Protection from Cigarette Smoke–Induced Lung Dysfunction and Damage by H2 Relaxin (Serelaxin)

Alessandro Pini, Giulia Boccalini, Laura Lucarini, Stefano Catarinicchia, Daniele Guasti, Emanuela Masini, Daniele Bani, and Silvia Nistri

Anatomy and Histology Section and Histology and Embryology Research Unit, Department of Experimental and Clinical Medicine (A.P., G.B., S.C., D.G., D.B., S.N.), and Pharmacology Section, Department NEUROFARBA (L.L., E.M.), University of Florence, Florence, Italy

Received January 19, 2016; accepted April 4, 2016

ABSTRACT

Cigarette smoke (CS) is the major etiologic factor of chronic obstructive pulmonary disease (COPD), which is characterized by airway remodeling, lung inflammation and fibrosis, emphysema, and respiratory failure. The current therapies can improve COPD management but cannot arrest its progression and reduce mortality. Hence, there is a major interest in identifying molecules susceptible of development into new drugs to prevent or reduce CS-induced lung injury. Serelaxin (RLX), or recombinant human relaxin-2, is a promising candidate because of its anti-inflammatory and antifibrotic properties highlighted in lung disease models. Here, we used a guinea pig model of CS-induced lung inflammation, and remodeling reproducing some of the hallmarks of COPD. Animals exposed chronically to CS (8 weeks) were treated with vehicle or RLX, delivered by osmotic pumps (1 or 10 μg/day) or aerosol (10 μg/ml/day) during CS treatment. Controls were nonsmoking animals. RLX maintained airway compliance to a control-like pattern, likely because of its capability to counteract lung inflammation and bronchial remodeling. In fact, treatment of CS-exposed animals with RLX reduced the inflammatory recruitment of leukocytes, accompanied by a significant reduction of the release of proinflammatory cytokines (tumor necrosis factor α and interleukin-1β). Moreover, RLX was able to counteract the adverse bronchial remodeling and emphysema induced by CS exposure by reducing goblet cell hyperplasia, smooth muscle thickening, and fibrosis. Of note, RLX delivered by aerosol has shown a comparable efficacy to systemic administration in reducing CS-induced lung dysfunction and damage. In conclusion, RLX emerges as a new molecule to counteract CS-induced inflammatory lung diseases.

Introduction

Cigarette smoke (CS) contains thousands of noxious substances in the gas and particulate phase including carcinogens and toxic agents that come in contact with bronchi and alveoli and cause several pulmonary diseases, ranging from inflammatory disorders to tumors. In particular, CS is considered the major etiologic factor of chronic obstructive pulmonary disease (COPD) (Tuder and Petrache, 2012), which affects 15%–20% of smokers (Chung and Adcock, 2008). COPD is characterized by persistent, progressive, and not fully reversible airflow limitation associated with an increased chronic inflammatory response, mast cell activation (Mortaz et al., 2011), mucus gland hyperplasia, and hypersecretion accompanied by structural changes to the airways and lungs [see Global Strategy for Diagnosis Management and Prevention of COPD, Global Initiative for Chronic Obstructive Lung Disease (http://goldcopd.org)]. These structural changes typically include increase in smooth muscle mass of small and medium airways, emphysema, and fibrosis (Chmiel et al., 2002), which lead to progressive deterioration of lung function (Paz and Shoenfeld, 2010). The noxious substances in CS induce lung epithelial tissue damage by a mechanism involving the generation of a highly inflammatory environment (Rahman and Adcock, 2006; Rahman and Kinnula, 2012). Several studies have reported that CS causes the production by inflammatory cells of elevated levels of cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-8 (Glossop et al., 2006; Churg et al., 2009). These mediators, acting as chemo-attractants, recruit further neutrophils, macrophages, and dendritic cells, which in turn exacerbate the inflammatory process and initiate fibrosis. The current therapies, which are primarily based on anti-inflammatory drugs, have improved the management of this disease but cannot prevent its progression toward lung fibrosis and substantially reduce mortality. Hence, there is a major interest in the identification of molecules susceptible to development into new drugs that can prevent or reduce inflammatory lung injury (Barnes, 2008). In this context, serelaxin (RLX), the recombinant molecule corresponding to the human hormone relaxin-2 (Hossain and Wade, 2014), emerges as a feasible candidate.

