Pharmacokinetic and Pharmacodynamic Properties of GS-9620, a Novel Toll-Like Receptor 7 Agonist, Demonstrate Interferon-Stimulated Gene Induction without Detectable Serum Interferon at Low Oral Doses

Abigail Fosdick, Jim Zheng, Stefan Pflanz, Christian R. Frey, Joseph Hesselgesser, Randall L. Halcomb, Grushenka Wolfgang, and Daniel B. Tumas

Departments of Drug Safety Evaluation (A.F., G.W.), Drug Metabolism (J.Z.), Biology (S.P., C.R.F., D.B.T.), Clinical Virology (J.H.), and Medicinal Chemistry (R.L.H.), Gilead Sciences, Inc., Foster City, California

Received July 16, 2013; accepted October 16, 2013

ABSTRACT

GS-9620 [8-(3-(pyrrolidin-1-ylmethyl)benzyl)-4-amino-2-butoxy-7,8-dihydropteridin-6(5H)-one] is a potent, orally bioavailable small-molecule agonist of Toll-like receptor 7 (TLR7) developed for finite treatment of chronic hepatitis B viral (HBV) infection, with the goal of inducing a liver-targeted antiviral effect without inducing the adverse effects associated with current systemic interferon-α (IFN-α) therapies. We characterized the pharmacodynamic response of GS-9620 in CD-1 mice and cynomolgus monkeys following intravenous or oral administration and showed that GS-9620 induces the production of select chemokines and cytokines, including IFN-α and interferon-stimulated genes (ISGs). It is noteworthy that we also demonstrated that, in animals and healthy human volunteers, oral administration of GS-9620 can induce a type I interferon-dependent antiviral innate immune response, as measured by whole-blood mRNA of the ISGs 2′,5′-oligoadenylate synthetase 1 (OAS1) and myxovirus resistance 1 (MX1), without the induction of detectable systemic IFN-α, i.e., a presystemic response. Additionally, presystemic induction of hepatic OAS1 and MX1 mRNA was observed in CD-1 mice in the absence of detectable systemic IFN-α. We propose that the mechanism of this presystemic response is likely its high intestinal absorption, which facilitates localized activation of TLR7, probably in plasmacytoid dendritic cells at the level of gut-associated lymphoid tissue and/or the liver. This localized response is further supported by data that indicate only minimal contributions of systemic immune stimulation to the overall pharmacodynamic response to orally administered GS-9620. These data demonstrate that GS-9620 can induce an antiviral innate immune response without inducing a systemic IFN-α response and thus suggest the therapeutic potential of this approach in the treatment of chronic HBV infection.

Introduction

Toll-like receptor 7 (TLR7) is a pathogen recognition receptor that plays an important role in the detection of, and the innate immune response to, pathogens. TLR7 is predominantly activated by viral single-stranded RNA and is localized within the endolysosomal compartments of plasmacytoid dendritic cells (pDCs) and B lymphocytes in humans and nonhuman primates (Jarrossay et al., 2001; Kadowaki et al., 2001; Hornung et al., 2002; Ketloy et al., 2008). Activation of pDCs plays an important role in the innate response to viral pathogens, and these cells are responsible for the majority of type I interferon (IFN) production during the acute phase of a viral infection. The induction and secretion of endogenous IFNs (e.g., IFN-α, IFN-β) also facilitate the development of an efficient adaptive immune response (Colonna et al., 2004; Feld and Hoofnagle, 2005; Kanzer et al., 2007; Barbalat et al., 2011). Interferons induce the transcription of interferon-stimulated genes (ISGs), which generate an antiviral state within cells (de Veer et al., 2001; Schoggins et al., 2011), as well as induce the production of other cytokines and chemokines which facilitate intercellular communication and cellular trafficking.
Administration of exogenous IFN-α (e.g., recombinant IFN-α or pegylated IFN-α) provides therapeutic benefit in patients with chronic hepatitis B (HBV) and C viral infections. In HBV, durable responses, normalization of alanine aminotransferase, and sustained reduction in viremia have been attained in a small percentage (<20%) of patients treated for 1 year with exogenous IFN-α (Marcellin et al., 2009; Moucari et al., 2009; Reijnders et al., 2011). A key observation is loss of HBV surface antigen (HBsAg) and seroconversion for anti-HBsAg antibody following IFN-α treatment increases for several years after discontinuation. This supports the hypothesis that viral control is due to immune modulation and slow induction of a protective antiviral immune response.

However, exogenous IFN-α treatment has several notable barriers to patient acceptance. These include the necessity of subcutaneous administration, and treatment-limiting adverse effects (Marcellin et al., 2009; Moucari et al., 2009; Reijnders et al., 2011). The low rate of HBsAg loss and seroconversion and high rate of adverse events associated with current therapies illustrate the need for new approaches to induce a protective antiviral immune response and durable cure in patients with chronic HBV. Consequently, orally administered immunomodulatory therapies are an attractive approach to developing tolerable, safer therapies that are more broadly applicable and potentially associated with higher long-term viral eradication rates in a larger percentage of treated patients.

GS-9620 [8-(3-pyrrolidin-1-ylmethyl)benzyl]-4-amino-2-butoxy-7,8-dihydropteridin-6(5H)-one], a dihydropteridinone derivative, was designed to induce a presystemic response, defined as local stimulation of innate immune cells, probably in pDCs in gut-associated lymphoid tissue (GALT) and/or the liver without the induction of a systemic IFN-α response. GS-9620 possesses high absorption properties in the gastrointestinal tract but has moderate clearance during first-pass hepatic metabolism. These properties minimize systemic exposure of GS-9620 following oral administration while targeting exposure to, and stimulation of, innate immune cells within the gastrointestinal tract and/or liver. This presystemic response can be detected in whole blood by the presence of 2′,5′-oligoadenylate synthetase 1 (OAS1) and myxovirus resistance 1 (MX1) mRNA. Both OAS1 and MX1 are specific and sensitive biomarkers of IFN-α induction (Schattner et al., 1981; von Wussow et al., 1990; Roers et al., 1994). The therapeutic benefit of TLR7 stimulation by oral GS-9620 in animal models of chronic HBV infection has been shown in both chimpanzees infected with HBV and the woodchuck hepatitis virus model. In both models, oral administration of GS-9620 reduced viremia and induced an antiviral immune response, and in woodchucks, GS-9620 induced an antibody response to viral surface antigen with subsequent clearance of viral S-antigen (Menne et al., 2011; Lanford et al., 2013).

We conducted a series of studies to explore the pharmacodynamic and pharmacokinetic properties of GS-9620, a selective TLR7 agonist, and to determine whether oral administration of low doses of GS-9620 could induce OAS1 and MX1 mRNA in peripheral blood in the absence of detectable systemic IFN-α in mice and cynomolgus monkeys. Additionally, we assessed the relative contribution of systemic immune stimulation to the pharmacodynamic response to GS-9620.

Materials and Methods

In addition to the information described in the following sections, details on experimental approaches and reagents are available in the Supplemental Materials.

TLR7 Agonist

GS-9620 is a dihydropteridinone derivative and was synthesized by the Department of Medicinal Chemistry at Gilead Sciences, Inc. (Foster City, CA) (Supplemental Fig. 1; Roethle et al., 2013).

