Methamphetamine-Like Discriminative-Stimulus Effects of Nicotinic Agonists

Rajeev I. Desai and Jack Bergman
Preclinical Pharmacology Laboratory, McLean Hospital/Harvard Medical School, Belmont, Massachusetts

Received November 11, 2013; accepted January 2, 2014

ABSTRACT
Nicotine was recently shown to engender d-methamphetamine (MA)-like discriminative-stimulus effects in rats, which may be indicative of shared psychomotor stimulant properties. To further investigate such overlapping discriminative-stimulus effects, nicotinic agonists varying in efficacy and selectivity were studied in squirrel monkeys that discriminated a moderate intramuscular dose of MA (0.1 mg/kg) from vehicle. These included α4β2-selective ligands that may vary in efficacy from relatively high [nicotine, (+)-] and (−)-epibatidine] to relatively low [isoarecolone, varenicline, (−)-cytisine, (−)-lobeline] and the α7-selective ligands anabaseine and anabasine. Results show that nicotine, (+)-epibatidine, and (−)-epibatidine substituted fully for MA, whereas the highest doses of other nicotinic agonists produced intermediate levels of MA-like effects (isoarecolone, anabaseine, anabasine, and varenicline) or did not substitute for MA [(−)-cytisine and (−)-lobeline]. The relative potencies of nicotinic agonists, based on effective dose50 (ED50) values, corresponded more closely with their relative affinities at α4β2 than at α7 receptors. Regardless of selectivity or efficacy, nicotinic agonists also were observed to produce untoward effects, including salivation and emesis during or after experimental sessions. In pretreatment studies, the α4β2-selective antagonist dihydro-β-erythroidine hydrobromide (DHβE) (0.032 and 0.1 mg/kg) and the partial agonists varenicline (0.0032–0.1 mg/kg) and (−)-cytisine (0.032 and 0.1 mg/kg) surmountably antagonized (>10-fold rightward shift) nicotine’s MA-like effects but were ineffective in blocking nicotine’s emetic effects. Overall, our results show that 1) MA-like discriminative-stimulus effects of nicotinic agonists likely are mediated through α4β2 nicotinic acetylcholine receptor actions, and 2) nicotinic α4β2 partial agonists, like the nicotinic antagonist DHβE, can reduce MA-like behavioral effects of nicotine.

Introduction
The discriminative-stimulus effects of nicotine have been widely characterized in laboratory animals (Jutkiewicz et al., 2011; Cunningham et al., 2012; Smith and Stolerman, 2009), and have been related to its subjective effects among users of tobacco or other nicotine delivery devices (Smith and Stolerman, 2009; Benowitz, 2010). Pharmacological studies with selective agonists and antagonists additionally have identified likely mechanisms of action mediating the discriminative-stimulus effects of nicotine. For example, such effects of nicotine are readily mimicked by centrally acting nicotinic agonists with high affinity for the α4β2 nicotinic acetylcholine receptor (nAChR) subtype, but not by drugs that act selectively at other subtypes of nAChR (e.g., α3β4 or α7) or by drugs from other pharmacological classes (e.g., muscarinic agents; see Smith and Stolerman, 2009, for review). Moreover, noncompetitive (mecamylamine) and competitive [dihydro-β-erythroidine hydrobromide (DHβE)] antagonists that block α4β2 nAChRs in the central nervous system attenuate nicotine’s discriminative-stimulus effects, whereas peripherally restricted antagonists or antagonists at other nAChR subtypes (e.g., nicotinic α7) are ineffective. In conjunction, such evidence strongly suggests that the discriminative-stimulus effects of nicotine are centrally mediated, primarily via α4β2 nAChRs (Smith and Stolerman, 2009).

A growing body of evidence also indicates that, as with monoaminergic psychomotor stimulant drugs [e.g., cocaine, d-amphetamine, d-methamphetamine (MA)], the projection from the ventral tegmental area to the nucleus accumbens in the mesocorticolimbic dopamine (DA) system is a key element in brain circuitry that mediates the neurochemical and behavioral effects of nicotine. Accordingly, increases in DA neurotransmission have been proposed to mediate the reinforcing effects of nicotine and its consumption (Di Chiara, 2000; Smith and Stolerman, 2009). The involvement of common neural substrates also has led to the suggestion that nicotine and monoaminergic psychomotor stimulant drugs might engender overlapping subjective effects and, in laboratory animals, discriminative-stimulus effects (Smith and Stolerman, 2009). Data from some, but not all, previous studies in nicotine- and cocaine- or d-amphetamine-trained subjects have supported this suggestion (see Smith and Stolerman, 2009, for review), and have profitably advanced our understanding of the stimulant-like effects of nicotine and other nicotinic ligands. For example, our recent MA-discrimination studies in rats suggest that 1) nicotinic agonists vary in the extent to which they produce
MA-like stimulant effects, 2) α4β2 nAChR-mediated actions play an important role in the MA-like stimulant effects of nicotinic agonists, and 3) varenicline dose-dependently antagonizes the MA-like stimulant actions of nicotine — consistent with the view that nicotinic partial agonists may help manage nicotine addiction and tobacco consumption (Rollema et al., 2007; Desai and Bergman, 2010).