This work was supported by institutional funds from the University of Florence issued to A.P., D.B., and S.N.

dx.doi.org/10.1124/jpet.116.232215

ABBREVIATIONS: CO, carbon monoxide; COPD, chronic obstructive pulmonary disease; CS, cigarette smoke; IL, interleukin; MPO, myeloperoxidase; PAO, pressure at the airway opening; PBS, phosphate-buffered saline; RLX, serelaxin (recombinant human H2 relaxin); TNF, tumor necrosis factor.
RLX, best known for its effects on reproduction (Sherwood, 2004), also exhibits anti-inflammatory and antifibrotic properties (Masini et al., 2004; Samuel et al., 2007; Bonacchi et al., 2009). In a setting of allergic airway disease, RLX has been shown to inhibit infiltration of proinflammatory cells into the lung and reverse airway remodeling (Bani et al., 1997; Royce et al., 2009, 2014), promote dilation of alveolar blood capillaries, and reduce the thickness of the air–blood barrier (Bani et al., 1997). In an in vivo model of fibrosis, RLX treatment markedly decreased bleomycin-induced lung fibrosis and improved alveolar thickening (Unemori et al., 1996). Consistently, RLX-deficient mice have been shown to undergo an age-related progression of lung fibrosis that is reversed by treatment with exogenous RLX (Samuel et al., 2003). The aim of this study is to evaluate the potential protective action of RLX in an in vivo guinea pig model of lung inflammation and remodeling induced by chronic exposure to CS, reproducing some of the hallmarks of COPD.

Materials and Methods

Reagents. RLX was kindly provided by the RRCA Relaxin Foundation (Florence, Italy). Kentucky Reference Cigarettes 3R4F, each containing 11 mg of total particulate matter, 9.4 mg of tar, and 0.73 mg of nicotine, were obtained from the Kentucky Tobacco Research Council (Lexington, KY). Unless otherwise specified, the other reagents used for the experiments were obtained from Sigma-Aldrich (Milan, Italy).

Exposure of Guinea Pigs to CS. Male Hartley albino guinea pigs weighing 300–350 g were used for the experiments (Harlan, Correzzana, Italy). Animal handling and use complied with the European Community Guidelines for Animal Care (2010/63/EU. http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32010L0063) and were approved by the Committee for Animal Care and Experimental Use at the University of Florence. The animals were housed on a 12-hour light/dark cycle at 22°C room temperature and had free access to food and water. The experiments were designed to minimize pain and the number of animals used. Sacrifice was carried out by decapitation. The animals were divided into the following experimental groups (n = 6/group):

- Group 1: Control untreated animals;
- Group 2: Animals exposed daily to CS for 8 weeks;
- Group 3: Animals exposed daily to CS for 8 weeks and treated with RLX given by continuous s.c. infusion using osmotic minipumps (Alzet, DURECT Corporation, Cupertino, CA)—the pumps were implanted 1 day before starting the exposure to CS on the back under anesthesia (i.p. injection of ketamine hydrochloride, 100 mg/kg b.w. and xylazine, 15 mg/kg b.w.) and filled to deliver a daily dose of 1 µg for the whole duration of CS exposure;
- Group 4: Animals exposed to CS and treated with RLX given as previously described by minipumps that delivered a daily RLX dose of 10 µg for the whole duration of CS exposure; and
- Group 5: Animals exposed to CS and treated with RLX (10 µg/ml) administered by aerosol (1 ml) for 10 minutes/day before CS exposure.

