation, whereas red line represents
inhibition. Solid line denotes activation/increased path-
way, whereas dotted lines denote the absence/decrease
of the pathway.
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The inability of humanized mouse livers to regulate
CYP7A1 expression led to high bile acid levels and toxicity.
Normally, Cyp7a1/CYP7A1 in liver is under Fxr/FXR and
Fgf15/FGF19 control (Fig. 7A). At high bile acid levels, Fxr/
FXR in the intestine activates intestinal Fgf15/FGF19, which
forges an interaction with Fgfr4/FGFR4 to repress Cyp7a1/
CYP7A1 (Inagaki et al., 2005). In liver, the FXR-SHP-LRH-1
or FXR-SHP-HNF-4a cascade negatively controls CYP7A1
(Goodwin and Kliewer, 2002). hFRGN mice displayed higher
levels of CDCA, DCA, and CA and their conjugates (Fig. 3B),
which are strong FXR/Fxr ligands (Makishima et al., 2002),
leading to intestinal Fxr activation and intestinal Fgf15
induction (Fig. 5A). However, hFRGN livers exhibited high
CYP7A1 expression (Fig. 4A), suggesting that the signaling
pathway associated with Fgf15 appeared to be nonfunctional,
as shown by the unchanged ratio of pERK/total ERK (Fig. 5B),
suggestive of human hepatocytes and murine intestine mis-
communication. Additionally, SHP levels in hFRGN livers
(Fig. 3A) were lower, suggesting that high bile acid concen-
tration (Table 5) failed to activate hepatic human FXR to
suppress CYP7A1 in hFRGN livers. A plausible explanation
attributes this to the bile acid composition changes in hFRGN
livers: absence of CDCA and high levels of tb-MCA (29-fold)
and ta-MCA (42-fold) (Table 5), which are FXR antagonists
(Sayin et al., 2013). These differential abundances in tMCA
and CDCA appear to be the driving forces for decreased
hepatic FXR activation in hFRGN livers. High bile acid levels
could also induce toxicity by activating nuclear factor-kappa B
(NF-kB), which is associated with higher interleukin-6 and
COX-2 expression toward enhanced growth and apoptosis
resistance in cholangiocarcinoma cells; the release of cyto-
kines can also cause biliary damage (Liu et al., 2014).
High bile acid concentrations in hFRGN bile (Table 5) may

lead to gallbladder filling in hFRGN mice (Fig. 1A), in events
that are related to bile acid-mediated activation of Tgr5,
the transmembrane G-protein-coupled receptor expressed in
cholangiocytes and gallbladder epithelial cells (Li et al., 2011;
Keitel and Haussinger, 2013; Duboc et al., 2014). Activation of
the Tgr5 in gallbladder smooth muscle cells by bile acids,
especially lithocholic and deoxycholic acids and their tauro-
conjugates, would result in smooth muscle cell relaxation,
gallbladder filling, and gallbladder stasis (Lavoie et al., 2010;
Jones et al., 2015).
Even though high bile acid levels in hFRGN mice were ob-

served, plasma cholesterol level, which is maintained by the
low-density lipoproteins (LDL) and high-density lipoproteins
(HDL), remained unchanged, whereas liver cholesterol was
increased (Table 4). The exact mechanism for these changes
is currently unknown. Ellis et al. (2013) reported that LDL,
VLDL, and HDL fractions were shifted in chimeric mice,
suggesting possible differences of lipid formation and uptake
mechanism. Although murine/human 3-hydroxy-3-methyl-
glutaryl-CoA reductase (HMG CoA reductase; which synthe-
sizes cholesterol) levels (Fig. 3A) in hFRGN livers were similar
to those in human livers, cholesterol synthesis rates between
human and mouse may be different. Certainly, studies are
needed to evaluate the upstream pathways of cholesterol
synthesis in chimeric livers.
The recent TK-NOG chimeric model may be a better option

than hFRGN mice for control of the level of humanization
in the mouse liver (Kim et al., 2014). However, the same
disrupted signaling between the murine intestine and human

hepatocytes and mouse nonparenchymal cells in TK-NOG
mouse would also exist. To alleviate elevated bile acids levels,
Naugler et al. (2015) suggest that human bile acid production
can be controlled by administration of exogenous FGF19
in chimeric mice. However, the dose and dosing regimen of
FGF19 administration and the associated effects on drug me-
tabolism and transport are unknown. In addition, the disrupted
signaling of human hepatocyte proliferation in themouse liver
requires implantation of human Kupffer cells in mouse liver
(Wilson et al., 2014) or exogenous administration of human
TGF-b. Certainly, TGF-b and FGF19 are some of the impor-
tant signaling mechanisms worth investigation for the opti-
mization of humanized mouse liver models.
The distension of the gallbladder, the unchecked hepatocyte