The present research was conducted to further investigate the discriminative-stimulus effects of nicotine and related compounds. The goals of this work were to determine whether the discriminative-stimulus effects of MA and nicotine overlap in primate species and, if so, to examine the pharmacology of that overlap with a range of nAChR ligands. Using standard drug discrimination procedures, squirrel monkeys first were trained to distinguish a moderate dose of 0.1 mg/kg MA from saline. Next, the effects of monoamine uptake inhibitors (MA, cocaine), DA D1- and D2-like agonists [SKF82958 (±)-6-chloro-7,8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide], R(-)-NPA (R(-)-10,11-dihydroxy-N-propyl-noraporphine hydrochloride], and a selective serotonin reuptake inhibitor (citalopram) were tested to confirm the role of dopaminergic mechanisms in these effects of MA (Tidey and Bergman, 1998). This provided a pharmacologically empirical basis for characterizing the effects of nicotinic ligands in MA-trained subjects. Subsequently, substitution tests with a wide range of nicotinic agonists were conducted to evaluate their ability to mimic MA’s discriminative-stimulus effects. Drugs studied included α4β2 nAChR subtype—selective ligands previously characterized as either full agonists [nicotine, (+)-epibatidine, (−)-epibatidine] or partial agonists [isosorecolone, varenicline, (−)-cytisine, (−)-lobeline]; Anderson and Arneric, 1994; Badio and Daly, 1994; Hahn et al., 2003; Rollema et al., 2007]. Substitution tests also were conducted with the α7 nAChR subtype—selective agonists abanaquine and abana breeze (de Fiebre et al., 1995; Kem et al., 1997). Finally, drug interaction studies were conducted to compare modulation of the MA-like discriminative-stimulus effects of nicotine by the α4β2 competitive antagonist DHβE (Williams and Robinson, 1984) and the partial agonists varenicline and (−)-cytisine. Overall, results show overlap in the discriminative-stimulus effects of nicotinic agonists and MA in nonhuman primates, and provide further support for the views that 1) MA-like stimulant effects of nicotinic agonists are primarily mediated through actions at α4β2 nAChRs, and 2) nicotinic partial agonists that attenuate nicotine’s stimulant-like discriminable effects may be useful pharmacotherapeutic adjuncts in the management of nicotine addiction.

Materials and Methods

Subjects. Four experimentally naive adult male squirrel monkeys (Saimiri sciureus), weighing 650–900 g were subjects in the present studies. All subjects were individually housed in a climate-controlled vivarium under an automated 12-hour light/dark cycle. Except during testing, monkeys had unlimited access to water and were fed a daily allotment of high protein monkey chow (Purina Monkey Chow, St. Louis, MO), supplemented with fruit and multivitamins in the home cage. All monkeys were weighed daily; food intake was not restricted, and diets were adjusted as needed to maintain recommended body weights. Behavioral experiments were conducted daily (Monday—Friday) between 08:00 AM and 06:00 PM, under protocols that were approved by the Institutional Animal Care and Use Committee at McLean Hospital. Subjects were maintained in the McLean Animal Care Facility in accordance with guidelines provided by the 2011 Committee on Care and Use of Laboratory Animals of the Institute of Laboratory Animals Resources, Commission on Life Sciences, National Research Council. This facility is licensed by the U.S. Department of Agriculture.

Apparatus. The apparatus and methodology were comparable to those employed previously (Tidey and Bergman, 1998; Kangas et al., 2013). During experimental sessions, monkeys sat in customized Plexiglas chairs (Kelleher and Morse, 1968) that were enclosed in ventilated, sound-attenuating chambers provided with white noise at all times to mask extraneous sounds. While seated, monkeys faced a panel containing two sets of colored stimulus lights. Two response levers extended into the chamber, one below each set of stimulus lights, and were comfortably within the subject’s reach. The two response levers were set 15 cm apart. Depression of either lever with a force greater than 0.2 N produced an audible click and was recorded as a response. Prior to each behavioral session, a shaved portion of the monkey’s tail was secured under brass electrodes by a small stock and was coated with electrode paste to ensure a low-resistance electrical contact between electrodes and tail. Brief, low-intensity stimuli (200 milliseconds; 3 mA) could be delivered to the electrodes from a 60 Hz transformer. Experimental variables and data collection were controlled by PC computers with Med Associates interfacing equipment and operating software (MED-PC, MedState Notation; Med Associates, Inc., St. Albans, VT).

MA Discrimination. Subjects first were trained to press each of the two response levers under a 10-response fixed-ratio (FR) schedule of stimulus-termination. Under this schedule, a brief, mild electric stimulus (200 milliseconds; 3 mA) was programmed for delivery to the tail every 10 seconds during the illumination of red lights on the front panel. The completion of 10 consecutive lever-press responses (FR10) on one lever within 10 seconds turned off the red lights and the associated program of current delivery. The completion of each FR10 also initiated a 50-second time-out (TO) period, during which all lights in the chamber were extinguished and responding had no programmed consequences. The delivery of four electric stimuli prior to completion of the FR requirement also turned off all lights, terminated the program of stimulus delivery, and initiated the 50-second TO period. Once performance was stable on both levers under the FR10 response requirement, subjects initially were trained to discriminate intramuscular injections of 0.32 mg/kg MA from intramuscular injections of saline (Tidey and Bergman, 1998). Previous studies have indicated that the generalization profiles for many drugs greatly depend on training dose, and that higher doses generally are more pharmacologically restrictive than lower doses. For example, this type of relationship has been exploited by Spealman and colleagues to study the role of different monoaminergic mechanisms in the discriminative-stimulus effects of cocaine (Spealman, 1995). Thus, in the present study, we lowered the training dose of MA to 0.1 mg/kg to better assess the possibility of overlapping discriminative-stimulus effects among compounds from different pharmacological classes. After MA injection, only responses on one lever were reinforced; after saline injection, only responses on the other lever were reinforced. The assignment of MA-associated and saline-associated levers was counterbalanced across monkeys. During all training sessions, responses on the inappropriate lever reset the FR response requirement on the injection-appropriate lever.