The animals were subjected to CS exposure in a smoke chamber, according to Das et al. (2012) with minor modifications. The smoke chamber (2.5 l) was similar to a vacuum desiccator equipped with an open tube for cigarette positioning at one end and a vacuum-connected tube and stopcock at the opposite end. To each group of CS-exposed animals, five 3R4F reference cigarettes were administered daily. Each cigarette was fitted on the inlet tube and lit, and then a puff of CS was introduced into the chamber containing the animals by applying a mild suction of 4 cm water for 20 seconds. The guinea pigs were exposed to the accumulated smoke for a further 40 seconds, for a total duration of CS exposure of 60 seconds. After a pause of 60 seconds, during which time the chamber was opened and ventilated with fresh air, a second puff was administered with the same procedure. The gap between each of the five cigarettes/day was 1 hour. At the end of the treatment, the animals were anesthetized by i.p. injection of ketamine hydrochloride (100 mg/kg b.w.) and xylazine (15 mg/kg b.w.), and blood and tissue samples were collected and processed for functional, morphologic, and biochemical analyses, as detailed subsequently.

Functional Study and Tissue Sampling. At the end of the treatment period, the animals were subjected to measurement of airway resistance to inflation, a functional parameter related to fibrosis-induced lung stiffness, by using a constant-volume mechanical ventilation method (Masini et al., 2005). Briefly, upon anesthesia, the guinea pigs were operated on to insert a cannula into the trachea and then ventilated with a small-animal respirator (Ugo Basile, Comerio, Italy), adjusted to deliver a tidal volume of 9 ml at a rate of 40 strokes/minute. Changes in lung resistance to inflation [pressure at the airway opening (PAO)] were registered by a high-sensitivity pressure transducer (P75 type 379; Harvard Apparatus Inc., Holliston, MA) connected to a polygraph (Harvard Apparatus Inc.; settings: gain 1, chart speed 25 mm/s). Inflation pressure was measured for at least 3 minutes. In each animal, PAO measurements (expressed in millimeters on the chart) were carried out on at least 40 consecutive tracings of respiratory strokes and then averaged.

After PAO measurements, the animals were subjected to blood sampling by left ventricular puncture and killed by decapitation. After sacrifice, the chest was opened and the lungs were quickly excised and cut into fragments; some fragments were processed for light and electron microscopy, others were weighed and homogenized in cold phosphate-buffered saline (PBS), 0.2 M, pH 6, supplemented with protease inhibitors (1 mM phenylmethylsulfonyl fluoride, 20 µg/ml leupeptin, 1 µg/ml pepstatin, 1 mg/ml Pefabloc SC, 2.5 µg/ml aprotinin; Sigma-Aldrich) in a ratio of 100 µl/10 mg of tissue. The homogenates were centrifuged at 10,000g for 30 minutes at 4°C and the supernatants were collected and stored at −80°C until needed.

Detection of Free Carbon Monoxide in Plasma. Free carbon monoxide (CO) was measured in the plasma of the animals in the different experimental groups as an index of the degree of exposure to CS. The amount of free CO in plasma was measured with a gaseous CO detector (RGA3, Reduction Gas Analyzer, SAES Getters, Milan, Italy) as previously described by Vreman et al. (1984). Measurements were obtained by comparison with a CO standard curve prepared immediately before analysis and expressed as parts per million.

Determination of Serum RLX Levels. RLX was kindly provided by the RRCA Relaxin Foundation (Florence, Italy), adjusted to deliver a tidal volume of 9 ml at a rate of 40 strokes/minute. Changes in lung resistance to inflation [pressure at the airway opening (PAO)] were registered by a high-sensitivity pressure transducer (P75 type 379; Harvard Apparatus Inc., Holliston, MA) connected to a polygraph (Harvard Apparatus Inc.; settings: gain 1, chart speed 25 mm/s). Inflation pressure was measured for at least 3 minutes. In each animal, PAO measurements (expressed in millimeters on the chart) were carried out on at least 40 consecutive tracings of respiratory strokes and then averaged.