Nuclear Factor κB Reporter Assay

Murine TLR activity assays were performed at InvivoGen (San Diego, CA; http://www.invivogen.com/hek-blue-tlr-cells).

Splenocyte and Peripheral Blood Mononuclear Cell In Vitro Cytokine Release Assays

Cytokine release in mice (splenocytes) and cynomolgus monkeys (peripheral blood mononuclear cells (PBMC)) was assessed by Eurofins (Bothell, WA) using standard methods. Secreted proteins in cell culture supernatants were assessed by multiplex immunoassay using species-specific, standard Luminex (Austin, TX) and/or enzyme-linked immunosorbent assay technologies.

In Vivo Studies

Animals. In vivo studies were conducted at Covance Laboratories, Inc. All protocols were approved by the respective Institutional Animal Care and Use Committees.

Blood Collection. Blood was collected at various time points and processed for serum and/or RNA. In the mouse studies, three to five mice were euthanized at each time point via cardiac puncture under CO₂ anesthesia. For cynomolgus monkeys, serial blood samples were collected from conscious animals via the femoral vein or other suitable veins.

Cytokine Analysis. Cytokine evaluation was performed by Eurofins. Cytokine detection in serum was accomplished by a multiplex immunoassay using species-specific, standard Luminex and/or enzyme-linked immunosorbent assay technologies.

ISG Analysis

As described earlier, whole blood was collected into tubes containing K₂EDTA. Isolated whole-blood total RNA was quantified by absorbance spectroscopy, and equal quantities were used as a template for 1-step reverse-transcription polymerase chain reaction (qPCR) reactions to measure the level of mRNA transcripts of the interferon-stimulated genes OAS1 and MX1 and the control gene glyceraldehyde-3-phosphate dehydrogenase or 18S. Individual primer/probe sets were purchased from Life Technologies (Carlsbad, CA). Each mRNA signal was normalized to the mRNA signal of the endogenous control (glyceraldehyde-3-phosphate dehydrogenase or 18S ribosomal RNA) in the same sample using a duo-plex approach.

Data Analysis

Unless otherwise stated, male and female animals administered the same dose were combined, and values below the lower limit of quantification (LLOQ) were excluded from analysis. Fold increases in ISG values were calculated for each individual animal relative to the predose value if available, or were calculated relative to the ISG mean from animals treated concurrently with vehicle. Mean ± S.D. fold increases in ISG for each dose level were calculated using individual fold change values. Where data are presented in the absence of systemic IFN-α, the absence of systemic IFN-α is defined as IFN-α levels below the LLOQ at all time points where IFN-α was evaluated for the individual animal.
Human Sample Analysis. Human blood samples were collected from healthy volunteers and analyzed for IFN-α, MX1, and OAS1 as previously described (Lopatin et al., 2013).

Results

GS-9620 Is Selective for TLR7 over Other TLRs in a Nuclear Factor κB–Dependent Cell-Based Reporter Assay. To assess the selectivity of GS-9620 for TLR7 versus other TLRs, GS-9620 was evaluated in a nuclear factor κB (NF-κB)–dependent reporter cell–based assay with murine TLRs. In this assay, GS-9620 activated mouse TLR7 at concentrations ≥100 nM (Fig. 1A) with no detectable activation of the other TLRs, including TLR8, up to the maximum concentration tested (100 μM; Fig. 1B), whereas all TLRs were activated by their respective positive control agents. Prior studies evaluated the selectivity of GS-9620 for human TLR7 and demonstrated an approximately 30-fold selectivity of GS-9620 for activation of human TLR7 over TLR8 with no detectable activity on other human TLRs in similar reporter cell–based assays (Tumas et al., 2011). However, it should be noted that NF-κB is only one of several transcription factors activated by TLR7 signaling (He et al., 2013), and therefore the reporter assay used in this study does not necessarily permit extrapolation about GS-9620 function in different cells or species, but merely served as a tool to investigate receptor selectivity.

GS-9620–Dependent In Vitro Cytokine Secretion. The pharmacodynamic response of GS-9620 was initially assessed in splenocytes isolated from CD-1 mice and in PBMCs isolated from healthy cynomolgus monkeys. By comparing the pattern of cytokines and chemokines induced in these primary cellular assays, we assessed the selectivity of GS-9620 for TLR7, as measured by induction of IFN-α, versus TLR8, as measured by the induction of tumor necrosis factor-α (TNF-α), in a PBMC assay with a complete complement of immune competent cells. Additionally, we assessed how species-specific differences in the expression of TLR7 and TLR8 can affect the observed GS-9620 selectivity in primary cells. It has been reported that murine TLR7 expression is notable on both conventional dendritic cells (cDCs) and pDCs, which is in contrast to cynomolgus monkeys and humans, where TLR7 expression is largely restricted to pDCs and TLR8 expression is predominantly expressed in cDCs (Edwards et al., 2003; Ketloy et al., 2008).

Not unexpectedly and consistent with the reported differences in TLR7/8 expression in the mouse, the pattern of cytokines and chemokines induced by GS-9620 was notably different in murine splenocytes when compared with the pharmacodynamic response in cynomolgus monkey PBMCs. In murine splenocytes, the minimum effective concentration (MEC) of GS-9620 to induce IFN-α was 30 μM, whereas the MEC for the induction of TNF-α was 30 nM (Table 1). The relative amount of TNF-α induced was also higher than the induced levels of IFN-α in these cultures, and dose-response relationships appeared roughly linear (Fig. 2A).

In contrast to the mouse, GS-9620 preferentially induced IFN-α over TNF-α at low concentrations in cynomolgus monkey PBMCs. The amount of TNF-α induced was markedly lower than IFN-α at GS-9620 concentrations less than 10 μM, and dose-dependent induction of TNF-α was only observed at concentrations greater than 1 μM (Fig. 2B). This is consistent with GS-9620 selectivity for TLR7 versus TLR8 at lower concentrations and combined TLR7 and TLR8 stimulation at higher concentrations of GS-9620. TLR7 agonism preferentially mediates secretion of IFN-α in PBMC cultures, whereas TLR8 stimulation in cDC and monocyte PBMC subsets is viewed as the dominant trigger for secretion of inflammatory cytokines, e.g., TNF-α (Gorden et al., 2005; Thomas et al., 2007). Although GS-9620 induced IFN-α at a mean (± S.D.) MEC of 308 ± 463 nM and induced TNF-α at a mean (± S.D.) MEC of 285 ± 478 nM (Table 1), the similar MEC for IFN-α and TNF-α is not unexpected, as TLR7-dependent activation of pDCs can result in proinflammatory cytokine secretion on
TABLE 1
Summary of in vitro induction of selected cytokines induced in cultured normal mouse splenocytes or PBMC from cynomolgus monkeys