When discrimination performance was stable from day to day or above the criterion (90% accuracy), daily training sessions were extended to encompass one to four components. Each component, which consisted of 10 presentations of the FR10, TO 50-second schedule, was preceded by a 10-minute TO period during which vehicle or MA could be administered. The number of components in daily training sessions varied in a pseudo-random manner, with the stipulation that MA was injected only before the final component of the session. Additionally, sessions in which only saline was administered in all components occurred periodically to avoid an invariant association between injection of MA and the final session component.
Drug testing was initiated when >90% of responses occurred on the injection-appropriate lever during the preceding training session and four of the last five training sessions. Test sessions included four components, during which all schedule parameters and contingencies were identical to those in the training sessions, with the exception that 10 consecutive responses on either lever extinguished the red lights and terminated the associated program of current delivery. Testing was conducted once or twice per week with training sessions on intervening days. During test sessions, incremental doses of a test drug were administered at the beginning of the 10-minute TO period preceding components of the test session (cumulative dosing). This procedure allowed determination of the effects of up to four cumulative doses during a single test session.

After all drugs were studied for their ability to substitute for MA, drug interaction studies were conducted to determine how pretreatment with selected compounds (varenicline, (-)-cytisine, and DHβE) modified the MA-like effects of nicotine. Pretreatment was based on data from preliminary experiments and published reports (Stolerman et al., 1995, 1997; Rollema et al., 2007; Desai and Bergman, 2010). Studies were conducted by administering single doses of varenicline (0.0032–0.1 mg/kg), (-)-cytisine (0.032–0.1 mg/kg), or DHβE (0.032–0.1 mg/kg) 5 minutes prior to redetermination of the cumulative dose-response function for nicotine (0.032–1.0 mg/kg), i.e., 15 minutes prior to the first session component. Cumulative doses of nicotinic ligands in substitution studies and pretreatment doses in drug interaction studies were selected on the basis of preliminary dose-ranging experiments. Doses ranged from those without effect to those that: a) engendered nicotine-like effects or b) produced untoward physiologic effects that precluded further increase in those that: a) engendered nicotine-like effects or b) produced untoward physiologic effects that precluded further increase in either cumulative dose or, in drug interaction studies, pretreatment dose. In the latter case, observed effects were tabulated for presentation in a table.

Drugs. Methamphetamine hydrochloride, cocaine hydrochloride, (+)-SK82958 hydrobromide, R-(-)-NPA, (-)-nicotine hydrogen tartrate, and (-)-lobeline hydrochloride were obtained from Sigma-Aldrich (St. Louis, MO). Citalopram hydrobromide was generously supplied by Lundbeck (Valby, Denmark). (-)-Cytisine [(1R,5S)-1,2,3,4,5,6-hexahydro-1,5-methano-4H-pyrrolo[1,2-a]pyridin-8-ol], and anabaseine hydrochloride [(S)-(+)-3-(2-piperidinyl)pyridine hydrochloride] were obtained from Tocris (Minneapolis, MN). Anabaseine dihydrochloride (3,4,5,6-tetrahydro-2,3′-bipyridine dihydrochloride), (-)-epibatidine [(2R)-2-(2,5,6-chloro-3-pyridinyl)-7-azacyclodec-2.1.3-heptane monohydrochloride], (+)-epibatidine [(2S)-2-(2,5,6-chloro-3-pyridinyl)-7-azacyclodec-2.1.3-heptane monohydrochloride], isoarecolone hydrochloride (1-methyl-4-acetyl-1,2,3,6-tetrahydropropyridine hydrochloride), and dihydro-β-erythrodine hydrobromide [(2S,3S,5S,6R,9,10,13-octahydro-2-methoxy-1H,12H-benzo[pyrrolo][3,4-g]indolizin-12-one hydrobromide) were obtained from the National Institute on Drug Abuse (Bethesda, MD). Varenicline [6,7,8,9-tetrahydro-6,10-methano-6H-pyraino[2,3-b][3]benzazepine] was generously donated by Dr. Hans Rollema (Pfizer Global Research and Development). All drugs were dissolved in 0.9% saline or water, and were injected by the intramuscular route of administration. The pH of nicotine and varenicline was adjusted as needed to 7.0 with 0.1 N sodium hydroxide. Doses of each drug are expressed in terms of the free base.

Data Analysis. Data from the test component immediately following injection were used to express the effects of the administered cumulative dose. The percentage MA-associated lever responding in each component of the session was calculated by dividing the number of responses on the injection lever by the total number of responses on both levers. Response rates were calculated for each component by dividing the total number of responses by the duration of the component minus time-out periods. If the mean response rate in a component was less than 0.2 responses per second, data from that component were excluded from further analysis. Mean results for vehicle and each dose of a drug were calculated by averaging data for the four subjects. Complete substitution with a dose of test drug alone or after pretreatment was defined for individual subjects and for the group of subjects as the allocation of >90% of total responses to the MA-associated lever. An intermediate level of responding (31 to 89%) on the MA-lever was defined as incomplete substitution, whereas the allocation of ≤30% of responses to the MA-lever was defined as no substitution.