proliferation and liver deformity, and miscommunication be-
tween liver cell types in the humanized liver and between the
mouse intestine and humanized liver, as well as the lack of
negative feedback control of the FXR-SHP cascade on bile acid
homeostasis (Fig. 7B) would bring about liver toxicity and
model instability. These problems will exist not only in the
hFRGN mice, but also in other chimeric (humanized) mice
such as the PXB and TK-NOG chimeric mice. The dysregula-
tion of bile acid production in h-chimeric mice and physiologic
changes that accompany the accumulation of highly toxic bile
acids will further contribute to changes in expression of
transporter and enzyme in extrahepatic tissues (Fig. 6 and
Supplemental Figs. 1 and 2), which would constitute another
important consideration in pharmacokinetics and drug
disposition studies. Activation of other nuclear receptors,
Pxr and Car, owing to elevated bile acids, LCA, and the
metabolite 3-keto-5b-cholanic acid (Goodwin and Kliewer,
2002) may result in changes in transporters and enzymes.
Bile acids, especially the tMCAs and elevated bilirubin levels
in hFRGN livers will further contribute to varying extent of
Fxr and Car induction in extrahepatic tissues (Huang et al.,
2003; Chen et al., 2011). These translate to induction of
targeted transporters and enzymes such as Mrp2, Mrp3,
Mrp4 and Mdr1a, Gst4-4, Sult1a1, and Ugt1a1 (Huang
et al., 2003; Zollner et al., 2006; Zollner and Trauner, 2009;
Wagner et al., 2011) in hFRGN intestine, kidney or brain
(Figs. 6 and Supplemental Figs. 1 and 2) and drug
dispositional changes. To conclude, instability of the hFRGN
liver and extrahepatic tissue with respect to nuclear receptor
activation by the dramatic production of differential human
(CDCA and CA) and murine (tMCAs) bile acids, both FXR
agonists and antagonists, followed by stimulation of the
murine intestine and miscommunication among liver cell
types and between intestine and humanized liver will induce
toxicity and instability issues in this preparation for human
drug metabolism studies.
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Supplementary Table 1.      Mouse and human primer sequences for qPCR 

 Gene Bank Number Forward (5’→ 3’ Sequence) Reverse (5’→ 3’ Sequence) 
hABCA1 NM_005502.3 CACCCTATGAACAACATGAATGCCA CAGGAGTCGGGTAACGGAAA 

hABCG5 NM_022436.2 TGGACGCTGGGCTTACATC GCCAAGAGAGCAGCAGAAAAAT 

hABCG8 NM_022437.2 AGCAGCTGGGTCTAAGAGAG CTGGAGGCCCGAGGTATC 

hAlbumin NM_000477.5 AGGGGTGTGTTTCGTCGAG AAAGGCAATCAACACCAAGGCT 

hBCRP NM_004827.2 GCATCCTGAGATCCTGAGCC TCTGGAGAGTTTTTATCTTTTCAGC 

hβ-KLOTHO NM_175737.3 CTCAGTCTCCCAGTTCAAGCTAA CCCCGTTGGACATTGTATTCCTA 

hBSEP NM_003742.2 AAAACCGAGGTTGGAAAAGGTT CCAACGACCCTGTGAATATGAA 

hCAR NM_005122.4 CTTCTCTCCTGACCGACCTG TCGCATACAGAAACCGATCC 

hCYP1A1 NM_000499.3 CTACACTGATCATGCTTTTCCCAATC GCCCTGATTACCCAGAATACCAGA 

hCYP2B6 NM_000767.4 CCGGGGATATGGTGTGATCTT AGTGGTCACAGAGAATCGCC 

hCYP2C9a NM_000771.3 Hs04260376_m1 (Cat. # 4331182)  

hCYP2C19 NM_000769.1 TCAGGATTGTAAGCACCCCC CCCGGGAAATAATCAATGATAGTG 

hCYP2D6 NM_001025161.2 GCTTCGACCAGTTGCGGC AGCCCATTGAGCACGACC 

hCYP2E1 NM_000773.3 CTGTGTCATTCCCCGCTCAT TGAGAAATCCTGACCTCAAACA 
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hCYP27A1 NM_000784.3 GAGGACCTATCCCGGTGTGG CTTGGTCTGAACTCTGGGCG  