Detection of Lung Myeloperoxidase. Lung Myeloperoxidase (MPO) is contained in the granules of neutrophils and monocytes/macrophages and is considered to be a reliable marker for leukocyte accumulation in inflamed tissues (Mullane et al., 1985). MPO immunoreactivity was determined in paraformaldehyde-fixed, paraffin-embedded sections. Antigen retrieval was obtained in sodium citrate buffer (10 mM, pH 6.0, Bio-Optica, Milan, Italy). The sections were treated with 0.3% (v/v) H2O2 in PBS for 20 minutes to block endogenous peroxidase, incubated in 2 mg/ml glycine for 10 minutes, and permeabilized with 0.1% (w/v) Triton X-100 in PBS for 20 minutes.

| TABLE 1 |
| Plasma free CO levels |
| Values are mean ± S.E.M., n = 6. Significance of differences (one-way analysis of variance) ***P < 0.001 versus the other groups. |
Control	CS	CS+RLX
1 µg/Day	10 µg/Day	Aerosol
6.4 ± 0.8****	37.9 ± 3.2	32.1 ± 3.1
37.5 ± 5.8	36.1 ± 4.7	
A specific signal was quenched with 1% bovine serum albumin in PBS for 20 minutes at room temperature. The sections were immunolabeled by incubation in: 1) rabbit polyclonal anti-MPO (AbCam Cambridge, United Kingdom) 1:50 in PBS, 4°C overnight; 2) biotinylated polyclonal goat anti-rabbit antiserum, 1:300 in PBS at room temperature, 2 hours; and 3) ABC Reagent (Vectastain ABC/Elite Kit, Vector Laboratories, Burlingame, CA) for 20 minutes. Immune reaction was revealed using 3% H2O2 as substrate and 3-3′diaminobenzidine as chromogen. Finally, nuclei were counterstained with hematoxylin. Negative controls were carried out by omitting the primary antiserum.

MPO activity was also measured in the supernatant of lung tissue homogenates (100 μl), allowed to react with a solution of tetramethylbenzidine (1.6 mM) and 0.1 mM H2O2. The rate of change in absorbance was measured by a spectrophotometer (Perkin Elmer, Milan, Italy) at 650 nm. MPO activity was defined as the enzyme amount degrading 1 μmol of H2O2/minute at 37°C and was expressed in units/milliliters of supernatant.

Determination of Serum and Lung Tissue Cytokines. The levels of the proinflammatory cytokines TNF-α and IL-1β and of the anti-inflammatory cytokine IL-10 were measured on guinea pig serum and supernatant of lung tissue homogenates using the FlowCytomix assay (Bender Medsystems GmbH, Vienna, Austria), according to the manufacturer’s instructions. Briefly, anti-cytokine Ig-coated beads were incubated with serum or supernatant samples and then with biotin-conjugated secondary antibodies and streptavidin-phycoerythrin. Fluorescence was read with a cytofluorimeter (CyFlow Space, Partec, Carate Brianza, Milan, Italy). Measurements were obtained by comparison with TNF-α, IL-1β, or IL-10 standard curves and expressed as picograms/milliliters.

Evaluation of Lung Tissue Fibrosis. For assessment of lung collagen content, tissue sections from fragments fixed with 4% paraformaldehyde were stained with Picrosirius red in a single session to minimize artifactual differences in collagen staining. Optical density measurements of the deep red-stained collagen fibers were carried out by using the ImageJ 1.33 image analysis program (http://rsb.info.nih.gov/) upon selection of an appropriate threshold to include the stained tissue surface area. Values are reported as arbitrary units, calculated as surface area × optical density × 10⁻⁶ (Pini et al., 2010) and represent the mean ± S.E.M. of the measurements of individual...
animals (at least 20 images each) from the different experimental groups.

Lung tissue fibrosis was also evaluated by hydroxyproline assay. Briefly, the frozen lung tissue was lyophilized for 48 hours and then thoroughly homogenized in distilled water. The samples were gently mixed with 12 M hydrochloric acid and hydrolyzed by autoclaving at 120°C for 40 minutes in sealed polypropylene tubes, 2 ml volume. Chloromine T was added to the hydrolysate and allowed to react for 25 minutes at room temperature. Finally, Ehrlich’s aldehyde reagent was added to the samples, incubated at 65°C for 20 minutes, and the absorbance of the mixture was read spectrophotometrically at 550 nm.

