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ABSTRACT
The number of chemicals for which environmental regulatory
decisions are required far exceeds the current capacity for
toxicity testing. High-throughput screening commonly used for
drug discovery has the potential to increase this capacity. The
adverse outcome pathway (AOP) concept has emerged as a
framework for connecting high-throughput toxicity testing (HTT)
and other results to potential impacts on human and wildlife
populations. As a result of international efforts, the AOP devel-
opment process is now well-defined and efforts are underway to
broaden the participation through outreach and training. One key
principle is that AOPs represent the chemical-agnostic portions
of pathways to increase the generalizability of their application
from early key events to overt toxicity. The closely related mode

of action framework extends the AOP as needed when evaluat-
ing the potential risk of a specific chemical. This in turn enables
integrated approaches to testing and assessment (IATA), which
incorporate results of assays at various levels of biologic orga-
nization such as in silico; HTT; chemical-specific aspects in-
cluding absorption, distribution, metabolism, and excretion
(ADME); and an AOP describing the biologic basis of toxicity.
Thus, it is envisaged that provision of limited information
regarding both the AOP for critical effects and the ADME for
any chemical associated with any adverse outcome would allow
for the development of IATA and permit more detailed AOP and
ADME research, where higher precision is needed based on the
decision context.

Introduction
At the turn of the 21st century, it was widely recognized that

traditional methods for determining chemical toxicity were not
adequate for the ever-increasing number of chemicals in
commerce, which resulted in regulatory mandates from na-
tional and international governing bodies around the world.
The U.S. Environmental Protection Agency (EPA) asked the

National Research Council (NRC) of the U.S. National Acade-
mies of Science to develop a long-term vision to address the
challenges with toxicity testing in the 21st century (TT21C). In
particular, they sought to address the challenge of increasing
the depth and breadth of toxicological information and un-
derstanding, while at the same time reducing cost, increasing
efficiency, and reducing the use of animals. In 2007, a report
was published that focused on the reduction, replacement, and
refinement of animal-based toxicity testing and recommended
the use of in vitro methods to examine chemical effects at
molecular targets (NRC, 2007; Krewski et al., 2010). The basis
for this recommendation was the concept of toxicity pathways,
which are defined as “cellular response pathways that, when
sufficiently perturbed in an intact animal, are expected to result
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in adverse health effects” (NRC, 2007). Since some cellular
response pathways are measurable via in vitro assays that can
be scaled for high throughput, this new paradigm for toxicity
testing has the potential to provide novel toxicologically
relevant data, in which the cost and pace are tractable relative
to the current chemical universe. In the short term, the NRC
envisioned that high-throughput toxicity testing (HTT) would
be paired with more traditional animal testing to clarify
uncertainties, refine risk estimates, and fill gaps where assays
are not available. Over time, as confidence in the HTT results
improved, less and less animal testing would be needed.
Implementation of this vision has been led by the Tox21

consortium, which formed following the publication of the
TT21C report (Collins et al., 2008; Tice et al., 2013). At the
National Institutes of Health Chemical Genomics Center,
the focus has been on adapting assays to run in a fully automated
system capable of screening 10,000 chemicals per week (Attene-
Ramos et al., 2013). The other members of the consortium have
focused on identifying assays and evaluating the results from
smaller-scale HTT efforts based on in vivo data. As an example,
the EPA’s ToxCast effort (http://epa.gov/ncct/toxcast/data.html)
has screened approximately 2000 chemicals in approximately 800
assaymeasurements that covered a broad range of endpoints, and
all results were made publicly available for evaluation and use
(Kavlock et al., 2012). Many of these chemicals have a wealth of
pre-existing toxicology data for use in evaluating the veracity of
the HTT results [see the EPA online Aggregated Computational
Toxicology Resource site (http://actor.epa.gov/)] (Judson et al.,
2008). However, two challenges remain: 1) how do we interpret
the results from in vitro perturbations in terms of the resulting
consequences for a whole organism; and 2) how do we identify the
full set of toxicity pathways that must be interrogated to
ensure coverage of all potential adverse outcomes (AOs) in
vivo? Both of these challenges can be overcome by better
understanding the mechanistic basis for chemical toxicity in
vivo. At least a portion of the information needed to address
these questions is available within the vast body of toxicolog-
ical research that has been conducted and published. How-
ever, to date, relatively little of that information has been
systematically organized and summarized to better connect
HTT and other results with the more apical AOs traditionally
considered in risk assessment and regulation. Adverse out-
come pathways (AOPs) (Table 1) are aimed at addressing that
need.
The concept of AOPs emerged from the field of ecotoxicology

as a means to enhance the utility of the quantitative structure
activity relationship (QSAR), biomarkers, and other types of
mechanistic data for both understanding and predicting
potential adverse effects of chemical exposure in wildlife
populations (Ankley et al., 2010). The basic premise is that
toxicity is the result of generalizable motifs of biologic failure
initiated by the interaction of a chemical with some bio-
molecule in the body. This molecular interaction elicits a
perturbation in normal biology that ultimately impairs critical
function of the organism, leading to toxicity, and eventually
impacts the population of concern. Consequently, AOPs are
described by identifying measurable key events (KEs) at
varying levels of biologic organization beginning with molec-
ular interactions of the chemical with the biologic system and
proceeding through the organismal responses that impact
population viability (Villeneuve et al., 2014a) (Fig. 1). This
framework explicitly incorporates the TT21C concept of

toxicity pathways by including KEs at the macromolecular
and cellular levels of biologic organization. In an effort to
better accommodate QSAR analysis, the AOP is anchored at
one end by a molecular initiating event (MIE) (Table 1), which
represents the direct interaction of a chemical with a biologic
target. At the other end, the AOP is anchored by an AO
(Table 1) at the organism level (e.g., disease or overt toxicity)
or population level (i.e., inability to maintain a particular
species in its native habitat). By providing a logical sequence
of KEs (Table 1) connecting molecular and cellular events
occurring early after chemical exposure to population-level
outcomes, the AOP framework serves as a helpful foundation
for both interpreting and applying HTT results.
In parallel with the development of the AOP concept in

ecotoxicology, scientists and regulators concerned with the
impact of chemicals on human health developed the mode of
action (MOA)/human relevance framework (Table 1) as a basis
to increase consistency and transparency when incorporating
mechanistic data in human health risk assessment (Meek