TABLE 1

<table>
<thead>
<tr>
<th>Drug</th>
<th>Doses</th>
<th>ED_{50} ± S.E.M.</th>
<th>Relative Potency (MA-Like Stimulus Effects)</th>
<th>In Vitro Affinity (K_{i} values at a4/2)</th>
<th>Relative Affinity at a4/2 Receptors</th>
<th>In Vitro Affinity (K_{i} values at α7)</th>
<th>Relative Affinity at α7 Receptors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mg/kg</td>
<td>mg/kg (μmol/kg)</td>
<td>nM</td>
<td>nM</td>
<td></td>
<td>nM</td>
<td></td>
</tr>
<tr>
<td>Nicotine</td>
<td>0.01–0.32</td>
<td>0.032 ± 0.014 (0.198)</td>
<td>1</td>
<td>3.4±_1^a,b_1^c,d_1^e,f</td>
<td>1</td>
<td>4,895_1^a</td>
<td>1</td>
</tr>
<tr>
<td>(+)-Epibatidine</td>
<td>0.0001–0.001</td>
<td>0.0005 ± 0.00003 (0.0024)</td>
<td>0.015</td>
<td>0.05±_1^a,b_1^c,d_1^e,f</td>
<td>0.015</td>
<td>255±_1^a</td>
<td>0.052</td>
</tr>
<tr>
<td>(-)-Epibatidine</td>
<td>0.0001–0.001</td>
<td>0.0005 ± 0.00002 (0.0024)</td>
<td>0.015</td>
<td>0.06±_1^a,b_1^c,d_1^e,f</td>
<td>0.018</td>
<td>109±_1^a</td>
<td>0.022</td>
</tr>
<tr>
<td>Isoarecolone</td>
<td>0.32–10</td>
<td>2.8 ± 0.73 (19.3)</td>
<td>87.5</td>
<td>611_1^a</td>
<td>179.7</td>
<td>>100,000_1^a</td>
<td>20.43</td>
</tr>
<tr>
<td>Anabaseine</td>
<td>0.1–1.0</td>
<td>0.53 ± 0.17 (3.31)</td>
<td>16.6</td>
<td>32_1^a</td>
<td>9.41</td>
<td>58_1^a</td>
<td>0.012</td>
</tr>
<tr>
<td>Anabasine</td>
<td>0.1–1.0</td>
<td>0.74 ± 0.09 (4.31)</td>
<td>23.1</td>
<td>260_1^a</td>
<td>76.5</td>
<td>58_1^a</td>
<td>0.012</td>
</tr>
<tr>
<td>Varenicline</td>
<td>0.032–0.18</td>
<td>0.11 ± 0.025 (0.52)</td>
<td>3.44</td>
<td>0.17±_1^a,b_1^c,d_1^e,f</td>
<td>0.05</td>
<td>620±_1^a</td>
<td>0.127</td>
</tr>
<tr>
<td>(-)-Cytisine</td>
<td>0.032–1.0</td>
<td>N.D.</td>
<td>N.D.</td>
<td>0.012–1.5±_1^a,b_1^c,d_1^e,f</td>
<td>0.004–0.44</td>
<td>260–15,000_1^a,b_1^c,d_1^e,f</td>
<td>0.05–3.06</td>
</tr>
<tr>
<td>(-)-Lobeline</td>
<td>0.1–3.2</td>
<td>N.D.</td>
<td>N.D.</td>
<td>1.5–16±_1^a,b_1^c,d_1^e,f</td>
<td>0.44–4.71</td>
<td>11,600–13,100_1^a,b_1^c,d_1^e,f</td>
<td>2.37–2.68</td>
</tr>
</tbody>
</table>

N.D., not determined.

*Jensen et al., 2003.

*Xiao and Kellar, 2005.

*Decker et al., 1996.

*Markus et al., 1986, 1996.

*Sulliyan et al., 1994.

*Becker et al., 1995.

*Hoff and Daly, 1994.

*Hahn et al., 2003.

*Damaj et al., 1994.

*Xem et al., 1997.

*de Fiebre et al., 1995.

*Damaj et al., 1997.

*Miller et al., 2003.
Data were further analyzed to compare potency and maximum effects among drugs, to evaluate drug interactions, and to examine correspondence between the effects of nicotinic drugs in the present experiments and their published affinities for different subtypes of the nicotinic receptor. As appropriate, analysis of variance followed by Dunnett’s t test or a paired t test was used to evaluate statistical significance of averaged data (defined at the 95% level of confidence; \(P < 0.05 \)). When appropriate, interpolation or linear regression using Bioassay Software (Bioassay version Beta 6.2; MED Associates, Inc.) was used to calculate effective dose50 (ED50) values (±S.E.M. for interpolation and 95% confidence limits for regression) from data points on the linear portions of the dose-response functions (Snedecor and Cochran, 1967). In experiments to evaluate varenicline-, (-)-cytisine-, and DHβE-nicotine interactions, ED50 values were determined for nicotine alone and in the presence of each drug; pairs of ED50 values were considered to be significantly different if their 95% confidence limits did not overlap. When significant differences in ED50 values were observed, relative potency estimates were calculated using standard parallel-line bioassay techniques described by Finney (1964).

Finally, correspondence between the effects of drugs in drug discrimination and receptor binding studies was examined by comparing the relative potency of nicotinic drugs in the present experiments (i.e., ED50 values divided by the ED50 value for nicotine) and their published relative affinities for binding \(a4\beta2 \) and \(a7 \) nicotinic receptors in vitro (Ki values divided by the Ki value for nicotine). Relative affinity values for each drug were obtained from previously published radioligand binding experiments in rat brain. Data were taken from experiments using \(^{3}H\)nicotine binding for the \(a4\beta2 \) receptor subtype and \(^{125}I\)β-tungstate (Bgt) binding for the \(a7 \) nicotinic receptor subtype, and affinities relative to nicotine were averaged across studies (see Table 1).