Evaluation of Lung Tissue Remodeling. Morphometry of smooth muscle layer thickness and bronchial goblet cell numbers, both key markers of airway remodeling, were performed on lung tissue sections stained with hematoxylin and eosin or with periodic acid–Schiff staining for mucins, respectively. Digital photomicrographs of medium- and small-sized bronchi were randomly taken. Measurements of the thickness of the bronchial smooth muscle layer were carried out on the digitized images using the ImageJ 1.33 software. Periodic acid–Schiff stained goblet cells and total bronchial epithelial cells were counted on bronchial cross-section profiles, and the percentage of goblet cells was calculated. For both parameters, values are the mean ± S.E.M. of individual animals (20 images each) from the different experimental groups.

The lung tissue sections stained with hematoxylin and eosin were also used to evaluate the cross-section surface area of alveolar air spaces, an index of lung emphysema. Determinations were performed on three randomly chosen microscopical fields per animal viewed with a ×10 objective. At the chosen magnification, each field corresponds to a tissue area of 90,200 μm² that includes about 50–100 air space profiles. Surface area measurements were carried out on digital micrographs using the ImageJ 1.33 image analysis software after selection of an appropriate threshold to include only blank, tissue-free air spaces. Values are the mean ± S.E.M. of alveolar lumenal areas calculated for each experimental group.

Transmission Electron Microscopy. Lung tissue samples taken at sacrifice were fixed in 4% glutaraldehyde and 1% osmium tetroxide and embedded in Epon 812 (Fluka-Sigma-Aldrich, Milan, Italy). Ultrathin sections were stained with uranyl acetate and alkaline bismuth subnitrate and examined under a JEM 1010 electron microscope (Jeol, Tokyo) at 80 kV.

Results

Evaluation of CS Exposure. To check the effectiveness of the animal model, the levels of plasma free CO were measured as an index of exposure to CS. Compared with the controls, the animals in the different experimental groups chronically exposed to CS had significantly elevated CO levels. No differences were detected among the CS-exposed groups, suggesting that all the animals were subjected to the same degree of CS-induced toxicity (Table 1)

Plasma RLX Levels. The circulating levels of RLX evaluated at the end of the experiment were 30 ± 4.4 pg/ml and 1.1 ± 0.1 ng/ml after daily doses of 1 and 10 μg, respectively. The values measured in the aerosol-treated animals were consistently below the detection threshold, as were those of the untreated controls and the CS-exposed animals not given RLX.

Evaluation of Respiratory Dysfunction. CS exposure caused a statistically significant decrease in airway compliance with respect to the CS-exposed animals (Fig. 1).

Evaluation of Airway Inflammation. CS exposure induced substantial airway inflammation. In fact, compared with the controls, CS caused a significant increase in MPO-immunoreactive leukocytes infiltrating the lungs, which was significantly reduced by administration of RLX by osmotic pumps at both doses and by aerosol (Fig. 2A). Accordingly, CS caused a marked elevation of lung MPO activity compared with the controls, which was significantly antagonized by RLX given systemically at both doses or by aerosol (Fig. 2B). CS also induced a significant increase in serum and lung tissue levels of the proinflammatory cytokines TNF-α and IL-1β and decrease in the levels of anti-inflammatory IL-10. These effects of CS were reduced by RLX administered systemically or by aerosol (Fig. 3).

Evaluation of Airway Remodeling and Emphysema. Picrosirius red staining and morphometry, performed to evaluate lung fibrosis, showed a sharp, statistically significant
increase in collagen fibers in the peri-bronchiolar regions of the CS-exposed guinea pigs compared with the controls, while administration of RLX by osmotic pumps at both doses and by aerosol resulted in a significant inhibition of CS-induced fibrosis (Fig. 4A). Accordingly, CS exposure caused a significant increase in lung tissue hydroxyproline content, an index of collagen amount, compared with the controls, whereas RLX with every delivery protocol markedly reduced it (Fig. 4B).