TABLE 1
Glossary of terms

Term Definition

AOP “An AOP is a conceptual construct that portrays existing
knowledge concerning the linkage between a direct
molecular initiating event (e.g., a molecular interaction
between a xeno-biotic and a specific biomolecule) and an
adverse outcome at a biological level of organization
relevant to risk assessment.”a

MOA A “biologically plausible series of key events leading to” an
adverse effect.b

A “sequence of Key Events and processes, starting with
interaction of an agent with a cell, proceeding through
operational and anatomical changes, and resulting in” an
adverse effect. “Mode of action is contrasted with
‘mechanism of action,’ which implies a more detailed
understanding and description of events.”c

KE “A key event is an empirically observable step or its
marker, which is a necessary element of the mode of
action critical to the outcome (i.e., necessary, but not
necessarily sufficient in its own right); key events are
measurable and reproducible.”b

Measureable/observable biologic changes that are essential
to the progression from the molecular interaction of a
xenobiotic with the biologic system to an AO considered
relevant to regulatory decision making. “KEs are, in
essence, measurements of biological state or change in
state with regard to a control or reference. Because KEs
are measurements or observations of state, the confidence
one has in a KE is dictated by the accuracy and precision
with which that biological state can be measured.”d

KER The predictive and/or causal linkages between a pair of KEs.
“KERs, in contrast, are a unit of inference or extrapolation.
They are defined by the biological plausibility and
evidence that provide a scientifically credible basis for
inferring or predicting the state of a downstreamKE based
on the known state of an upstream KE and the confidence
in that inference or prediction is defined by the weight of
supporting evidence.”d

MIE The first KE within an AOP representing the biologic
perturbation resulting from a molecular interaction
between a xenobiotic and a specific biomolecule.

AO Late stage KE in an AOP representing a biologic
perturbation that would be considered adverse in a
regulatory context. These typically occur at either the
individual (e.g., cancer) or population (e.g., lack of
reproductive carrying capacity) levels of organization.

aAnkley et al. (2010).
bMeek et al. (2014a).
cEPA (2005).
dVilleneuve et al. (2014a).
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et al., 2014a). Initially, the focus was on assembling, evaluat-
ing, and determining the human relevance of toxicological
data for cancer (Sonich-Mullin et al., 2001; Meek et al., 2003;
EPA, 2005; Boobis et al., 2006). This framework was then
extended to include noncancer outcomes (Seed et al., 2005;
Boobis et al., 2008). The MOA framework has many similar-
ities to the AOP framework. Most importantly, both frame-
works rely heavily on the identification of KEs to allow the use
of mechanistic information when knowledge of themechanism
of action is incomplete. KEs are biologic perturbations that are
essential for toxicity, and they must be measurable because
the measurements associated with these KEs are the basis for
considering theweight of evidence or confidence in theMOA or
AOP. In addition, there must be support for a causal relation-
ship between an upstream KE and the subsequent KE. The
evidence in some cases may not be definitive, but it should be
documented in such away as to allow informed use of theMOA
for decision making. The purpose behind MOA analysis is to
directly inform risk assessment for regulatory purposes,
whereas the AOP is simply intended to describe the chemical
agnostic toxicodynamic KEs underlying toxicity. This explains
the incorporation of chemical-specific information, such as
metabolism as a KE and toxicokinetics, in considering species
concordance. With these subtle caveats, MOA analysis is
conceptually identical to AOPs.

Adverse Outcome Pathways—Evolution of the
Concept

The AOP concept has continued to evolve and mature based
on input from an ever-broadening group of experts, as well as

lessons learned from early AOP development efforts and
closer interactions with the MOA community. Shortly after
the initial publication, a Society of Environmental Toxicology
and Chemistry Pellston workshop was held to discuss a
number of AOP-related topics, including the applicability of
the TT21C paradigm for human health (NRC, 2007) to
ecological risk assessment (Villeneuve and Garcia-Reyero,
2011). The participants in this workshop concluded that the
AOP concept indeed represented a promising framework for
connecting HTT (and information at other levels of biologic
organization) to ecotoxicological endpoints. The AOP frame-
work also allows the incorporation of biomarker information
as a data bridge connecting the MIE with the AO (Kramer
et al., 2011). Having a framework that integrates data across
the different levels of biologic organization also improves our
ability to develop and evaluate quantitative models. By
highlighting the KEs underlying the AO, the AOP provides a
basis for systematically approaching the question of species
extrapolation. The KEs also allow more precision in defining
the sources of inherent variability. For example, a genetic
polymorphism that alters susceptibility for a certain AO can
be modeled at the level of the KE rather than as a generic
adjustment to the AO incidence. While the original TT21C
report proposed to eliminate species extrapolation for human
health risk assessment by testing compounds using human in
vitro assays, ecological risk assessment will always require
extrapolation from a handful of test species to all others.
In 2010, a workshop was held to consider the use of

mechanistic information in forming chemical categories [Or-
ganisation for Economic Co-operation and Development
(OECD), 2011]. This workshop in part stimulated thought