<table>
<thead>
<tr>
<th>Cytokine</th>
<th>Mouse Splenocytes</th>
<th>Cynomolgus Monkey PBMC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nM</td>
<td>35 ± 45</td>
</tr>
<tr>
<td>CCL3</td>
<td>Not evaluated</td>
<td>30</td>
</tr>
<tr>
<td>CCL5</td>
<td>3</td>
<td>Not evaluated</td>
</tr>
<tr>
<td>CCL4</td>
<td>773 ± 1485</td>
<td>Not evaluated</td>
</tr>
<tr>
<td>CXCL10</td>
<td>30</td>
<td>Not evaluated</td>
</tr>
<tr>
<td>G-CSF</td>
<td>1000</td>
<td>Not evaluated</td>
</tr>
<tr>
<td>IFN-α</td>
<td>30,000</td>
<td>308 ± 463</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>10</td>
<td>3334 ± 4933</td>
</tr>
<tr>
<td>IL-1α</td>
<td>>30,000 a</td>
<td>Not evaluated</td>
</tr>
<tr>
<td>IL-1β</td>
<td>>30,000 a</td>
<td>1925 ± 1391</td>
</tr>
<tr>
<td>IL-1Ra</td>
<td>Not evaluated</td>
<td>18 ± 14</td>
</tr>
<tr>
<td>IL-2</td>
<td>Not evaluated</td>
<td>11,000 ± 16,522</td>
</tr>
<tr>
<td>IL-4</td>
<td>Not evaluated</td>
<td>>30,000 a</td>
</tr>
<tr>
<td>IL-5</td>
<td>Not evaluated</td>
<td>>30,000 a</td>
</tr>
<tr>
<td>IL-6</td>
<td>30</td>
<td>15 ± 17</td>
</tr>
<tr>
<td>IL-10</td>
<td>10</td>
<td>>30,000 a</td>
</tr>
<tr>
<td>IL-12p40</td>
<td>>30,000 a</td>
<td>91 ± 140</td>
</tr>
<tr>
<td>IL-12p70</td>
<td>100</td>
<td>Not evaluated</td>
</tr>
<tr>
<td>IL-15</td>
<td>Not evaluated</td>
<td>>30,000 a</td>
</tr>
<tr>
<td>IL-16</td>
<td>Not evaluated</td>
<td>>30,000 a</td>
</tr>
<tr>
<td>IL-18</td>
<td>Not evaluated</td>
<td>1001 ± 1732</td>
</tr>
<tr>
<td>sCD40L</td>
<td>Not evaluated</td>
<td>>30,000 a</td>
</tr>
<tr>
<td>TNF-α</td>
<td>30</td>
<td>285 ± 478</td>
</tr>
</tbody>
</table>

G-CSF, granulocyte colony-stimulating factor; IL, interleukin.

aThe MEC was not calculable as no levels of these cytokines were induced that exceeded the vehicle control by at least 3-fold at the highest concentration tested (30 μM).

GSH-9620 Has High Intestinal Absorption, but Low to Intermediate Metabolic Stability and Bioavailability. GS-9620 was designed to have high intestinal absorption and moderate clearance, primarily via hepatic metabolism by CYP3A4, during hepatic first-pass extraction to maximize exposure to interferon-producing cells in the GALT and/or liver while minimizing systemic exposure. In vitro experiments with hepatic microsomal fractions from CD-1 mice, cynomolgus monkeys, and humans revealed a GS-9620 half-life of 4.9, 5.9, and 30.5 minutes, respectively, indicating that GS-9620 will have moderate to high hepatic metabolic clearance in all species. Consistent with the in vitro hepatic microsomal prediction, GS-9620 has low oral bioavailability in mouse (0.2%) and monkey (1.1%) and moderate bioavailability in dog (20%) (Table 2). However, data from a study in portal vein-cannulated male beagle dogs demonstrated that the amount of GS-9620 entering the portal vein was high (82%; Supplemental Table 1), indicating that GS-9620 is readily absorbed from the gastrointestinal tract following oral administration.

IFN-α Response Is Higher following Oral versus Intravenous Administration Despite Similar Systemic Exposure. To assess the relative contribution of systemic GS-9620 exposure to the peripheral induction of IFN-α, IFN-α response after a single intravenous versus oral administration of GS-9620 was directly compared in CD-1 mice and cynomolgus monkeys. Comparable systemic exposure (assessed by both maximum plasma/serum concentration (C\text{max}) and area under the concentration-time curve) following intravenous and oral administration resulted in notably higher peripheral IFN-α concentration after oral administration in both mice and cynomolgus monkeys (Table 3). In mice, the mean GS-9620 C\text{max} following an oral dose at 100 mg/kg and intravenous infusion at 1 mg/kg was similar (277 vs. 305 ng/ml, respectively). However, despite this similar systemic exposure, the mean peak serum IFN-α levels following oral administration was more than 100-fold higher that than from intravenous infusion (6572 vs. 60 pg/ml, respectively; Table 3).

A similar pattern of pharmacodynamic response was observed in cynomolgus monkeys. An oral dose at 2 mg/kg resulted in notably higher peripheral IFN-α concentration after oral administration in both mice and cynomolgus monkeys (Table 3). In mice, the mean GS-9620 C\text{max} following an oral dose at 100 mg/kg and intravenous infusion at 1 mg/kg was similar (277 vs. 305 ng/ml, respectively). However, despite this similar systemic exposure, the mean peak serum IFN-α levels following oral administration was more than 100-fold higher than that from intravenous infusion (6572 vs. 60 pg/ml, respectively; Table 3).

TABLE 2
Key pharmacokinetic parameters following a 30-minute intravenous infusion of GS-9620 to male CD-1 mice and male cynomolgus monkeys

<table>
<thead>
<tr>
<th>Parameter</th>
<th>CD-1 Mouse</th>
<th>Cynomolgus Monkey</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>i.v. Infusion</td>
<td>PO</td>
</tr>
<tr>
<td>Dose (mg/kg)</td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>N</td>
<td>3/time point</td>
<td>3/time point</td>
</tr>
<tr>
<td>CL (l/h/kg)</td>
<td>5.8</td>
<td>0.89 ± 0.29</td>
</tr>
<tr>
<td>Vss (l/kg)</td>
<td>2.8</td>
<td>4.1 ± 2.2</td>
</tr>
<tr>
<td>t\text{1/2} (h)</td>
<td>1.9</td>
<td>2.4</td>
</tr>
<tr>
<td>F (%)</td>
<td>0.2%</td>
<td>1.2%</td>
</tr>
</tbody>
</table>

CL, clearance; F, bioavailability; t\text{1/2}, half-life; V\text{ss}, volume of distribution at steady state.
in a C_{max} that was approximately 2-fold lower than that achieved after intravenous infusion of 0.1 mg/kg GS-9620 to male cynomolgus monkeys (66 vs. 128 ng/ml, respectively; Table 3). However, the mean peak IFN-α serum level induced after oral dosing was more than 60-fold higher than that produced after intravenous infusion (119,000 vs. 1840 pg/ml, respectively; Table 3). These data suggest that systemic exposure to GS-9620 via the intravenous route generates a minimal pharmacodynamic response when compared with exposure to GS-9620 via the oral route.