RLX also reduced the histologic changes induced by CS in the bronchiolar wall, which are considered as markers of

Fig. 4. Airway fibrosis. The optical density of Picrosirius red–stained collagen (A) and the levels of lung hydroxyproline (B), a marker of collagen amount, are significantly increased by CS exposure compared with the controls and reduced by administration of RLX by osmotic pumps at both doses and by aerosol. Values are mean ± S.E.M. (one-way analysis of variance test), n = 6. # # # P < 0.001, ## P < 0.01 versus controls. ***P < 0.001, *P < 0.05 versus CS-exposed animals. Magnification ×400. Bar = 50 μm.

Fig. 5. Airway remodeling. The number of positive periodic acid–Schiff (PAS+) goblet cells in the lining epithelium of small- and medium-sized bronchi is significantly increased by CS exposure compared with the controls and reduced by administration of RLX by osmotic pumps at both doses and by aerosol. Values are mean ± S.E.M. (one-way analysis of variance test), n = 6. ###P < 0.001 versus controls. ***P < 0.001, **P < 0.01, versus CS-exposed animals. Magnification ×400. Bar = 50 μm.
remodeling. Namely, the percentage of positive periodic acid–Schiff goblet cells over total bronchial epithelial cells (Fig. 5), as well as the thickness of the airway smooth muscle layer (Fig. 6), were significantly increased in the CS-exposed guinea pigs compared with the controls, while administration of RLX by osmotic pumps at both doses and by aerosol significantly reduced these parameters of airway remodeling (Figs. 5 and 6). Morphometry of the mean cross-section area (± S.E.M.) of the distal alveolar air spaces (Table 2) showed that these appeared enlarged in the CS-exposed guinea pigs compared with the controls, indicating the occurrence of emphysema. This feature was reduced after treatment with RLX at any doses and administration pathways. Due to broad S.E.M. variations and the limited number of guinea pigs per group, these differences did not reach statistical significance.

Lung remodeling was also investigated by transmission electron microscopy (Fig. 7). The control lungs showed normal features of the bronchiolar and alveolar parenchyma and the surrounding stromal components. In particular, bronchioles were mostly lined by ciliated cells and a minority of bronchiolar (or Clara) cells with exocrine features; the epithelial lining was surrounded by a loose lamina propria including bundles of smooth muscle cells. CS caused prominent ultrastructural abnormalities, mainly consisting of reduced size in surface epithelial cells, some of which showed signs of demise, and marked fibrosis of the lamina propria causing disruption of the architecture of the smooth muscle layers; inflammatory cells were often found. Administration of RLX by osmotic pumps at both doses and by aerosol markedly reduced the CS-induced abnormalities of lung bronchioles. In all the CS-exposed experimental groups, the most distal, alveolar/capillary lung components did not show substantial changes compared with the controls (data not shown).

Discussion

In the present study we have exploited a guinea pig model of chronic lung inflammation and remodeling to provide evidence that RLX protects against lung dysfunction and damage induced by chronic exposure to CS. In this model, which reproduces some of the hallmarks of COPD in smokers, the administration of RLX to guinea pigs along with chronic CS exposure prevents the occurrence of lung damage and maintains airway compliance to a control-like pattern. This action of RLX is likely due to its capability of counteracting lung inflammation and bronchial remodeling. In fact, treatment of CS-exposed guinea pigs with RLX reduces the inflammatory recruitment of leukocytes, as judged by the observed decrease in MPO-immunoreactive cells and in lung MPO activity with respect to the CS-exposed animals not given RLX. In keeping with these findings, RLX caused a significant reduction of the proinflammatory cytokines TNFα and IL-1β while it maintained nearly normal levels of the anti-inflammatory cytokine IL-10. Moreover, RLX was able to counteract the adverse bronchial remodeling induced by CS exposure by reducing goblet cell hyperplasia, smooth muscle wall thickening, and fibrosis, and it was able to blunt emphysema of the distal air spaces. These effects of RLX fit well with previous reports that this hormone reduces inflammation and fibrosis in many in vitro and in vivo models of disease (Masini et al., 1994, 2004; Nistri et al., 2003, 2008; Lekgabe et al., 2005; Bonacchi et al., 2009; Sasser, 2013; Royce et al., 2014; Samuel et al., 2014). In
particular, RLX and RLX receptor agonists have been shown to prevent the development of airway sclerosis and remodeling in a bleomycin-induced model of lung fibrosis (Unemori et al., 1996; Pini et al., 2010), as well as in rodent models of allergic asthma-like reaction (Bani et al., 1997; Kenyon et al., 2003).