Fig. 1. AOP and MOA components. An AOP consists of KEs and KERs at different levels of biologic organization ranging from macromolecular
interactions to population responses. The MIE represents the interaction of the chemical with the biologic system. The AO represents overt adversity at
either the individual or population level, which in turn represents the endpoints used when determining safe levels of chemicals. KEs at molecular and
cellular levels represent toxicity pathways that can potentially be evaluated using high-throughput screens. AMOA can be constructed from the AOP by
including chemical-specific information such as ADME and a prediction of the relationship between the chemical concentration at the site of theMIE and
the strength of perturbation of the MIE.
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about developing AOP libraries and consideration of a proof of
concept for AOP development. Subsequent to this workshop,
the concepts were used to develop the first proof of principle
AOP, which was for skin sensitization. In 2012, the OECD
launched an AOP Development Program to promote the
development and use of AOPs (http://www.oecd.org/chemical-
safety/testing/adverse-outcome-pathways-molecular-screening-
and-toxicogenomics.htm). In 2013, the initial guidance for
developing AOPs was released (OECD, 2013). This program
now has close to 50 ongoing projects, with most focused on the
development of AOPs covering various areas of toxicology.
These projects have resulted in the greater practical un-
derstanding of the components needed to effectively describe
an AOP. Another benefit coming from the OECD AOP pro-
gram has been the close interaction between the AOP
community and the MOA community. This interaction has
resulted in both an increased understanding of the conceptual
similarities and differences (relating to agnostic versus chem-
ical focus) between the two concepts, as well as substantial
improvements to the AOP framework with regard to evalua-
tion of the evidence supporting the AOP. Finally, the OECD
AOP development program has resulted in an AOP knowledge
base (AOP-KB) that now serves as a single source for AOPs
generated under this program (http://aopkb.org/). This effort
assists with the sharing and dissemination of the AOPs, as
well as improving the consistency in reporting among the
different AOPs. As a result of these developments, it was
determined that an AOP development handbook, herein
referred to as the OECD handbook, was needed to expand the
original OECD guidance and provide specific information
about the best practices for defining AOPs (in particular,
documenting the supporting weight of evidence as a basis for
context-specific application, as described subsequently) and
entering that information into the AOP-KB [users’ handbook
supplement to the guidance document for developing and
assessing AOPs (https://aopkb.org/common/AOP_Handbook.
pdf)].
The AOP-KB project consists of four independent modules

that are connected via an underlying data hub. The AOP-Wiki
module (http://aopwiki.org) was released in September 2014
and is designed to support formal AOP development. The
emphasis in this module is capturing the evidence supporting
the AOP in a prose format, while capturing KEs and their
relationships in a structured form that can be readily used by
the other components. The Effectopedia (http://effectopedia.
org/) and AOPXplorer (http://aopxplorer.org/) modules are
currently available as prerelease versions with a full release
expected by February 2016. The Effectopediamodule captures
additional structured information such as the quantitative
response-response relationships between KEs, and the assays
and biomarkers available for measuring the KEs. The Effec-
topedia displays this information via a graphical interface to
facilitate the decision-making process. The AOP evidence in
the AOP-Wiki can be accessed from within Effectopedia or by
following links to theWiki itself. The AOPXplorer plays a dual
role supporting both the development and use of AOPs. While
the AOP-Wiki captures AOPs that have undergone a certain
level of expert review, the AOPXplorer will collect AOP
networks from automated processes such as the computation-
ally predicted AOPs (cpAOPs) described subsequently. This
information will be displayed in a graphical network allowing
expert users to explore all the possible AOPs that may be

relevant to their problem and then continue with either the
decision-making process or continued development of critical
AOPs. The fourth module, the intermediate effects database,
will connect the AOP-KB to the OECD chemical screening
information data sets database (http://webnet.oecd.org/HPV/
UI/Search.aspx) via the International Uniform Chemical In-
formation Database IUCLID software (http://iuclid.eu/) for
use in a regulatory context and will connect AOPs to chemical-
specific information. This module will be available with the
release of IUCLID 6.
The AOP development effort has been greatly enhanced by a

series of workshops designed to improve the collective un-
derstanding regarding the development, evaluation, and use
of AOPs [National Toxicology Program Interagency Center for
the Evaluation of Alternative Toxicological Methods and
Physicians Committee for Responsible Medicine (http://ntp.
niehs.nih.gov/pubhealth/evalatm/3rs-meetings/past-meet-
ings/aop-wksp-2014/index.html)] (Becker et al., 2015; Garcia-
Reyero, 2015). The broad feedback from these workshops has
helped inform the development of the OECD handbook
(https://aopkb.org/common/AOP_Handbook.pdf) and the on-
going AOP development under the OECD program.

Adverse Outcome Pathways—Where Are We
Now?

Five fundamental principles (Table 2) have been defined to
guide AOP development (Villeneuve et al., 2014a). The first
two principles deal with the basic components of an AOP [KEs
and key event relationships (KERs)], whereas the last three
pertain more generally to the development and use of the
construct. The MIE and other KEs included in AOPs are
restricted to nonchemical-specific aspects (e.g., excluding me-
tabolism and toxicokinetics) to increase their potential for
application in a predictive context (i.e., to permit maximal use
of mechanistic information at various levels of biologic orga-
nization for application in considering the effects of a wide
range of stressors).
The first basic component of an AOP is the KE (Table 1).

A KE must be measurable and causally linked to the AO, as
described previously for the MOA (Villeneuve et al., 2014a).
MIEs and AOs represent specialized KEs within the context of
a single AOP (Fig. 1). A KE represents a description of a
biologic process, and therefore is not specific to an AOP.
Indeed, the reuse of common KEs in different AOPs stream-
lines the AOP development process in the long term and
allows for a more comprehensive view of cumulative risk
scenarios when using AOPs. Also, a KE can be a MIE or AO in
certain AOPs, and an intermediate KE in others. For example,

TABLE 2
Five principles of AOP developmenta

Principle
Number Principle

1 AOPs are not chemical specific.
2 AOPs are modular (consisting of KEs and KERs).
3 An individual AOP is a pragmatic unit of development

and evaluation.
4 For most real-world applications, AOP networks are the

functional unit of prediction.
5 AOPs are living documents.

aVilleneuve et al. (2014a).
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binding to the estrogen receptor would be the MIE for an AOP
that describes direct binding to the estrogen receptor, but it
would be an intermediate KE for an AOP describing a
perturbation that impacts circulating levels of endogenous
estrogen, such as an inhibitor of the aromatase enzyme, since
the binding of estrogen to the receptor is not directly perturbed
by the chemical (Fig. 2A) (Ankley et al., 2010). When de-
scribing aKE, emphasis is placed on describing the underlying

biologic changes, as well as the methods available for mea-
suring changes in the biologic state (Villeneuve et al., 2014b).
The second basic component of an AOP is the KER (Table 1).