Results

MA Discrimination. The 0.1 mg/kg training dose of MA maintained reliable discriminative-stimulus control in all four subjects throughout the present studies (> 18 months). During testing sessions, maximum responding on the MA-associated lever in all subjects occurred following a cumulative dose of 0.1 mg/kg MA (Fig. 1; top panel). MA also produced a dose-related elevation in response rate, which increased to approximately 200% of vehicle control values following the training dose or the cumulative test dose of 0.1 mg/kg; however, differences in the magnitude of effect among individual subjects precluded statistical significance for the averaged data (\(F_{4,15} = 2.17; P > 0.05 \)). Neither the position and slope of the cumulative dose-response function for MA discrimination (0.0032–0.1 mg/kg) nor its apparent rate-increasing effects varied significantly over the course of the present studies. Consequently, discrimination and response rate data for MA at the beginning and end of the present studies were averaged for control values and graphic presentation.

Dopaminergic Drugs. The administration of MA (0.0032–0.1 mg/kg) in test sessions produced dose-dependent substitution for the training dose of MA, with full substitution following the cumulative dose of 0.1 mg/kg MA (Fig. 1; top panel). Like MA, the nonselective monoamine transport blocker cocaine and the DA \(D_{1} \)- and \(D_{2} \)-like agonists SKF82958 and \(R-(−)\)-NPA, respectively, produced dose-dependent and full substitution for 0.1 mg/kg MA, with maxima of 90–94% responding on the MA-associated lever following cumulative doses of 0.32 mg/kg cocaine, 0.1 mg/kg SKF82958, and 0.01 mg/kg \(R-(−)\)-NPA (Fig. 1; top panel). In contrast, the serotonin-selective reuptake inhibitor citalopram did not substitute for the training dose of MA (maximum: 2% drug-lever responding after a cumulative dose of 10 mg/kg; Fig. 1, top panel). Higher cumulative doses of citalopram were not studied to avoid untoward effects, e.g., convulsions, previously observed with high doses of serotonin-selective reuptake inhibitors (Spealman, 1995). Although cocaine, like MA, increased responding in a dose-related manner, response rates were not significantly changed from vehicle values by any of the drugs studied (\(F_{4,15} = 1.23; P > 0.05 \); Fig. 1; bottom panels).

Nicotinic Agonists. Nicotine produced dose-dependent increases in responding on the MA-associated lever and fully substituted for the 0.1 mg/kg training dose of MA following cumulative doses of 0.1 (90%) and 0.32 mg/kg (100%) nicotine (Fig. 2, top left panel). The (+)- and (−)-enantiomers of epibatidine also produced dose-dependent increases on the
MA-associated lever, and both isomers produced >85% responding on the MA-associated lever following the cumulative dose of 0.001 mg/kg [mean ± S.E.M.: 86 ± 14.3% for (+)-epibatidine and 96.8 ± 3.3% for (−)-epibatidine; Fig. 2, top middle and right panels, respectively]. Neither nicotine nor the enantiomers of epibatidine significantly altered rates of responding from control values in the group of four monkeys (Fig. 2; bottom panels). However, the highest doses of each drug produced observable effects, including profuse salivation and emesis (see below and Table 2).

The nicotinic agonists isoarecolone, anabaseine, anabasine, and varenicline also produced dose-dependent increases in responding on the MA-associated lever (Fig. 3; top left panel). However, substitution was incomplete following the highest cumulative doses of these agonists, with maximal values ranging from approximately 50 to 65% responding on the MA-associated lever. Among these ligands, a clear plateau in MA-like effects indicative of partial agonist actions was observed only with varenicline: the mean MA-like effects of the highest cumulative pretreatment dose, 0.32 mg/kg, did not exceed those of the immediately preceding cumulative dose (0.18 mg/kg) and rates of responding were comparable to control values. The two highest doses of isoarecolone also produced comparable effects; however, the 0.5 log unit increase in dose from 3.2 to 10 mg/kg produced a small, albeit nonsignificant, increase in responding on the MA-associated lever and a decrease in response rate to 60% of control values, precluding a more definitive characterization of its efficacy. No indication of a plateau in MA-like effects was apparent with either anabasine or anabaseine. Anabasine did not alter mean rates of responding over the range of doses studied, whereas anabaseine reduced response rate in a dose-dependent manner and, following the highest cumulative dose (3.2 mg/kg), nearly or completely eliminated responding. As with nicotine and regardless of the presence or absence of effects on response rates, the highest cumulative doses of each of these nicotinic agonists produced untoward physiologic signs that precluded further testing (see below and Table 2).

The rank order of potency with which nicotinic agonists produced MA-like effects was: (−)-epibatidine ≈ (+)-epibatidine > nicotine ≈ varenicline > anabaseine > anabasine > isoarecolone (Table 1). Based on ED50 estimates, isoarecolone and the two enantiomers of epibatidine were, respectively, the least and most potent nicotinic ligands in the present studies, and