Profiling of Pharmacodynamic Response to GS-9620 Following Oral Administration

Consistent with observations from in vitro experiments described earlier, oral administration of single ascending oral doses of GS-9620 to CD-1 mice and cynomolgus monkeys resulted in dose-dependent induction of serum cytokines and chemokines. In CD-1 mice, single ascending oral doses of GS-9620 ranging from 0.1 to 50 mg/kg resulted in dose-dependent induction of IFN-α and cytokines and chemokines, generally at doses ≥1 mg/kg (Fig. 3A). Similar to the findings attained from in vitro mouse splenocyte cultures, the proinflammatory cytokines interleukin-1β and TNF-α were induced in the mouse concurrently with the induction of IFN-α, which is consistent with the different expression of TLR7 in the mouse.

TABLE 3
Mean serum pharmacokinetic/pharmacodynamic parameters for GS-9620 following 30-minute intravenous infusion and single ascending oral administration

<table>
<thead>
<tr>
<th>Dose Route</th>
<th>Dose Route</th>
<th>Pharmacokinetics</th>
<th>Pharmacodynamics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>C_{max}</td>
<td>AUC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mg/kg</td>
<td>ng/ml</td>
</tr>
<tr>
<td>CD-1 mouse</td>
<td>Intravenous infusion</td>
<td>1.0</td>
<td>205 ± 130</td>
</tr>
<tr>
<td></td>
<td>Oral</td>
<td>0.3</td>
<td>BLQ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.0</td>
<td>0.25 ± 0.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.0</td>
<td>0.53 ± 0.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.0 (A)</td>
<td>2.95 ± 4.43</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.0 (B)</td>
<td>12.5 ± 12.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30.0</td>
<td>65.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100.0</td>
<td>277 ± 123</td>
</tr>
<tr>
<td>Cynomolgus monkey</td>
<td>Intravenous infusion</td>
<td>0.1</td>
<td>128 ± 43</td>
</tr>
<tr>
<td></td>
<td>Oral</td>
<td>0.1</td>
<td>1.6 ± 0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.3</td>
<td>4.6 ± 3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.0</td>
<td>20.7 ± 9.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td>66.4 ± 57.8</td>
</tr>
</tbody>
</table>

AUC, area under the concentration-time curve; BLQ, below the LLOQ; NC, not calculated; all values below the LLOQ.

*A The LLOQ for GS-9620 was 0.04 ng/ml.

*The LLOQ for IFN-α was 25 pg/ml for mouse and 130 pg/ml for monkey.

*A and B are two independent experiments at 10 mg/kg oral dosing.

![Fig. 3](image-url) GS-9620-dependent induction of peripheral cytokines. (A) In vivo cytokine induction in male and female mice following a single oral administration of GS-9620. IFN-α and cytokine induction was determined at various time points up to 24 hours postdose. Due to blood collection limits in mice, each sample was a terminal sample. Therefore, the mean maximal induction for each cytokine was determined for each dose level. Fold change from vehicle control mean is presented. Values below the LLOQ were excluded from analysis, with the exception of IFN-α vehicle control. As all vehicle control animals were below the limit of detection, the LLOQ of 39 pg/ml was used to calculate fold change. (B) In vivo mean cytokine induction in male and female cynomolgus monkeys following a single oral dose of GS-9620. IFN-α and cytokine induction was determined at various time points through 24–72 hours postdose. Individual maximal induction for each cytokine was determined for each individual animal and the results averaged for each dose group. Values below the LLOQ were excluded from analysis, with the exception of IFN-α vehicle control. As all vehicle control animals were below the limit of detection, the mean LLOQ (64 pg/ml) was used to calculate fold change. IL, interleukin; IP, immunoprecipitation.
In contrast to the in vivo mouse pharmacodynamic profile, but consistent with the results from cynomolgus monkey in vitro PBMC studies, in vivo administration of single oral doses of GS-9620 (0.05–10 mg/kg) to cynomolgus monkeys preferentially induced dose-dependent amounts of IFN-α at low oral doses, whereas induction of TNF-α was only observed at doses ≥1.5 mg/kg (Fig. 3B). These data indicate that GS-9620 can induce a selective, TLR7-dependent pharmacodynamic response in vivo with TLR8-dependent cytokines and chemokines only observed after administration of high oral doses.

Relationship of GS-9620 Exposure, Serum IFN-α, and Induction of ISGs in Whole Blood. As a biomarker for an antiviral immune response, peripheral whole-blood mRNA expression of the ISGs OAS1 and MX1 was evaluated, and we characterized the kinetic relationship of ISG induction to GS-9620 serum exposure and peripheral blood IFN-α concentration in cynomolgus monkeys after a single oral dose of 0.15 mg/kg (Fig. 4). The induction of peripheral IFN-α and ISG was transient and appeared sequential following the rapid absorption and clearance of GS-9620 ($C_{\text{max}} = 1.6 \pm 1.1$ ng/ml; time to reach $C_{\text{max}} = 0.8 \pm 0.3$ hours). Peak induction of peripheral IFN-α was observed at approximately 4 hours postdose and was transient; levels rapidly decreased following 4 hours postdose and returned to baseline levels by 12 hours postdose. This peak peripheral IFN-α concentration was followed by induction of peripheral ISGs, which were maximal at approximately 8 hours postdose. Induction was also transient and returned to baseline by 24 hours postdose. These data are consistent with a single, transient activation of TLR7, followed by the sequential induction of IFN-α, which in turn induces the ISGs OAS1 and MX1.

GS-9620-Dependent ISG Induction Is Independent of Detectable Peripheral Interferon-α. It is noteworthy that we also observed dose-dependent induction of ISG expression in peripheral blood without concurrent induction of systemic IFN-α in individual cynomolgus monkeys and mice after a single oral dose of GS-9620 (Fig. 5; Table 4). These data, described later, suggest that local induction of IFN-α induces ISGs in blood cells trafficking out of tissues, which then can be detected as peripheral ISG induction in whole blood.

In mice orally dosed with 0.3 mg/kg GS-9620, elevated peripheral blood and hepatic gene expression of OAS1 and MX1 was observed in a time-dependent manner in the absence of concurrently detectable systemic IFN-α (Fig. 5; Table 4). Hepatic gene expression of MX1 and OAS1 was induced in the absence of detectable systemic IFN-α (i.e., >3-fold increase from vehicle control) in individual animals at 4 (MX1 only), 8, and 12 hours postdose (Fig. 5). Importantly, no ISG induction was observed in any animal at 24 hours postdose. These data are consistent with the sequential induction of ISGs following TLR7 activation described earlier. However, the possibility that systemic IFN-α was induced at an earlier time point in these animals cannot be excluded, because serial sampling was not feasible in this experiment.

In cynomolgus monkeys, MX1 and OAS1 were induced (i.e., >3-fold increase from vehicle-treated monkeys) in the absence of systemic IFN-α following administration of a single dose of GS-9620 as low as 0.05 mg/kg, the lowest dose evaluated (Table 4). Despite the lack of detectable systemic IFN-α in these cynomolgus monkeys, induction of MX1 and OAS1 mRNA was dose-dependent. Interestingly, when the ISG response was compared between animals with and without detectable systemic IFN-α, mean MX1 and OAS1 fold increase in animals with systemic IFN-α was within 3-fold of mean ISG induction observed in animals without detectable serum IFN-α (Table 4). This is despite mean systemic IFN-α as high as 28,186 pg/ml in animals administered 1.5 mg/kg. These data suggest that systemic IFN-α is not a dominant driver of GS-9620-dependent induction of ISGs in peripheral blood. This, along with the observations following oral versus intravenous administration, further support the hypothesis that the pharmacodynamic response is driven by presystemic activation of TLR7, in either the gut-associated lymphoid tissue and/or liver.