A KER represents the connection between an upstream KE
and the subsequent KE in the pathway (Fig. 1). The KERs
within an AOP capture the evidence supporting the causal
relationship between any pair of KEs, and therefore are
critical to the overall evaluation of the evidence supporting

Fig. 2. AOP examples. (A) AOP network containing two AOPs linked to a decrease in signaling through the estrogen receptor. Estrogen receptor
antagonists bind directly to the estrogen receptor, resulting in a reduction of estrogen receptor signaling (purple node) as the MIE. The AOP initiated by
the inhibition of the aromatase enzyme and reduction of estrogen synthesis includes three additional KEs (green nodes) upstream of the decrease in
estrogen receptor signaling. In this case, decreased signaling by estrogen receptors would be secondary to decrease circulating estrogen levels and the
MIE would be the inhibition of the aromatase enzyme. (B) AOP example highlighting the capture of several biologic processes within a single KER.
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the AOP (Villeneuve et al., 2014b). Where appropriate in-
formation is available, the KER also contains the quantitative
description of the relationship betweenKEs (i.e., the change in
the downstreamKE that would be expected given ameasured/
predicted change in the upstream KE) and factors known to
modulate that relationship. While the emphasis in describing
a KER is on the weight of evidence and quantitative un-
derstanding of the relationship, it is important to note that
KERs can embed a more detailed mechanistic description of
any biologic processes that connect the upstream KE to the
downstream KE, especially when these processes are not
readily measurable. In other cases, measurable biomarkers
are not specific for the AOP, and therefore would not be
informative for monitoring a separate KE in the AOP. An
example for the latter would be the AOP for protein alkylation
leading to liver fibrosis that folds formation of reactive oxygen
species and release of cytokines and chemokines in response to
hepatic cell death into the KER that leads to the activation of
Kupffer cells (Fig. 2B) (Landesmann et al., 2012; Willett et al.,
2014). KERs should be described to connect a specific pair of
KEs independent of the AOP such that they can be reused
where possible.
The final three principles for AOPdevelopment (Table 2) are

designed to facilitate development while not hindering the use
of AOPs for decision making (Villeneuve et al., 2014a). AOPs
are generally described as a single sequential pathway
beginning with a particular MIE and ending with an AO. This
construct is to keep the description of the AOP simple as it is
being developed and to facilitate the evaluation of the
evidence. Each AOP can then be considered a building block
within a larger AOP network that more comprehensively
describes the biologic processes involved in real-world scenar-
ios (Knapen et al., 2015). It is anticipated that these more
realistic AOP networks will better represent the complexity
required for many decision-making contexts. When KEs and
KERs are shared among multiple AOPs, these networks
naturally assemble as the AOPs are developed. For this
reason, it is anticipated that the richness of AOP network
descriptions will continue to improve over time as more AOPs
are described and included in the AOP-KB. In addition, AOPs
will be defined in terms of the information available at any
given point in time. As new information becomes available, the
AOP will continue to evolve and the evidence supporting the
AOP should improve. Since the evidence supporting the AOPs
is explicitly described at each stage, there should be no barrier
to the use of the AOP network at any stage of development as
long as the uncertainties are clearly articulated.
The framework proposed to systematically evaluate the

evidence underlying a given AOP for regulatory purposes is
based on the evolved Bradford-Hill considerations, which are
used for comparative analysis of weight of evidence in the
MOA context (Meek et al., 2014a,b). However, these have been
modified, when appropriate, to address the context of chemical
agnostic AOPs (https://aopkb.org/common/AOP_Handbook.
pdf) (Becker et al., 2015). The three primary considerations
are biologic plausibility, essentiality of KEs, and empirical
support. When evaluating an AOP, the biologic plausibility
and empirical support are both evaluated for each KER
separately. This process not only supports sharing of compo-
nents among AOPs, as described previously, but also helps
explicitly identify critical data gaps within the AOP as a basis
to facilitate targeted research and regulatory uptake. The

biologic plausibility assessment relies on an understanding of
the fundamental biologic processes involved andwhether they
are consistent with the causal relationship being proposed.
The empirical support typically comes from experiments using
one or more reference chemicals, where the dose-response and
temporal concordance for the KE pair can be assessed. Unlike
the other two, the essentiality of KEs is considered in the
context of an entire AOP. Once the weight of evidence
(composed of biologic plausibility and empirical support) has
been evaluated for each KER and the essentiality has been
evaluated for each KE, the evidence in support of the overall
AOP can be summarized, often in the form of a summary table
as recommended by the OECD handbook (https://aopkb.org/
common/AOP_Handbook.pdf). The assessment of the AOP on
“Alkylation of DNA in male pre-meiotic germ cells leading to
heritable mutations” (https://aopkb.org/aopwiki/index.php/
Aop:15#Overall_Assessment_of_the_AOP) provides a good
example of this type of summary (Yauk et al., 2015).
The final consideration when defining and evaluating AOPs

is the applicability (or relevance) of that AOP across various
species, life stages, or sexes (Villeneuve et al., 2014b; Groh
et al., 2015). In defining the AOP, this is typically restricted to
those species for which empirical evidence exists. A notable
exception to this common practice would be AOPs that have
been designed to address human health risks where little, if
any, direct evidence is available in humans. In those cases, the
human relevance/species concordance should be determined
using the MOA human relevance framework (Meek et al.,
2014a,b). While this same approach could be applied when
assessing ecological risk as well, in practice the data available
to support the inference are typically not as extensive for
species other than humans. The evaluation of the taxonomic
relevance of any particular AOP involves determining the
level of conservation of the various key events and their
underlying molecular components and functionality across
the levels of biologic organization beginning with the molec-
ular target and proceeding through cellular processes, organ
similarity, and overall phylogenetic diversity. The sequence
similarity of homologous proteins across a range of species can
be used to estimate the conservation of the molecular target
(LaLone et al., 2013). Another example is the Web-ICE tool
(http://www.epa.gov/ceampubl/fchain/webice/), which pro-
vides information at the organism level for acute toxicity. Life
stage and sex applicability is based on direct empirical support
and biologic plausibility, and is generally anticipated to be the
same across species unless otherwise noted. While these
methods provide information on a qualitative level, they do
not address the possibility of estimating quantitative differ-
ences in response as evaluated in the MOA species concor-
dance framework.
AOP development is an iterative process.While early efforts