hCYP3A4 NM_017460.5 CATTCCTCATCCCAATTCTTGAAGT CCACTCGGTGCTTTTGTGTATCT 

hCYP7A1 NM_000780.3 GAATGCTGGTCAAAAAGTC TGAAATCCTCCTTAGCTGT 

hCYP7B1 NM_004820.4 GGGAGACCACGGTGACATTC TACTTTCCACCAAGAAGAACTGTG  

hCYP8B1 NM_004391.2 GTGCCAGCTACTCCTTCCTG AGTTCGGAGGCCATTTCTGG  

hFGF19 NM_005117.2 TCCCTGAGCAGTGCCAAAC GGAAATGAGAGAGTGGAAGAAAGC 

hFGFR4 NM_022963.2 TCAAGATGCTCAAAGACAACGC CCACGATCACGTACAGGGG 

hFXR NM_001206993.1 TGGGGAACTGAAAATGACTC ACAGGCAAAGTGTTGAGGAT 

hGAPDH NM_002046.4 GAAGGTGAAGGTCGGAGTC GAAGATGGTGATGGGATTTC 

hGSTA4-4 NM_001512.3 AAGAATGGGCAGGATCTCTTGTT AAAATTAGGCAGAGACTGGAGGG 

hHMG CoA Reductase NM_000859.2 CTCCGAGCGTGCGTAAGG CCTTGGATCCTCCAGATCTCACTA 

hHNF-1α NM_000545.5 CCTGTCCCAACACCTCAACAA TTGAAACGGTTCCTCCGC 

hHNF-4α NM_001258355.1 AAGAGGAACCAGTGCCGCTA CGCATTGATGGAGGGCAG 

hLRH-1 NM_001276464.1 TACCGACAAGTGGTACATGGA CGGCTTGTGATGCTATTATGGA 

hLXRα NM_001251935.1 GACCGACTGATGTTCCCACG CCATCCGGCCAAGAAAACAG 

hMDR1 NM_000927.4 TGCTCAGACAGGATGTGAGTTG AATTACAGCAAGCCTGGAACC 

hMRP2 NM_000392.3 CAAACTCTATCTTGCTAAGCAGG TGAGTACAAGGGCCAGCTCTA 

hMRP3 NM_003786.3 CTTAAGACTTCCCCTCAACATGC GGTCAAGTTCCTCTTGGCTC 
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hMRP4 NM_005845.3 AATGTGACCGTCCATCCTCC AGGTTTGGCCTTCTTGGGA 