![Fig. 2. Effects of the cumulatively administered nicotinic agonists nicotine and the enantiomers of epibatidine, in squirrel monkeys trained to discriminate 0.1 mg/kg MA from saline. Abscissae and ordinates for the top and bottom panels are as in Fig. 1. See Fig. 1 for other details.](image-url)
One or more effects were observed following injection of the listed cumulative dose either prior to or following the session component in which that dose was studied. The + sign represents the observation of each effect in an individual subject, and the − sign indicates that no untoward effect was observed at that dose in any subjects.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Doses mg/kg</th>
<th>Salivation/ Foam</th>
<th>Emesis</th>
<th>Tremor</th>
<th>Convulsions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle</td>
<td>0</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Nicotine</td>
<td>0.32</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>(+)-Epibatidine</td>
<td>0.001</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>(−)-Epibatidine</td>
<td>0.001</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Isoarecolone</td>
<td>1.0</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.2</td>
<td>++</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td></td>
<td>10.0</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Anabaseine</td>
<td>1.0</td>
<td>++</td>
<td>+</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>3.2</td>
<td>++</td>
<td>+</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>Anabasine</td>
<td>1.0</td>
<td>++</td>
<td>+</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>Varenicline</td>
<td>0.1</td>
<td>++</td>
<td>+</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.18</td>
<td>++</td>
<td>+</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.32</td>
<td>++</td>
<td>+</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td>(−)-Cytisine</td>
<td>0.32</td>
<td>++</td>
<td>+</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td>(−)-Lobeline</td>
<td>1.0</td>
<td>++</td>
<td>+</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>3.2</td>
<td>++</td>
<td>+</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>10.0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
</tbody>
</table>

The ED50 value for nicotine’s MA-like effects (Fig. 4, top panel; Table 3). The highest cumulative dose of nicotine after treatment with DHβE (1.0 mg/kg) produced approximately 70% responding on the MA-associated lever and an approximately 30 to 40% decrease in response rates (Fig. 4; bottom right panel).

Pretreatment with the nicotinic α4β2 partial agonist varenicline (0.032, 0.032, or 0.1 mg/kg) also antagonized MA-like discriminative-stimulus effects engendered by cumulatively administered nicotine (0.01–1.0 mg/kg). Like DHβE, all doses of varenicline shifted the nicotine dose-response curve rightward to a similar extent (Fig. 5, top left panel). Based on estimated ED50 values, the potency of nicotine for producing MA-associated responding decreased approximately 12-fold in the presence of 0.0032 mg/kg varenicline, and approximately 16-fold following a 30-fold higher pretreatment dose of varenicline (0.1 mg/kg; Table 3). As in experiments with DHβE, the highest cumulative dose of nicotine (1.0 mg/kg) after treatment with the two highest doses of varenicline (0.032 and 0.1 mg/kg) produced a moderate (approximately 30–40%) but statistically non-significant decrease in response rates (Fig. 5; bottom left panel).

Like DHβE and varenicline, the nicotinic α4β2 partial agonist (−)-cystisine (0.032 or 0.1 mg/kg) antagonized the MA-like discriminative-stimulus effects of cumulatively administered nicotine (0.01–1.0 mg/kg) by shifting its dose-effect curve rightward (Fig. 5, top right panel). Based on ED50 values, the effects of nicotine were displaced approximately 7- and 14-fold rightward by pretreatment with 0.032 mg/kg and 0.1 mg/kg (−)-cystisine, respectively (Table 3). Like varenicline, pretreatment doses of (−)-cystisine did not substantively alter nicotine’s effects on response rates, and only moderate (<5%) decreases from vehicle-control rates of responding were observed following their combination (Fig. 5, bottom right panel).

Although not studied separately, neither the α4β2 antagonist DHβE nor the α4β2 partial agonists varenicline and (−)-cystisine appeared to attenuate the emetic effects of cumulative doses of nicotine that produced full substitution for MA. As described above, tremor or frank convulsions following treatment with several nicotinic ligands was evident in the present studies. In this regard, higher doses of DHβE, like α4β2 agonists, previously have been reported to produce seizure activity (Damaj et al., 1999; Dobelis et al., 2003). Consequently, higher pretreatment doses of DHβE, varenicline, or (−)-cystisine or higher cumulative doses of nicotine after pretreatment with these drugs were not studied so as to avoid further untoward effects in the present studies.

Discussion

The main objective of the present studies was to characterize discriminative-stimulus effects of nicotine and nicotinic ligands in monkeys that discriminated a moderate training dose of the monoaminergic stimulant MA (0.1 mg/kg). Initial experiments indicated that, as in previous studies with a higher MA training dose (0.32 mg/kg), indirect monoaminergic agonists (MA, cocaine) and direct DA D1- and D2-like receptor agonists (SKF82958 and R(-)-NPA, respectively) engendered dose-dependent and full substitution for MA (Tidey and Bergman, 1998). These results, supporting the view that DA-related mechanisms play a prominent role in the discriminative-stimulus effects of MA, provide a pharmacologically empirical basis for evaluating behavioral overlap
in the effects of drugs that act via different (e.g., nicotinic) receptor mechanisms.

Nicotine and the enantiomers of epibatidine also produced dose-dependent increases in MA-associated responding, and fully (or, in the case of (+)-epibatidine, nearly fully) substituted for MA without greatly altering response rates. The comparable effects of these nicotinic full agonists are consistent with their similar nicotinic $\alpha_4\beta_2$ subtype selectivity (see Table 1) and with previous drug discrimination data from nicotine-trained rodents (Reavill et al., 1987; Damaj et al., 1994). They contrast somewhat with data from MA-trained rats in which only nicotine fully substituted for the training dose of MA (Desai and Bergman, 2010). In those studies, 0.001 mg/kg of both (+)-epibatidine and (-)-epibatidine produced approximately 60 to 70% responding on the MA-associated lever, whereas a 3-fold increase in the dose of both enantiomers completely eliminated responding, precluding further testing. Differences in the two studies may reflect species-related differences in vulnerability to the rate-decreasing effects of the epibatidine enantiomers or, alternatively, differences in the resistance of responding to their behaviorally disruptive effects when it is maintained by stimulus-termination (present studies) or food presentation (previous studies). Notwithstanding these considerations, the present findings clearly show that the discriminative-stimulus effects of nicotine and the enantiomers of epibatidine overlap substantively with those of monoaminergic stimulants like MA in primate species.