have focused on AOPs that are more easily defined and will
provide good examples, the long-term goal would be to have
the level of detail for a given AOP be driven by the information
needs associated with its envisaged use (Fig. 3, left triangle).
Expert-driven AOP development can be generally broken into
three broad phases of development (Villeneuve et al., 2014a).
Putative AOPs represent a basic description of the AOP
without extensive citations or evaluation of the evidence.
These are not intended to be hypothetical constructs but
instead should be based on documentable, but not necessarily
documented or evaluated, evidence. By not exhaustively
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reviewing and documenting the literature supporting these
AOPs, it should be possible to assemble them relatively
quickly, thereby providing some mechanistic information,
and hopefully encouraging further development, to cover a
broader range of biology in cases where the information is not
captured in more rigorously documented AOPs. More formal
documentation of the supporting evidence for AOPs allows the
user to determine where there are confidence gaps that
preclude its use in particular applications. In cases where the
decision rests on knowing the magnitude of change at early
KEs required for an AO, a quantitative AOP (qAOP) may be
developed that is based on computationalmodeling—although
given their significant data requirements, qAOPs will likely
represent a small fraction of the formal AOPs in the foresee-
able future. However, existing qAOPs should contribute by
inference to quantitation of effects associated with chemicals
or groups acting by similar MOAs.
In cases where existing information is not sufficient to

support the current application of the AOP, the confidence
and/or quantitative understanding of the AOP can be im-
proved via a combination of experimental and computational
approaches (Groh et al., 2015). It is anticipated that recording
of the evidence and essentiality at the KER and KE levels,
respectively, will facilitate identification of important data
gaps and foster experiments to explicitly address them. For
early KEs at the molecular and cellular levels, a combination
of in vitro and in vivo experiments is probably most appropri-
ate to establish the relationship between in vitro and in vivo
response, thereby potentially allowing future extrapolation
from in vitro to in vivo. If data gaps exist in relation to
intermediate KEs at the level of organs or organ systems, in
vivo studies will likely be required. In these cases, experi-
ments that can identify noninvasive bioindicators that are
causally linked with the KEs are ideal. Once established, the
bioindicators can be used in future studies to evaluate the
applicability of the AOP in different species, at different life

stages, and in the presence ofmodifying factors such as genetic
predisposition or pre-existing disease. If the goal is to support
estimation of quantitative dose-response relationships, then
data on response-response relationships and the time course
between KEs are needed. Collectively, this information can
provide direct data to support the linkage between MIE
perturbation and apical endpoint measurements associated
with an AO when that level of confidence or quantitative
understanding is required.

Developing a MOA from an AOP and Absorption,
Distribution, Metabolism, and Excretion (ADME)

Information
As with AOPs, MOA analysis has evolved as the number of

case studies has increased (Meek et al., 2014a,b). However, the
underlying purpose of the two frameworks is slightly different,
which leads to some interesting distinctions between the two.
The driver for MOA has always been to facilitate the
application of mechanistic data in risk assessment of specific
chemicals or chemical groups. This motivation has resulted
in MOA case studies that are primarily defined by the
chemical(s) used to elicit the organismal response. Since
MOA analysis has focused on the application of mechanistic
data in the assessment of specific chemicals, it addresses both
toxicokinetics (in species concordance analysis) and metabolism
(as a KE) (Boobis et al., 2006, 2008; Meek, 2008; Meek et al.,
2014a,b). Indeed, several highly cited MOA case studies
include metabolic activation of the chemical (Meek et al.,
2003; Seed et al., 2005) as a KE in the MOA. In contrast,
consideration of ADME is not incorporated directly into an
AOP description, which is intended to be applicable to any
chemical that triggers a given MIE. However, it is recognized
that ADMEmust be considered whenever AOPs are applied to
address chemical-specific questions, including the use of any
single or combination of earlyKEs at different levels of biologic
organization to infer potential toxicological outcomes associ-
ated with a specific exposure scenario.
A second key distinction between MOA and AOP is the use

of the terms species concordance versus taxonomic applicabil-
ity. The difference in this case is very nuanced but interesting.
In determining human relevance for a MOA, the species
concordance is documented and evaluated based largely on
direct experimental evidence from both environmental and
medical research designed to address the relevance of certain
animal and in vitro models for specific human diseases (Meek
et al., 2014a). Concordance is an appropriate word in this case
since the results are for an explicit test species compared with
humans. On the other hand, AOPs often have been intended
for ecological risk assessments, where there are generally few
(if any) data available for the majority of species of concern. In
these cases, the term taxonomic applicability is used in amore
generic sense to highlight all species (or taxa) for which
evidence exists (based on direct empirical evidence or biologic
plausibility) that the AOP would be relevant. The user then
determines the likelihood that the AOP might apply to a
species for which no direct evidence exists. While the taxo-
nomic applicability for humans is likely based on a human
relevance analysis of the species concordance, most other
species will only be represented if direct experimental evi-
dence exists for the AOP in that species.