A limitation of the present study, which was primarily designed to investigate whether RLX could interfere with the pathogenic events of CS-induced pulmonary injury, consists in the lack of the direct demonstration that RLX may be beneficial for established lung damage. Further studies are thus required to explore the actual therapeutic potential of RLX, considering that when smokers come into the clinic with COPD, the initial damage has been done, the disease progresses from there, and the appropriate therapy should be able to revert it to health. Nonetheless, the present findings and others from the literature bolster the hypothesis that RLX deserves to be further investigated as a new drug for the treatment of CS-induced COPD. Indeed, the current therapies for COPD, primarily based on corticosteroids and bronchodilators, have improved disease management but cannot prevent disease progression (Barnes, 2010; Kabir and Morshed, 2015). Rather, at the doses and administration times effective to control COPD, glucocorticoids can cause unwanted local and systemic side effects (Kelly and Nelson, 2003). Even the most recent cell therapy trials, based on the principle that grafted bone marrow–derived mesenchymal stem cells can exert immunomodulatory and anti-inflammatory effects (Aggarwal and Pittenger, 2005; Krampera et al., 2006; Gupta et al., 2007; Song et al., 2012), did not meet the expectations revealed that RLX administration is safe and free of adverse effects (Bani et al., 2009; Bani and Bigazzi, 2011).

In the present study, RLX delivered by aerosol has shown comparable efficacy to systemic administration in reverting CS-induced lung dysfunction and damage, suggesting that this route of administration of RLX is therapeutically effective, at least in the lung. Moreover, the finding of undetectable levels of RLX in the plasma of the aerosol-treated animals accounts for a local action of this hormone on lung tissues. This possibility is supported by the observation that the specific RLX receptor RXFP1 is expressed by lung tissues (Samuel et al., 2003; Scott et al., 2004; Royce et al., 2014). The aerosol route of delivery is particularly attractive because it offers easier use and better patient compliance than systemic delivery. In recent years, there has been intensive development of inhaled protein therapeutics for several disease conditions, such as inhaled insulin for the treatment of diabetes or inhaled interferon-γ for idiopathic pulmonary fibrosis (Hickey, 2013). In this context, a recent study (Royce et al., 2014) has shown that intranasally administered RLX abrogates airway hyper-responsiveness and remodeling in a mouse model of allergic asthma-like disease. The hypothesis that RLX may be developed as a new drug for the treatment of COPD, alone or in combination with other therapeutics, is strengthened by the favorable outcome of a recent clinical trial in heart failure patients (Teerlink et al., 2013), which also revealed that RLX administration is safe and free of adverse side effects (Bani et al., 2009; Bani and Bigazzi, 2011).

Acknowledgments

The authors gratefully acknowledge the RRCA Relaxin Foundation (Florence, Italy) for the generous gift of serelaxin.

Authorship Contributions

Participated in research design: Pini, Bani, Nistri.
Conducted experiments: Pini, Boccalini, Lucarini, Catarinicchia, Guasti, Masini, Bani, Nistri.
Performed data analysis: Boccalini, Masini, Bani.
Wrote or contributed to the writing of the manuscript: Pini, Bani, Nistri.

References

Pini et al. (2012) Myeloperoxidase activity as a quan-
titative assessment of neutrophil inﬁltration into ischemic myocardium. J Phar-

Pini S, Chiappini L, Sassoli C, and Bani D (2003) Relaxin inhibits lipopolysaccharide-
induced adhesion of neutrophils to coronary endothelial cells by a nitric oxide-
mediated mechanism. FASEB J 17:2109–2111.