The nicotinic receptor ligand varenicline also engendered dose-related MA-like effects but, in contrast to nicotine and epibatidine, the highest doses produced only intermediate levels of substitution. Varenicline previously has been characterized as a nicotinic partial agonist at the $\alpha_4\beta_2$ receptor subtype (Rollema et al., 2007, 2010) and, depending on experimental conditions, may substitute partially or fully for nicotine in nicotine-trained rats and monkeys (Rollema et al., 2007; Smith et al., 2007; LeSage et al., 2009; Jutkiewicz et al., 2011; Cunningham et al., 2012). The plateau in the dose-effect function for varenicline at an intermediate level of responding on the MA-associated lever in the present experiments, in conjunction with its ability to antagonize the stimulant effects of nicotine in MA-trained rodents (Desai and Bergman, 2010), is consistent with its characterization as a nicotinic partial agonist.

Like varenicline, isoarecolone is characterized as an $\alpha_4\beta_2$-selective ligand and can fully reproduce the discriminative-stimulus effects of nicotine in nicotine-trained rats (Reavill et al., 1987; Damaj et al., 1994). Based upon other behavioral

Fig. 3. (Left) Effects of the cumulatively administered nicotinic agonists, isoarecolone, anabaseine, anabasine, and varenicline in squirrel monkeys trained to discriminate 0.1 mg/kg MA from saline. (Right) Effects of the cumulatively administered nicotinic agonists, (-)-cytisine and (-)-lobeline in squirrel monkeys trained to discriminate 0.1 mg/kg MA from saline. See Fig. 1 for other details.
and biochemical findings, however, isoarecolone has been forwarded as a nicotinic partial agonist (Reavill et al., 1987; Whiteaker et al., 1995; Mirza et al., 1996; Hahn et al., 2003; Shoaib, 2006). The present findings that the highest doses of isoarecolone produced only an intermediate level of substitution for MA might be considered supporting evidence for that view. However, this interpretation remains speculative in the absence of a more definitive characterization of isoarecolone’s efficacy, e.g., evaluation of varenicline-like antagonism of nicotine’s behavioral effects.

The minor tobacco alkaloids anabasine and anabaseine produced dose-related increases in responding on the MA-associated lever without nicotine-like full substitution or a varenicline-like plateau in MA-like effects. Both drugs previously have displayed a7 and, with lower efficacy, a4b2 receptor-mediated agonist actions (Arendash et al., 1995; Kem et al., 1997; Stevens et al., 1998). Possibly, the limited nicotine-like effects of anabasine and anabaseine in the present experiments reflect relatively low efficacy at the a4b2 receptor (Takada et al., 1989; Brioni et al., 1994; de Fiebre et al., 1995; Stolerman et al., 1995; Desai and Bergman, 2010). Alternatively, a7-mediated actions of anabasine and anabaseine may have obscured the full expression of their MA-like effects. Although such explanations are speculative in the absence of further information, the present and previous findings in monkeys and rats (Desai and Bergman, 2010) show that anabasine and anabaseine can produce MA-like effects. Although limited, such stimulant-like effects of minor tobacco alkaloids, like those of nicotine, may contribute to the maintenance of tobacco consumption (Clemens et al., 2009; see Hoffman and Evans, 2013, for review).

(–)-Cytisine and (–)-lobeline, which have high nAChR affinity and a4b2 subtype-selectivity (see Table 1), failed to engender MA-like discriminative-stimulus effects in the present studies. Previously, (–)-cytisine was shown to both partially substitute for nicotine in rats and block its discriminative-stimulus effects, consistent with its characterization as a nicotinic partial agonist (Stolerman et al., 1984; Reavill et al., 1990; Brioni et al., 1994; Jutkiewicz et al., 2011; Cunningham et al., 2012). The absence of MA-like effects in the present studies suggests that (–)-cytisine may have less of a stimulant action in primate species than other a4b2 partial agonists such as varenicline. (–)-Lobeline, like (–)-cytisine, is considered a partial agonist at the a4b2 nAChR but, in addition, appears to act through multiple mechanisms, including monoamine uptake inhibition (Damaj et al., 1997; Dwoskin and Crooks, 2002). Thus, (–)-lobeline has been shown to substitute for a low training dose of cocaine, yet

![Fig. 4. Effects of pretreatment with the selective competitive a4b2 nicotinic antagonist DHβE on MA-like responding produced by nicotine in squirrel monkeys trained to discriminate 0.1 mg/kg MA from saline. Abscissae: dose of cumulatively administered nicotine (mg/kg; log scale). See Fig. 1 for other details.](image_url)

TABLE 3

Doses of nicotine alone and after pretreatment with DHβE, varenicline, or (–)-cytisine that are calculated to produce 50% responding on the MA-associated lever (ED50 values with 95% confidence intervals) and relative potencies of nicotine after pretreatment (ED50 nicotine/ED50 nicotine after pretreatment)

Data were obtained in squirrel monkeys trained to discriminate intramuscular injections of 0.1 mg/kg (0.67 μmol/kg) MA from saline.