Fig. 3. Tiered structures for defining AOPs and ADME allow for MOA at
varying levels of confidence. The left side shows the phases of AOP
development including three expert-derived types of AOPs and one cpAOP
type. The left triangle represents the relative number of AOPs expected for
any given type based on the time and effort required to reach that phase of
development. This type of phased structure allows the acceptable
uncertainty based on the intended use of the AOP to determine the effort
expended to define and evaluate the AOP. The right side shows a tiered
approach to defining the ADME for a chemical, which provides the same
benefits as the phased AOP development. The triangle in this case
represents the relative number of chemicals for which an ADME
prediction at a given tier can be made. The tiered approaches for both
chemical-specific ADME and chemical-agnostic AOPs allow for the
development of MOAs for a wide array of chemicals with lower confidence.
As more confidence is required (represented by the width of the green
triangle in the middle), the number of chemical/AO pairs that can be
characterized will decrease.
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Given the purpose for which these two different frameworks
were developed, it makes the most sense to retain both as
separate but related entities and clearly define the subtle
distinctions between the two. Therefore, we propose that
AOPs are one of the basic components from which a MOA
can be developed (Fig. 1). The AOP assembles the evidence
supporting the description of the biologic response and any
knowledge concerning the quantitative relationships between
neighboringKEs. TheAOPmay be developed and documented
based on studies using reference chemicals to define the AOP,
but the chemical-specific aspects such as toxicokinetics and
metabolism are addressed in the MOA analysis. With an AOP
so defined, theMOA could start with anAOP and a chemical of
interest and proceed to assemble ADME and chemical-specific
toxicity prediction for informed decision making (Meek et al.,
2014a).
If the chemical-specific toxicity predictions involve HTT,

read-across, or QSAR linked specifically to theMIE of an AOP,
it is essential to understand the chemical’s ADME parame-
ters, which will dictate the probability of a chemical and/or its
active metabolites reaching the molecular target in vivo. Once
ADME is characterized, the in vitro concentration expected to
perturb aMIE could be used to extrapolate to an in vivo target
tissue concentration, which is used in turn to estimate an
external exposure concentration of possible concern (Yoon
et al., 2015). The dose would ideally be calculated at the
cellular level, but this level of detail will seldom be possible in
the short term. In reality, the information regarding ADME
for a specific chemical may be lacking. In view of this
challenge, a tiered approach (Thomas et al., 2013) can be used
to connect chemical-specific ADME to the biology-based AOP
based on the availability of ADME data (Fig. 3, right triangle).
In the lowest tier where no ADME data are available,

computational chemistry and cheminformatics tools could
provide the opportunity to identify molecular fingerprints
that characterize the probability that the chemical will reach
the location required for perturbing the MIE, allowing for
qualitative refinement of HTT or other results. In this tier,
qualitative evaluation of ADME potential could aid in the
identification of false positives, which are in vitro active
chemicals that cannot reach the molecular target in vivo due
to certain ADME characteristics (Phillips et al., 2015). For
example, some chemicals (e.g., anthralin) can be sequestered
in skin tissues; therefore, they are unlikely to enter the
systemic circulation—and thus molecular targets in internal
organs—when exposed via a dermal route. In addition,
chemical structures or molecular descriptors could potentially
be used to detect possible false negatives that are either
inactive parents of active metabolites or in vivo active
chemicals not detected in vitro (Phillips et al., 2015).
In higher tiers where some ADME data are attainable,

measured or estimated ADME rates could potentially be used
to rank chemicals in conjunction with in vitro potency
measurements. Again, a MIE is triggered by a sufficiently
high dose of a chemical at the target site to elicit a biologically
relevant interaction between the chemical and the molecular
target for the required length of time. Such a quantitative
approach allows chemicals that have higher binding affinity,
are rapidly absorbed and distributed to the target tissues, and
are slowly metabolized and excreted to be prioritized over
those that have lower binding affinity, are slowly absorbed and
distributed to the target tissues, and are rapidly metabolized

and excreted (Leonard et al., manuscript in preparation). In
the highest tier where more certainty is required, exposure
and ADME data could be used as a basis to develop quanti-
tative exposure-to-dosimetry models that would contribute to
prioritizing chemicals (Terry et al., 2015; Wetmore, 2015).
Such models also have the capability of examining factors
other than dose, such as timing of exposure, which is
particularly important when developmental effects are of
concern.

Applications for the AOP/MOA Framework
The primary application of the AOP and MOA frameworks

to date has been to support environmental regulatory decision
making. The MOA framework has been adopted by regulatory
agencies around the world for considering mechanistic in-
formation (Meek et al., 2008). The OECD AOP development
program is closely linked to both the OECD QSAR Toolbox
(OECD, 2009) and efforts to harmonize the use of HTT and
other potentially more predictive measures across member
countries (OECD, 2013). Specific applications include chem-
ical grouping for read-across, design of efficient testing
strategies, prioritization for testing, and quantitative risk
assessment (Meek et al., 2014a; Perkins et al., 2015), with an
emphasis on the replacement, refinement, and reduction of
animal-based testing (Burden et al., 2015). The use of the AOP
is tightly coupled with the evidence evaluation and associated
confidence discussed previously. In addition, most cases of
regulatory decision making will require more than one AOP
within an interconnected network to fully account for the
biologic processes that may influence the final outcome.
The level of confidence needed for the AOPs within the AOP

network under consideration is dependent on the regulatory
application (Patlewicz et al., 2015b; Perkins et al., 2015).
Patlewicz et al. (2015b) proposed a seven step process for
establishing scientific confidence for an AOP. After the AOP
has been developed, assays for the KEswithin the AOP should
be identified or developed followed by an analytical validation
of those assays. An advanced example of this process is the
evaluation of assays monitoring the KEs from the skin
sensitization AOP (Reisinger et al., 2015). Once assays have
been analytically validated, development and qualification of
models that incorporate the assay data can begin. Qualified
models can then be used for specific purposes to document the
sufficiency of the model for that purpose. This provides the
information needed for an open, transparent review and
eventual regulatory acceptance of the model.
In cases where limited data exist for the chemical or