The induction of an ISG response in whole blood, without induction of detectable levels of serum IFN-α, was also observed in a single dose study in healthy human volunteers (Lopatin et al., 2013). After single ascending oral doses of GS-9620 ranging from 0.3 to 12 mg, dose-dependent induction of MX1 and OAS1 mRNA relative to predose was observed following GS-9620 oral doses 2 mg and higher (Lopatin et al., 2013). Of note, no subject had detectable systemic IFN-α at doses ≥6 mg (LLOQ = 15.6 pg/ml). One subject at 8 mg and four subjects at 12 mg had detectable IFN-α. Similar to the cynomolgus monkeys, induction of detectable IFN-α did not appear to have a notable effect on ISG induction. In the four subjects with detectable IFN-α at 12 mg, ISG induction was not notably different than in subjects without detectable systemic IFN-α (Table 4). These data suggest that, at the level of peripheral blood gene expression, a type I IFN-independent antiviral response can be invoked after oral administration of GS-9620 in humans without concurrent induction of detectable systemic IFN-α.

Discussion

Profiling of GS-9620–Induced Cytokine and Chemokine Secretion In Vitro and In Vivo. In vitro stimulation of cynomolgus monkey PBMCs with GS-9620 at concentrations less than 10 μM results in the induction of a pattern of
cytokines and chemokines that are consistent with the biology of TLR7. At concentrations of GS-9620 higher than 10 μM, additional cytokines such as TNF-α were induced in PBMCs, which is consistent with stimulation of TLR8 (Gorden et al., 2005; Thomas et al., 2007). Similarly, oral administration of GS-9620 to cynomolgus monkeys in vivo preferentially

Fig. 5. Murine MX1 and OAS1 expression in liver and peripheral blood without concurrently detectable systemic IFN-α after a single oral dose of 0.3 mg/kg GS-9620. Gene expression of MX1 (left panel) or OAS1 (right panel) relative to the control gene 18S was assessed from terminal samples at indicated time points through 24 hours postdose in liver (top panel) or peripheral blood (bottom panel). All changes in gene expression are plotted relative to mean vehicle; the dotted horizontal line indicates 3-fold induction relative to mean vehicle. Animals (N = 5 per group) were euthanized at each indicated time point; mice with detectable serum IFN-α were excluded from analysis. Note that the number of animals per time point shown for liver may be smaller than for peripheral blood: poor RNA quality in a subset of liver samples precluded analysis by quantitative reverse transcriptase-polymerase chain reaction. *Statistical significance in differential gene expression compared with vehicle (P < 0.05, Tukey test).

TABLE 4
Mean peak induction of MX1 and OAS1 gene expression in healthy human volunteers, cynomolgus monkeys, and mice after a single dose of GS-9620

<table>
<thead>
<tr>
<th>Species</th>
<th>Dose</th>
<th>HEDa</th>
<th>ISG Induction without Detectable Serum IFN-α, mean ± S.D.b</th>
<th>ISG Induction with Detectable Serum IFN-α, mean ± S.D.b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total MX1 Fold Increase</td>
<td>OAS1 Fold Increase</td>
</tr>
<tr>
<td></td>
<td>mg</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>Human</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 mg</td>
<td>N/A</td>
<td>5</td>
<td>21.7 ± 13.2 (5)</td>
<td>10.9 ± 5.0 (5)</td>
</tr>
<tr>
<td>12 mg</td>
<td>N/A</td>
<td>2</td>
<td>28.2 (2)</td>
<td>11.8 (2)</td>
</tr>
<tr>
<td>Cynomolgus monkey</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.05 mg/kg</td>
<td>1</td>
<td>13</td>
<td>5.6 ± 3.3 (5)</td>
<td>12.2 (2)</td>
</tr>
<tr>
<td>0.15 mg/kg</td>
<td>2.9</td>
<td>13</td>
<td>16.1 ± 7.1 (11)</td>
<td>30.4 ± 25.8 (10)</td>
</tr>
<tr>
<td>0.5 mg/kg</td>
<td>9.6</td>
<td>5</td>
<td>23.8 ± 17.2 (5)</td>
<td>41.3 ± 32.7 (3)</td>
</tr>
<tr>
<td>1.5 mg/kg</td>
<td>29</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Mouse</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.3 mg/kg</td>
<td>1.4</td>
<td>N/A</td>
<td>17.6 ± 7.8 (4)</td>
<td>3.4 ± 0.5 (4)</td>
</tr>
</tbody>
</table>

HED, human equivalent dose; N/A, not applicable.

*aHED was calculated by multiplying the animal dose in milligrams per kilogram by 0.32 and 0.08 conversion factors for cynomolgus monkey and mouse, respectively, and then converted to a total human dose (milligrams) by multiplying by a standard human body weight of 60 kg (U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research, 2005).

*bAnimals were included in the calculation if ISG induction was ≥3-fold. Fold increases in MX1 and OAS1 were determined by comparison of pre- and post-treatment levels or comparison with control groups.
induced IFN-α and a pattern of antiviral serum cytokines and chemokines at low oral doses, whereas TNF-α was only observed following relatively high oral doses. In general, the cytokine and chemokine patterns observed across ascending doses in vivo were similar to or overlapped with the cytokine/chemokine profile induced in vitro in PBMC studies. The differences could be a result of differentials in the half-life or distribution of cytokines in vivo versus in vitro, or may reflect the response to tissues other than PBMCs which are exposed to GS-9620 in vivo.

The in vitro and in vivo pharmacodynamic profile induced by GS-9620 in the mice was notably different from that seen in cynomolgus monkeys and from that which we have previously reported in humans (Tumas et al., 2011; Lopatin et al., 2013). Oral administration of GS-9620 to CD-1 mice resulted in dose-dependent induction of IFN-α and other cytokines and chemokines; however, in contrast to the cynomolgus monkeys, induction of the proinflammatory cytokines interleukin-1 and TNF-α occurred at relatively low doses and were observed concurrent with the induction of IFN-α in mice (Figs. 2 and 3A). Unlike human and cynomolgus monkey dendritic cell subsets in which TLR7 is exclusively expressed by pDCs and TLR8 expression is predominantly found in cDCs, the pattern of murine TLR7 expression is notably different, as expression of murine TLR7 is found in both pDCs and cDCs (Edwards et al., 2003; Ketloy et al., 2008). As a consequence, the response profiles observed with a TLR7 agonist in mouse or mouse splenocytes are more reminiscent of profiles observed with dual TLR7/TLR8 agonists in monkeys and humans (Ito et al., 2002; Gorden et al., 2005; Thomas et al., 2007).