hNTCP NM_003049.3 GGATGCCAAAATGTCCAACT TGAGGTGCCATTTCCCAGA 

hOATP1B3 NM_019844.3 GGGTGAATGCCCAAGAGATA ATTGACTGGAAACCCATTGC 

 hOATP2B1 NM_001145211.2 TGATTGGCTATGGGGCTATC CATATCCTCAGGGCTGGTGT 

 hOATP1B1 NM_006446.4 GCCCAAGAGATGATGCTTGT ATTGAGTGGAAACCCAGTGC 

hOST-α NM_152672.5 TGTTGGGCCCTTTCCAATAC GGCTCCCATGTTCTGCTCAC 

hOST-β NM_178859.3 CAGGCAAGCAGAAAAGAAAAG CCGGAAGGAAAACTGACA 

hPPARγ NM_138711.3 AAGACCACTCCCACTCCTTTG TTTGATTGCACTTTGGTACTCTTGA 

hPXR NM_022002.2 CAAGCGGAAGAAAAGTGAACG CACAGATCTTTCCGGACCTG 

hSHP NM_021969.2 GGCTTCAATGCTGTCTGGAGT CCCTTTCAGGCAGGCATATT 

hSULT1A1 NM_177530.2 AACCCTATGACCAACTACACCA CACAGCTCAGAGCGGAAG  

hSULT1A2 NM_177528.2 CATGGCCAAAGTGTACCCTCA GGACCCATAGGACACTTCTCCA 

hSULT1E1 NM_005420.2 GGTGATGTGGAAAAGTGCAAAGA  GTTCAGGTGGCAAATGAGTCTTC  

hSULT2A1 NM_003167.3 TCGTGATAAGGGATGAAGATGTAATAA TGCATCAGGCAGAGAATCTCA 

hTGFBR2 NM_11024847.2 GTCTGTGTGGCTGTATGGAGA TTGGGGTCATGGCAAACTGT  

hUGT1A1 NM_000463.2 CCCATGCTGGGAAGATACTGTT GCGTCAGGTGCTAGGACAAC 

mβ-actin NM_007393.3 TGGAATCCTGTGGCATCCATGAAAC TAAAACGCAGCTCAGTAACAGTCCG  

mAsbtc(for intestine) NM_011388.2 GATAGATGGCGACATGGACCTC CAATCGTTCCCGAGTCAACC  



JPET#236935 
 

4 
 

mAsbt (for liver) NM_011388.3 TTGCCCTTGGAATGATGCCT GCAACCAGAGAAATACCAATGC  

mBaat NM_007519.3 AGTGTTGTCAGAGCCTTGGTT CACCAAAACAGTAGTTTTACAGCA  

mBcrp NM_011920.3 AAATGGAGCACCTCAACCTG CCCATCACAACGTCATCTTG 

mCar NM_001243063.1 TCAACACGTTTATGGTGCAA CTGCGTCCTCCATCTTGTAG 

mCK19 NM_008471.3 GGACCCTCCCGAGATTACAAC AGGCGTGTTCTGTCTCAAACT  

mCxcl16 NM_023158.6 TTCTTGTTGGCGCTGCTGAC TGCGCTCAAAACAGTCCACTAG  

mCyclophilinb NM_011149.2 GGAGATGGCACAGGAGGAA GCCCGTAGTGCTTCAGCTT 

mCyp1a1 NM_001136059.2 GGAGACCTTCCGGCATTCA GCCATTCAGACTTGTATCTCTTGTG 

mCyp1a2 NM_009993.3 GAGAGATACAATTCTTTCCCCATTT TTATGGGGTGAACATGATAGACACT 

mCyp2e1 NM_021282.2 CTTGGAAAAGCCAAGGAACACC TCCTGCAAAGAACAGGTCGG 

mCyp27a1 NM_024264.4 CTGCGTCAGGCTTTGAAACA TCGTTTAAGGCATCCGTGTAGA  

mCyp3a11 NM_007818.3 AGAACTTCTCCTTCCAGCCTTGT GAGGGAGACTCATGCTCCAGTTA 

mCyp7b1 NM_007825.4 CTTGGTCTGCCTGGAAAGCA AAAGGAGACGGCAGAATCGG  

mFxr NM_001163700.1 CGGAACAGAAACCTTGTTTCG TTGCCACATAAATATTCATTGAGATT 

mGsta3-3 NM_001077353.1 CCCAAGCAACTGCTGCCAT CCACCGGATAGGCTCCATTC 

mGsta4-4 NM_010357.3 AGAGGCTTTTCTCGTTGGCA AAGCACGCTGCACTAGAACT 

mHnf-4α NM_008261.2 CCAAGAGGTCCATGGTGTTTAAG GTGCCGAGGGACGATGTAGT 

mIbabpc NM_008375.2 CAAGGCTACCGTGAAGATGGA CCCACGACCTCCGAAGTCT  
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mLrh-1 NM_001159769.2 CCCTGCTGGACTACACGGTTT CGGGTAGCCGAAGAAGTAGCT 