chemicals in question, even a low-confidence AOP can provide
important mechanistic information that can aid in interpre-
tation of HTT and other information. If, instead, HTT results
are being proposed to be an influential component of consid-
erations for quantitative risk assessment in lieu of further
testing, high confidence is needed in the AOP to link upstream
KEs to the AO of regulatory concern. In addition, qAOP
development requires more extensive information on the
response-response relationships and time course for each pair
of KEs to improve the overall quantitative understanding
of the AOP. However, when considering the replacement of
an existing animal test, the confidence in the new test may
be equivalent to—but need not be any higher than—that of
existing animal tests. For example, assays like the uterotrophic
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assay employed in the Endocrine Disruptor Screening Pro-
gram (EPA, 2009) essentially serve as a screen for a MOA,
which is implicitly linked to an anticipated AO. HTT assays
that evaluate the same MOA should not be held to a higher
standard in terms of linkage to the AO. However, when
considering the MOA, the in vivo assay might have additional
advantages from an ADME perspective, as would be the case
with the previous uterotrophic example. This can be
addressed via in vitro/in silico models in which we have
sufficient confidence to make ADME predictions, e.g., physi-
ologically based pharmacokinetic models that are being used
in the pharmaceutical industry.
AOPs are valuable in cases where decisions must be made

with available data because the framework provides a struc-
tured way to evaluate and communicate the existing informa-
tion, and they are particularly useful when additional testing
options are available. AOPs can contribute significantly to the
development of integrated approaches to testing and assessment
(IATA) (Tollefsen et al., 2014; OECD, 2015), which iteratively
evaluate existing information and identify data needs to make
effective regulatory decisions (EPA, 2011; OECD, 2015). While
the decision context will determine the details of an IATA, the
general flow will be to consider existing data for the chemical of
interest, followed by in silico approaches coupled with existing
data from structurally related chemicals (e.g., read-across),
followed by the generation of new data from high- and medium-
throughput assays, with extensive in vivo testing reserved as a
last resort. As confidence grows in a given AOP, it should allow
more decisions to be made at earlier stages in the work-
flow. A workshop was held in November 2014 to consider the
AOP/MOA concept as a framework for the development and
use of IATA (OECD, 2015). The participants in this workshop
agreed that the AOP framework informed the toxicity-related
elements of the IATA while not addressing other components
such as exposure, ADME, and chemical-specific information.
Consistent with the definitions used in this review, the MOA
was assumed to include ADME as well as the AOP.
In cases where existing information on the chemical in

question is insufficient for a decision, in silico approaches such
as QSAR (Patlewicz et al., 2014; van der Veen et al., 2014)
merged with data on structurally related chemicals via read-
across (OECD, 2014; Patlewicz et al., 2015a) can be used prior
to the generation of newdata. The use of AOPs in a read-across
context was considered at a workshop held as part of the
SEURAT-1 project (Berggren et al., 2015). The goal of the
workshop was to increase confidence in read-across using
results from alternative methods. Specifically, the proposed
read-across justification would be based on mechanistic un-
derstanding of the toxicokinetics and toxicodynamics and
strengthened by supporting in vitro data. It was concluded
that the key elements are the decision context, mechanistic
information, structural similarity, and data availability for
chemicals in the group. The European Chemical Council Long
Range Initiative reached a similar conclusion based on explicit
evaluation of a series of case studies (Patlewicz et al., 2015a).
They highlighted the importance of evaluating the supporting
assays and resulting data in addition to the confidence
required for the mechanistic description of the AOP itself. As
the first and only OECD-endorsed AOP to date, the AOP for
skin sensitization has been incorporated into the OECD
Toolbox (http://www.oecd.org/env/ehs/risk-assessment/Tutorial_
17_TB%203.3_AOP%20for%20Skin%20Sens.pdf). The skin

sensitization AOP has also been used by several groups to
effectively illustrate the IATA concept and integrated
testing strategies (Jaworska et al., 2013; Patlewicz et al.,
2014).
Beyond simple hazard assessment, the AOP framework

provides a basis for response-response characterization, which
in combination with chemical-specific data can contribute to
dose-response assessment for specific chemicals (MacKay
et al., 2013). This process can be broken down into three
components: 1) toxicokinetics for the chemical of interest; 2)
chemical-specific dose-response information, which could
come from high-throughput screening assays; and 3)
chemical-independent toxicodynamics information provided
by the AOP. While these can be modeled separately or jointly
depending on the purpose, separate models would be expected
to facilitate reusability. Modeling the toxicokinetics for the
chemical in question can provide an estimate of chemical
concentration at the site of action based on an external
exposure concentration. A dose-response model of the MIE
perturbation at specific levels of the chemical provides the
chemical-specific data required for predicting the activity of
the chemical. A quantitative model describing the response-
response relationships among the KEs in the AOP allows AO
predictions based on the MIE measurements with caveats
regarding the potential for modulating factors that modify the
response-response relationships in certain sensitive groups.
The skin sensitization AOP has been incorporated into a
combined model including toxicokinetics and dose-response
informed by high-throughput screening assays as a proof of
concept for this application (Maxwell et al., 2014).
Implications for chemical-specific dose-response relation-

ships have been formalized in MOA species concordance
analysis (Julien et al., 2009). This includes the chemical-
specific ADME components that map external exposure to a
target tissue dose for a specific chemical, the interaction with
the biologic system in the target tissue, and the progression
toward an effect of concern. The approach explicitly incorpo-
rates the homeostatic mechanisms that influence the propa-
gation of the perturbation to the downstream KEs, which has
been developed more recently by the International Life
Sciences Institute RISK21 project (Simon et al., 2014) to
incorporate modulating factors as well as associative events
that allow for the use of correlative biomarkers in cases where
direct measurement of the causal events are not feasible. The
objective is the integration of data collected across many KEs,
which can then be compared with predicted exposure concen-
trations. This information can be visualized by a heat map
with predicted exposure along one axis and predicted toxicity
along the other to provide a broader context in which to
interpret a specific comparison such as a benchmark dose
value compared against a chronic dietary exposure range
(Simon et al., 2014).
The EPA has recently taken a similar approach when