The pattern of cytokine and chemokine induced in human PBMCs (Tumas et al., 2011) by GS-9620 in vitro was similar to the pattern we described for cynomolgus monkey PBMCs. Likewise, the in vivo responses to GS-9620 after oral dosing in human volunteers (Lopatin et al., 2013) were similar to the in vivo responses in cynomolgus monkeys described herein. In contrast, induction of cytokines and chemokines in vitro and in vivo in mice was generally consistent with the notion of different TLR7 expression profiles in murine DC subsets. Protein sequence comparison of mouse, human, and cynomolgus TLR7 and TLR8 showed that sequence identity between human TLR7 and mouse TLR7 or cynomolgus TLR7 is approximately 81 or 98%, respectively; sequence identity between human TLR8 and mouse TLR8 or cynomolgus TLR8 is approximately 70 or 97%, respectively (Supplemental Fig. 2). This analysis suggests that selectivity for TLR7 versus TLR8, as observed with the human TLRs, is likely maintained in the cynomolgus monkey.

GS-9620–Dependent Induction of Antiviral Gene Expression In Vivo. Oral administration of GS-9620 induces presystemic IFN-α and induction of MX1 and OAS1 mRNA in peripheral blood. The sequential time course for induction of IFN-α and these ISGs is consistent with activation of TLR7 leading to the release of IFN-α in the tissues containing pDCs, which in turn triggers the induction of IFN-α response elements in adjacent cells in paracrine fashion. However, we also observed that single, low oral doses of GS-9620 caused dose-dependent induction of OAS1 and MX1 without concurrent detectable serum IFN-α in individual cynomolgus monkeys and mice (Fig. 5; Table 4). In addition, elevated intrahepatic expression of OAS1 and MX1 mRNA was observed in mice after a single oral dose of GS-9620 despite the absence of detectable peripheral IFN-α concurrently (Fig. 5). These data suggest that TLR7 agonism can occur in tissues during oral absorption of GS-9620, resulting in local induction of a response, although IFN-α is not detectable in serum but is clearly active in these local tissues as evidenced by ISG induction. In addition, despite notable induction of systemic IFN-α following higher doses of GS-9620 to cynomolgus monkeys, OAS1 and MX1 mRNA induction were only less than 3-fold higher when compared with induction in individuals with undetectable systemic IFN-α (Table 4). Of note, these observations in animals are further corroborated by findings in healthy human subjects, where >3-fold ISG mRNA induction over predose occurred after administration of single doses of ≥2 mg, despite undetectable peripheral IFN-α (Lopatin et al., 2013). In addition, in human volunteers with systemic IFN-α, ISG induction was not notably different from those subjects without detectable systemic IFN-α, which again is similar to our results in cynomolgus monkeys (Table 4).

These data suggest that GS-9620–dependent ISG induction may mainly be due to a localized, presystemic response rather than due to systemic immune stimulation, and further suggest that the contribution of systemic immune stimulation to the overall response is low. This local innate immune response without a systemic IFN-α response might indicate a potential

Fig. 6. Intravenous administration of GS-9620 to cynomolgus monkeys (n = 3 males per dose group) results in lower IFN-α induction than oral administration despite comparable GS-9620 exposure. GS-9620 was administered as a single oral or intravenous infusion at 2 or 0.1 mg/kg, respectively. IFN-α was evaluated at time points through 24 hours postdose. After intravenous dosing, systemic exposure to GS-9620 was 2-fold higher, but serum levels of IFN-α induced after intravenous infusion were <2% of that produced after oral dosing. After oral dosing, the high bioavailability of GS-9620 results in targeted exposure to interferon-producing cells in the GALT and/or liver, and the relative hepatic instability and high first-pass clearance of GS-9620 minimizes systemic exposure.
for harnessing the benefit of an innate immune response in the liver without systemic adverse side effects. Although the possibility that systemic IFN-α is produced at levels below the limit of detection for the assays used in these studies cannot be excluded, these data suggest that GS-9620-dependent ISG induction can be mounted independent of appreciable concentrations of systemic IFN-α. In contrast, induction of ISGs with therapeutic doses of recombinant IFN-α is dependent on systemic IFN-α, which is obviously associated with flu-like symptoms and other adverse events. In the studies described here with GS-9620, IFN-α levels at or below the LLOQ are considerably lower than what is currently administered for approved exogenous IFN-α therapies. Therefore, it can be extrapolated that, even if low (undetectable) systemic IFN-α levels are present, systemic levels are unlikely to approach concentrations at which adverse events associated with existing interferon therapies were observed. Indeed, healthy human volunteers who were orally administered a single dose of GS-9620 had minimal adverse events that were consistent with systemic IFN-α exposure, and these were only observed at dose levels ≥8 mg (Lopatin et al., 2013). We hypothesize that the induction of an antiviral immune signature devoid of detectable systemic IFN-α is caused by presystemic stimulation of TLR7, likely in pDCs at the level of the GALT and/or in the liver, e.g., presystemic response. Figure 6 presents the postulated underlying mechanism for the presystemic response to oral GS-9620.

The high absorption of GS-9620 allows for the targeted exposure to interferon-producing cells in the GALT and/or liver following oral administration. Interferon-producing cells present in the GALT and/or liver, likely pDCs, are activated by local exposure to GS-9620 and produce IFN-α. This localized production of IFN-α stimulates ISG induction in lymphocytes and other cells as they circulate through the GALT and/or liver, which can then be detected in the peripheral blood (Fig. 6). ISG induction may occur in the liver by a similar effect—through either local IFN-α production from stimulated pDCs residing in the liver or from a first-pass effect on the liver from portal blood containing IFN-α produced from GALT-resident cells.

The therapeutic benefit of TLR7 stimulation by oral GS-9620 in animal models of chronic HBV infection has been shown in both chimpanzees infected with HBV and the woodchuck hepatitis virus model (Menne et al., 2011; Lanford et al., 2013). Importantly, in uninfected and chronic HBV–infected chimpanzees, GS-9620 induced ISGs in the liver and/or in PBMC with no detectable increase in serum levels of IFN-α at low doses. Consequently, GS-9620 may be an effective therapy for viral hepatitis at doses that produce no detectable serum IFN-α levels and, therefore, minimize tolerability limitations associated with systemic IFN-α therapy. Currently, weekly administration of GS-9620 is being evaluated in patients infected with chronic HBV.

Acknowledgments

The authors acknowledge Paul Duatschek for in vitro pharmacodynamic analysis; Dr. Robert Lanford for ISG sample analysis, Bing Lu for PK sample analysis, Covance Laboratories for study conduct, and Eurofins Laboratories for cytokine/chemokine sample analysis.

Authorship Contributions

Participated in research design: Fosdick, Zheng, Pfanner, Frey, Hesselgesser, Halcomb, Tumas, Wolfgang.

Conducted experiments: Frey, Hesselgesser, Pfanner.

rote or contributed to the writing of the manuscript: Fosdick, Zheng, Pfanner.