<table>
<thead>
<tr>
<th>Pretreatment Drug</th>
<th>Doses</th>
<th>ED50 (\text{mg/kg})</th>
<th>Relative Potency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nicotine alone</td>
<td>0.01–0.32 mg/kg</td>
<td>0.02 (0.02–0.05) (0.20)</td>
<td>1</td>
</tr>
<tr>
<td>DHβE</td>
<td>0.032 mg/kg</td>
<td>0.39 (0.19–1.90) (2.39)</td>
<td>0.08 (0.03–0.20)</td>
</tr>
<tr>
<td>Varenicline</td>
<td>0.0032 mg/kg</td>
<td>0.39 (0.19–2.55) (2.40)</td>
<td>0.11 (0.03–0.27)</td>
</tr>
<tr>
<td>(–)-Cytisine</td>
<td>0.032 mg/kg</td>
<td>0.75 (0.45–1.69) (4.63)*</td>
<td>0.06 (0.01–0.14)</td>
</tr>
</tbody>
</table>

*Significant deviation from linearity.

**Significant deviation from linearity.

**Estimate due to nonsignificant regression.
attenuate the effects of a higher training dose of cocaine or MA (Miller et al., 2001; Harrod et al., 2003; Desai et al., 2003; Cunningham et al., 2006). Further indicative of its poorly-understood actions, (−)-lobeline has been reported to produce nicotine-like effects in studies of locomotor activity, but not in place conditioning, self-administration, or drug discrimination studies (Fudala and Iwamoto, 1986; Corrigall and Coen, 1989; Reavill et al., 1990; Stolerman et al., 1995; Harrod et al., 2003). Although the absence of MA-like effects in the present study is not inconsistent with its characterization as a nicotinic partial agonist, additional data showing that (−)-lobeline, like varenicline, can antagonize such effects of nicotine would strengthen this categorization.

Although only isoarecolone and anabaseine decreased response rates, high cumulative doses of all nicotinic agonists produced untoward physiologic signs (emesis, tremor, or convulsions) that precluded the study of higher doses (see Table 2). However, profuse salivation and emesis alone did not appear to interfere with discrimination behavior, e.g., nicotine and epibatidine fully substituted for MA despite profuse salivation and emesis in all subjects. Although the precise mechanism responsible for these adverse physiologic signs remains unclear, it is notable that they can be produced by both α4β2 nAChR agonists and antagonists as well as by α7-selective ligands (Damaj et al., 1999; Dobelis et al., 2003). Thus, it is unlikely that these signs reflect actions at a single subtype of nicotinic receptor.

Pretreatment with the competitive antagonist DHβE and the α4β2-selective partial agonists varenicline and (−)-cytisine shifted the dose-effect function for nicotine’s MA-like effects rightward, complementing similar results in nicotine-trained rats (Stolerman et al., 1997; Jutkiewicz et al., 2011). Although each drug served as a surmountable antagonist, the range of antagonism was surprisingly limited, i.e., an approximately 1.0–1.25 log unit rightward shift in the nicotine dose-effect function. The limited range of antagonist actions of DHβE and (−)-cytisine might reflect the use of two antagonist doses spanning only a 0.5 log unit range; higher pretreatment doses might have led to additional antagonism. In the case of varenicline, however, the lowest pretreatment dose (0.0032 mg/kg) increased nicotine’s ED50 value approximately 10-fold, whereas 10- and 30-fold increases in pretreatment dose produced only a <2-fold further increase in nicotine’s ED50 value. The reasons for such limited dose dependence in the nicotine-antagonist effects of varenicline are uncertain but may be partly related to training dose. In previous studies of the same three antagonists in nicotine-trained rats, dose dependence was more evident in subjects that discriminated a low, rather
than high, dose of nicotine (Jutkiewicz et al., 2011). Possibly, a lower training dose of MA and a concomitant increase in nicotine’s potency might also have revealed greater antagonist dose dependence in the present studies.

Comparison of the potencies of nicotinic agonists with their reported binding affinities at α4β2 and α7 nicotinic receptor subtypes reveals some correspondence between their relative behavioral potencies and their relative potencies for inhibiting [3H]nicotine binding at the α4β2 receptors ($r^2 = 0.83$, $P = 0.005$) but not [125I]α-bungarotoxin binding at α7 receptors ($r^2 = 0.01$, $P = 0.83$; Fig. 6; Table 1). These observations parallel a similar analysis in MA-trained rats, and are consistent with the ability of the α4β2 receptor blocker DHβE, but not the α7 receptor blocker MLA, to antagonize nicotine’s discriminative-stimulus effects (Brioni et al., 1996; Desai and Bergman, 2010). In concert with the antagonist effects of DHβE and the partial agonists varenicline and (-)-cytisine in the present experiments, such correspondence provides added support for the idea that the stimulant-like effects of nicotine and other nicotinic agonists are predominantly mediated by their actions at the α4β2 nAChR (Reavill et al., 1987, 1988; Stolerman et al., 1995; Desai and Bergman, 2010).

Acknowledgments

The authors thank Elise Trowel for expert technical support, Dr. Hans Rollema (Pfizer, Inc.) for providing varenicline, Drs. B. Kangas and C. A. Paronis for their comments on an earlier version of this manuscript, and the National Institute on Drug Abuse Drug Supply Program for providing enantiomers of epibatidine, isoarecolone, anabasine, and DHβE.

Authorship Contributions

Participated in research design: Desai, Bergman.
Conducted experiments: Desai.
Performed data analysis: Desai.
Wrote or contributed to the writing of the manuscript: Desai, Bergman.

References

Address correspondence to: Rajeev I. Desai, Preclinical Pharmacology Laboratory, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478. E-mail: rdesai@mclean.harvard.edu