mLxrα NM_001177730.1 GGATAGGGTTGGAGTCAGCA GGAGCGCCTGTTACACTGTT 

mMdr1a NM_011076.2 ATGGTGTTTAATCCAAGTCAAAAGGA CAAAGCCTCTGAAGACTCTAAACC 

mMrp1c NM_008576.3 AGGTCGTACGGGAGCTGGGAAATCAT CCAGGGCCATCCAGACTTCTTCATCA  

mMrp2 NM_013806.2 GCTTCCCATGGTGATCTCTT CTTGGATTGTGGCTTCCAAG 

mMrp3 NM_029600.3 TATGGGATGGCCAAGGATGC GGCCATCGAGTCCATCTGAC 

mMrp4 NM_001163676.1 CACACCGAGGTGAAACCCAA AGTCTCCGCTTATGACCAGTTTT 

mOat1c NM_008766.3 ATCAACTGCATGACACTAAACATGG ACATAGCCAATCAAGGTGCCC  

mOat3c NM_031194.5 ATCCAGCTCCAACCACCAGTTTT TGCTTCCAACACGGTCCAGAA  

mOatp1a1 NM_013797.5 TGAGAAAGACAGCAGTAGGACT AAGAATCTGCCTTCTTGTGTTGC 

mOatp1a4 NM_030687.1 GGCTCCTTCATGTGTGGACTT TCGCCACCTTGAAGATTCCTTT 

mOatp2b1 NM_001252531.1 GCTGCTTTCAATGAGGTAGGGAA CGATCATCCGGGGTCTGTG 

mOst-α NM_145932.3 TTGGAAGGAAGGGTTGGGTAG GGTCCCTTCCACCTCTTTCAG 

mOst-β NM_178933.2 CAATCAGGAGCAGAAACATGGAC GAATAATTCCAAGGAGCCGCATC  

mPepT1c NM_053079.2 CCACAATGGGGATGTCCAAGTCT CATTGACCACGATGAAGAAGATGC  

mPepT2c NM_021301.3 ATGAGTCCAAGGAAACGCTCTT AGAGCTTCGGAGTTGACTTCTTT  

mPxr NM_010936.3 GCCGATGTGTCAACCTACAT CTCAGGATGCACATCTCAAA 

mShp NM_011850.2 CAGCGCTGCCTGGAGTCT AGGATCGTGCCCTTCAGGTA 
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mSult1a1 NM_133670.1 TCCCCCCAGGTCTTGAAACT  TAAGGACAAGGGCAGATGTGTCT 

mTgr5 NM_174985.1 GCGATGTACCCTCAACCCTG CGCTCATAGGCCAAGACTGA  

mTgf-β1 NM_011577.2 GTCACTGGAGTTGTACGGCA GGGCTGATCCCGTTGATTTC  

mUgt1a1 NM_201645.2 GGCTGTTAGTGTTCCCTATGGATG GATTAAAGGCAGTCCGTCCAAGT 

mVdrc NM_009504.4 GAGGTGTCTGAAGCCTGGAG ACCTGCTTTCCTGGGTAGGT  

mVegf-a NM_001025257.3 CCACGTCAGAGAGCAACATC TTGTTCTGTCTTTCTTTGGTCTGC  

mVegf-c NM_009506.2 TGCACTTGCTGTGCTTCTTGT TCTTTGCCTTCAAAAGCCTTGAC  

mVillinc NM_009509.2 TCCTGGCTATCCACAAGACC CTCTCGTTGCCTTGAACCTC  
h, human; m, mouse;   
a denotes that primer set is for Taqman probe detection;    
b denotes that the gene cross-react between human and mouse;  
c denotes primers that were not tested for specificity for human and mouse
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Supplemental Figure 1.  In kidney, mRNA expression of mouse nuclear receptors, 
transporters, and enzymes in FRGN, mFRGN, and hFRGN mice (n=4-8).  In mFRGN kidneys, 
renal gene expression was generally similar to those of FRGN kidneys, except the slightly higher 
expression in Lxrα, Pxr, Oapt1a1, Oatp1a4, Ost-β, Oat1, and Oat3 and lower expression of Sult1a1. 
Renal mRNA expression levels of Car, Pxr, Ostα, Ostβ, Oat3, Mrp2, Mrp3, and Mrp4 and Gsta4-4 in 
hFRGN kidneys were, however, significantly higher compared to those of FRGN kidneys; Oapt1a4 
expression was slightly higher whereas Fxr, Lxrα, Vdr, Oapt1a1, Oat1, PepT2, and Cyp2e1 
expression was lower. *  P<0.05 denotes comparison between  FRGN and mFRGN kidneys using 2-
tailed Student’s t-test.  #  P<0.05 denotes comparison between  FRGN and hFRGN kidneys using 2-
tailed Student’s t-test. 
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Supplementary Figure 2.   In brain, mRNA expression of mouse nuclear receptors, 
transporters, and enzymes in FRGN, mFRGN, and hFRGN mice (n=4-8). In mFRGN brains, 
mRNA expression of Cyp1a2, Cyp2e1, Cyp3a11, Gsta3-3, and Ugt1a1 were significantly lower 
compared to those of FRGN brains, although those for Oatp1a4 and Mdr1a expression were higher. 
In hFRGN brains, mRNA expression of Cyp1a2, Cyp2e1, and Cyp3a11 were significantly lower 
compared to those of FRGN brains. *, P<0.05 between FRGN and mFRGN brains and #, P<0.05 
between FRGN and hFRGN brains, using the 2-tailed Student’s t-test. 