References

Address correspondence to: Abigail Fosdick, 333 Lakeside Drive, Foster City, CA, 94404. E-mail: abigail.fosdick@gilead.com

Supplemental Materials

NF-κB Reporter Assay

TLR agonist activity was detected by assessing the activation of the transcription factor NF-κB in Human Embryonic Kidney 293 reporter cells stably expressing individual murine TLRs. In these cells activation of TLRs leads to translocation of NF-κB to the nucleus with subsequently induced expression of the reporter protein secreted alkaline phosphatase (SEAP). SEAP activity is quantified in culture supernatants by addition of a colorimetric substrate and monitoring the optical density at 650 nm on a Beckman Coulter AD 340C Absorbance Detector at the end of the incubation period. Mouse TLR-expressing reporter cells were plated at a density of 50,000 per well (96-well format) and incubated with the vehicle control, the respective TLR agonist positive controls or GS-9620 for 16-20 hours in a humidified 5% CO₂ incubator. The following control stimuli were provided by InvivoGen: TLR2: heat-killed *Listeria monocytogenes*; TLR3: poly I:C; TLR4: *Escherichia coli* K12 LPS; TLR5: *Salmonella typhimurium* flagellin; TLR7: CL097 (imidazoquinoline compound); TLR8: CL075 (thiazoquinoline compound); and TLR9: CpG oligodeoxynucleotide 1826. All compounds and controls were tested in duplicate for each TLR expressing cells.

In the receptor screening format of the assay, GS-9620 was tested at 100 µM on murine TLR2, TLR3, TLR4, TLR5, TLR7, TLR8 and TLR9 expressing reporter cells. Following initial identification of receptor agonist activity a subsequent experiment was then carried out to
determine the dose responsiveness of GS-9620 on murine TLR7-expressing reporter cells. In these assays, GS-9620 concentrations ranged from 10 µM with 10-fold serial dilutions to 10 pM.

Splenocyte and PBMC In Vitro Cytokine Release Assays

Fresh splenocytes were harvested and pooled from spleens (6 male mice per splenocyte isolation) or total PBMC were isolated from whole blood (2 per sex for cynomolgus monkeys) from healthy animals using standard Ficoll density gradient separation centrifugation and isolation techniques under sterile conditions. PBMCs or splenocytes were plated in duplicate at a density of 750,000 cells per well (96-well format) in 190 µL RPMI with Glutamax™ (Gibco), 10% heat inactivated fetal bovine serum (Hyclone, Logan, UT), Penicillin 100 Units/mL Streptomycin 100 µg/mL (Gibco, Carlsbad, CA). GS-9620 was serially diluted (0.5 log10 concentrations) into DMSO from a 10 mM DMSO stock solution onto a master plate to keep DMSO concentrations constant through the drug dilution series. Appropriate vehicle controls were included for each donor. After the incubation period culture supernatants were harvested and analyzed for levels of secreted proteins.

For in vitro cytokine induction studies, the following cytokines were evaluated by Luminex for cynomolgus monkeys: CCL3, CCL4, IL-1ra, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12p40, IL-15, IL-17, IL-18, IFN-γ, sCD40L, and TNF-α, and for mice: CXCL2, CCL4 G-CSF, IL-1α, IL-1β, IL-6, IL-10, IL-12p40, IL-12p70, IL-17, IP-10, IFN-γ, and TNF-α. For detection of mouse and cynomolgus monkey IFN-α, ELISA kits were used. Murine IFN-α was determined using kits from PBL InterferonSource (Piscataway, NJ). Cynomolgus monkey IFN-α was quantified using a human IFN-α ELISA kit and a purified Rhesus/Cynomolgus IFN-α2 standard from PBL InterferonSource (Piscataway, NJ).
ELISA kits were used according to the manufacturer’s instructions. Standard curves for each cytokine were generated using a nonlinear five-parameter curve fit. Median fluorescent intensities or OD (ELISA only) of experimental samples were interpolated against the standard curve to determine cytokine concentrations in cell culture supernatants.

Minimum effective concentration (MEC) values were defined as the concentration of GS-9620 that produced a cytokine concentration at least 3-fold above the DMSO control and that the next highest concentration of GS-9620 also produced a cytokine concentration at least 3-fold over background (ie, the beginning of a dose-response curve).

Animals

Naïve male and female Crl:CD1 mice and cynomolgus monkeys (*Macaca fascicularis*) were obtained from Charles River Laboratories or Covance Research Products Inc., respectively. Mice were approximately 7-9.5 weeks old and weighed between 19.9 and 44.6 g at initiation of dosing. Cynomolgus monkeys were approximately 2-6 years old and weighed between 2.3 and 7.3 kg at initiation of dosing. Animals were housed in temperature controlled rooms (18-26°C or 20-26°C mice and monkeys, respectively) with a 12-hour light/dark cycle ad libitum food and water.

Cytokine Analysis for in vivo studies

For in vivo cytokine induction studies, the following cytokines, or subset thereof, were evaluated by Luminex for cynomolgus monkeys: CCL2, CCL3, CCL4, CCL5, CD40L, CXCL9, G-CSF, GM-CSF, IFN-γ, IL-1β, IL-1ra, IL-2, IL-4, IL-5, IL-6, IL-10, IL-13, IL-12p40, IL-12p70, IL-17, IL-18, IP-10, I-TAC, TGF-α and TNF-α and for mice: CCL2, CCL3, CCL4, CCL5 CCL11, CXCL1, CXCL2, CXCL9, G-CSF, GM-CSF, IFN-β, IFN-γ, IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-
5, IL-6, IL-7, IL-10, IL-12p40, IL-12p70, IL-13, IL-15, IL-17, IP-10, LIF, LIX, M-CSF, and TNF-α. Detection of mouse and cynomolgus monkey IFN-α were measured using VeriKine murine IFN-α serum ELISA kit and VeriKine Cynomolgus/Rhesus IFN-α serum ELISA kit, respectively (PBL InterferonSource, Piscataway, NJ). The lower limit of quantitation (LLOQ) for serum IFN-α ranged from 8 to 39 pg/ml for mouse and 25 to 130 pg/mL for cynomolgus monkey, depending on the dilution factor used.

ELISA kits were used according to the manufacturer’s instructions. Standard curves for each cytokine were generated using a nonlinear five-parameter curve fit of fluorescent intensities (multiplex) or OD (ELISA). Median fluorescent intensities or OD values (ELISA only) of experimental samples were interpolated against the standard curve to determine cytokine concentrations in serum.

ISG Analysis for in vivo studies

1 mL of blood was pipetted into a polypropylene tube and centrifuged at 1300 × g for 15 minutes within 1 hour of collection. Following centrifugation, the plasma layer was removed and discarded. The whole blood cell pellet was resuspended in 2.6 mL of RNAlater® (Qiagen Inc., Valencia, CA) solution and stored at -60 to -80°C, until shipped to the Southwest Foundation for Biomedical Research (SFBR; San Antonio TX), Covance Laboratories Inc (Madison, WI), or Gilead Sciences (Foster City, CA; mouse only) for analysis. After thawing, samples were centrifuged and the overlying RNAlater® was removed. The blood cell pellet was resuspended in up to 500 µL with PBS, and RNA was purified using Ambion RiboPure™ Kit (Applied Biosystems/Ambion, Austin, TX) according to the manufacturer’s instructions.
All TaqMan® reactions were performed on an ABI 7900HT sequence detection system. Appropriate reactivity of the ABI Assays-on-Demand™ premixed primer/probes was verified in mouse or monkey prior to their use. The mRNA levels for the analyzed genes OAS1 and MX1 in blood were determined by the comparative C_T methodology using TaqMan® RNA-to-C_T 1-Step Kit (Applied Biosciences/Ambion) and specific probes.