incorporating HTT data from the ToxCast and Tox 21
programs into the Endocrine Disruptor Screening Program
(http://www2.epa.gov/sap/meeting-materials-december-2-4-
2014-scientific-advisory-panel). The basis for this approach
is a model for estrogen receptor activation that integrates
data from 18 separate in vitro assays based on the early KEs
common to perturbations in the estrogen receptor signaling
AOP (Judson et al., 2015). This model was evaluated by
comparison against independently confirmed estrogen receptor
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bioactivity as well as against the results from current Endocrine
Disruptor Screening Program Tier 1 assays (Browne et al.,
2015). The predictivity for the new model was superior to
previous results with the Tier 1 assays when compared against
the estrogen receptor reference chemicals identified by the
Interagency Coordinating Committee on the Validation of
Alternative Test Methods. The results were comparable to
existing assays when considering a larger literature-based list
of reference chemicals as well. A scientific advisory panel
reviewing these results recommended that the models incorpo-
rate uncertainty and sensitivity analyses. The scientific advi-
sory panel also reviewed a proposal to connect the results from
the dose-response predictions from the in vitro model with
exposure estimates from a complementary rapid exposure
prediction model (http://www2.epa.gov/sap/meeting-materials-
december-2-4-2014-scientific-advisory-panel) (Isaacs et al.,
2014; Wambaugh et al., 2014). While the panel recognized the
promise of this approach, they suggested that further refine-
ment was needed to gain better understanding of how moni-
toring data can inform the predictions.
The IATA workshop (OECD, 2015) established three types

of AOP from the application perspective: qualitative, semi-
quantitative, and quantitative. These would fall into the
spectrum from the formal AOP to the qAOP, as shown in
Fig. 3. An additional type called a correlative AOP was
proposed and could be considered analogous to the putative
AOPs from Fig. 3. The difficulty with this terminology is that
the weight of evidence supporting the KERs, and by extension
the causal support for the AOP as a whole, includes both
empirical support and biologic plausibility. While biologic
plausibility is generally weighted heavier than empirical
support, one could imagine a case where the empirical
evidence is quite strong, and while there is no evidence to
question the biologic plausibility it has not been firmly
established. In contrast, many biologically plausible pathways
exist that are unlikely to ever result in an AO because of
homeostatic mechanisms that may or may not be currently
defined. The putative AOP terminology used here allows for
the combined contribution of biologic plausibility and empir-
ical support to be considered, which provides consistency with
the formal evaluation of weight of evidence that represents the
next stage of AOP development. It must also be emphasized
that AOPs will exist on a continuous gradient from poorly
defined to extensively documented. While labels such as
putative, formal, and quantitative allow us to define charac-
teristics of AOPs at different points along the continuum, each
AOP must be evaluated individually based on the evidence
provided and the purpose for which it would be used.

Conclusions and Future Directions
The AOP and MOA frameworks collectively provide a

helpful construct that facilitates systematic organization of
mechanistic data to support decisions relating to toxicology
and therapeutics. Both frameworks have established a process
for systematic incorporation of mechanistic information. In-
tegrating HTT and in silico predictions with traditional
toxicological measurements in a knowledge base designed to
provide a consistent means of evaluating and communicating
the information should increase the efficiency of translating
research data for use in regulatory applications. The small
number of AOPs currently limits this impact, although the

streamlined approach to integrating the disparate data
streams still provides a tangible benefit. The AOP-KB is also
designed to automatically generate the global AOP network
through the identification of shared KEs as new AOPs are
developed. This will ensure that the value of the resource
increases over time, and that the AOP-KB can potentially
provide insights on emergent behaviors ranging from interac-
tions between environmental chemicals and/or pharmaceuti-
cals to impacts of genetics and/or pre-existing disease on
chemical or pharmaceutical risk/benefit. In addition, explora-
tion of the resulting AOP networks will provide a structured
way of identifying new biologic processes relevant to disease
endpoints of interest.
The phased structure of AOP development will encourage

the use of AOP networks by focusing more comprehensive
AOP development on those AOPs where the decision-making
context for their use requires a high degree of certainty. This
process can be further improved by using data mining
approaches such as those commonly used in the drug discovery
arena (Schadt et al., 2009) to assemble cpAOPs, which can be
evaluated by experts as needed to support the decision-
making process (Fig. 3). These approaches are solely limited
by data availability and challenges associated with data
integration, although the resulting cpAOPswill require expert
evaluation prior to use under almost all circumstances. Once
established, these methods should provide AOPs to cover any
biologic space in which sufficient high-content or public
annotation data exist. cpAOPs and putative AOPs can be
evaluated and improved as they are needed, thereby focusing
the more labor-intensive work where it can have the most
impact.
With a phased structure of AOP development and a similar

tiered approach to link ADME information to AOPs, a MOA
can be assembled rapidly regardless of the level of information
available at the time (Fig. 3). Having knowledge bases to
categorize both the chemical-agnostic AOPs and chemical-
specific ADME will make it easier in the long term to
determinewhat additional datawould have the largest impact
on reducing uncertainty in decision making, thereby pro-
moting efficient use of resources on targeted testing. If
chemical-specific ADME is the major source of uncertainty,
theremay be no need to specifically address the data gaps that
exist in the AOP. If additional research on the AOP is deemed
necessary, the granular description of the evidence supporting
the AOP should make the data gaps apparent.
While the use of AOPs and MOA analysis has primarily

been focused on environmental risk assessment, the concepts
could more consistently capture the mechanistic information
that is already applied extensively in early safety assessment
during pharmaceutical development. As the AOP networks
becomemore extensive, they become a platform to incorporate
genetics and other factors that might impact the safety and
efficacy of pharmaceuticals as we move toward precision
medicine (Collins and Varmus, 2015). In fact, since the AOP
concept considers only biologic perturbations that result in
AOs such as disease, it applies equally well to target discovery
as it does to safety assessment. The systems biology–based
network approaches to understanding disease and identifying
pharmaceutical interventions (Schadt and Björkegren, 2012;
Friend and Schadt, 2014) stand to benefit from the AOP
framework as well. The AOP can serve as a convenient
construct for summarizing the complex networks into more
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tractable components that are more amenable to follow-up
experimentation. Efforts are already underway in the envi-
ronmental science arena to assemble AOP networks from
genomics (Bell, manuscript in preparation) and public anno-
tations (Oki, manuscript in preparation).
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