LC/MS/MS Method

An aliquot of 50 µL of each serum sample was treated with 100 µL of cold acetonitrile containing internal standard. After the protein precipitation, the above solution was centrifuged at 3000 RPM for 20 minutes. An aliquot of 75 µL of the supernatant was mixed with 75 µL of water with 0.1% formic acid and 20 µL of the solution was injected into a HyPurity C18 HPLC column (30 × 2.1 mm; ThermoHypersil) using a TSQ Ultra Quantum LC/MS/MS system equipped with a Cohesive LX-2 multiplex system with two identical Agilent 1100 series binary pumps. The mass spectrometry was operating in positive ionization mode using selective reaction monitoring. The LLOQ for GS-9620 was 0.1 nM (or 0.04 ng/mL).

Mobile phases A and B contained 1% and 80% acetonitrile, respectively, in 10 mM ammonium formate aqueous solution containing 1% formic acid. The mobile phases program at an initial hold (0.0-1.5 min) was 0% B followed by a linear gradient 0-50% B (1.5-4.0 min); the conditions were then held at 100% B (4.0-7.0 min) and returned to the initial conditions (7.0-9.0 min). The total analysis duration was 9 min at a flow rate of 0.50 mL/min.

Pharmacokinetic Data Analysis

Pharmacokinetic parameters were calculated in individual animals by non-compartmental analysis using WinNonLin Professional (version 5.0.1; Pharsight, Mountain View, CA). The
maximum plasma/serum concentration (C_{max}) and time to reach C_{max} (T_{max}) were directly recorded from experimental observations. The area under the concentration-time curve (AUC) was calculated using the trapezoidal rule up to the last measurable concentrations. The bioavailability (F) was determined from the dose-corrected AUC after oral and i.v. administration. The components of GS-9620 availability were further predicted on the basis of the following equations: $F = F_{\text{ABS}} \cdot F_{\text{G}} \cdot F_{\text{H}}$, in which F_{ABS} is the fraction of the dose absorbed from the gut lumen, F_{G} is the fraction of the dose not metabolized by intestinal metabolic enzymes, and F_{H} is the fraction of the dose absorbed into the hepatic vein that escapes first-pass effect in the liver. F_{H} is defined as follows: $F_{\text{H}} = 1 – ER_{\text{H}}$, in which ER_{H} is the hepatic extraction ratio defined as the clearance of i.v. administered GS-9620 divided by the hepatic blood flow rate in corresponding species (Davies and Morris 1993). Bioavailability in dog portal vein ($F_{\text{ABS}} \cdot F_{\text{G}}$) can be simplified to absorption (F_{ABS}) assuming that gut metabolism is negligible ($F_{\text{G}} = 1$).

Metabolic Stability Assessment in Liver Microsomes

In this assay, mouse, rat, dog, monkey, and human liver microsomal incubations were conducted in duplicate. Reactions were commenced with the addition of NADPH and shaken in a water bath at 37°C. At $t = 0$ and at five time points ranging to 65 minutes, aliquots (25 μL) were removed and added to quenching solution (50 nM of internal standard with 0.2% formic acid in 95% acetonitrile/5% water). Final composition of the reaction mixture was: 0.25 mL of 2 uM compounds, 0.5 mg microsomal protein/mL, 1.25 mM NADPH (Phase I metabolism cofactor), 3.3 mM MgCl$_2$ in 50 mM phosphate buffer, pH 7.4. After quenching, the plates were centrifuged and 5 μL of the sample were injected into a LC/MS/MS.
Data (analyte to internal standard area ratios) are plotted on a semilog scale and fitted using an exponential fit:

\[C = C_0 \times \exp(-Kt). \]

Assuming first order kinetics, the \(T_{1/2} \) and rate of metabolism are determined from the \(K \) values \((T_{1/2} = \ln(2)/K \text{ and rate} = \text{amount of drug/mg protein x K} = 1000 \text{ pmol/mg x K}). \)

The in vitro hepatic clearance, \(CL_{\text{in vitro}} \), is calculated from in vitro \(T_{1/2} \) data as described by Obach et al. (Obach et al 1997). Conversion of in vitro CL to hepatic CL uses the well-stirred model of hepatic clearance.

Estimation of Portal Vein Absorption In Vivo

Absorption of GS-9620 in vivo was estimated by measuring both portal vein and jugular vein concentrations in portal vein cannulated (PVC) dogs. In this study, surgical placement of portal vein catheter was performed to allow mesenteric access. Blood samples were collected from both the jugular vein and portal vein access port at the time points specified in the study design and processed to plasma. Concentrations of GS-9620 in plasma were determined by a LC/MS/MS method. The % of dose in portal vein was calculated based on similar method described in the previous section.

Pharmacokinetic Data Analysis. Total bioavailability \((F) \) was estimated based on the exposure in jugular vein \((AUC_{jv}) \) and the IV exposure from previous study with dose correction.

\[F = (AUC_{jv}/PO \text{ Dose})/(AUC_{iv}/IV \text{ Dose}) \]

The fraction of the dose absorbed into the jugular vein that escapes first-pass effect is:

\[F_H = AUC_{jv}/AUC_{pv} \text{ (AUC}_{pv} \text{ is portal vein exposure}). \]

The absorption in port vein is estimated as: \(F_{ABS} = F/F_H \) (assuming \(F_G = 1). \)**Supplemental Fig. 1**
Chemical Structure of GS-9620

Supplement Figure 1
TLR7_hu KRLKVIDLSNVKISPSGSDDSVGFSNARTSVSVEYFPQVLEQLHYFYRYDCKYARSCRFKNK
TLR7_cy KRLKVIDLSNVKISPSGSDDSVGFSNARTSVSVEYFPQVLEQLHYFYRYDCKYARSCRFKNK
TLR7_mo ENLKVLSDLNVKISPSGIYQFNNCTQVAMVTASIDEPEFDSNSFNYHFR-----
TLR8_hu SKLDVYLSGPNASVLGDTDSYWHR-----RLKPLSTODEDFDHPVYFHSTK-----
TLR7_hu E-ASPMVSVECYQGKTLQDKLNSIFFPYKQFLQFNLKLSGNCISQTGLSEFQ
TLR7_cy E-ASPMVSVECYQGKTLQDKLNSIFFPYKQFLQFNLKLSGNCISQTGLSEFQ
TLR7_mo EPPSFLPLNADCHYQTDLQSLRNNIFFPYKQFLQFNLKLSGNCISQTGLSEFQ
TLR8_hu -----PLIKPQAAAYGKALDLSLNSIFFPYKQFLQFNLKLSGNCISQTGLSEFQ
TLR8_cy -----PLIKPQAAAYGKALDLSLNSIFFPYKQFLQFNLKLSGNCISQTGLSEFQ
TLR8_mo -----PLIKPQCTAYGKALDLSLNSIFFPYKQFLQFNLKLSGNCISQTGLSEFQ
TLR7_hu PIALRKYLDLSNNRLYHLHSTAFEELHLKVEVLDSISNYSYFQSEGTJHNLNFTKNNKLQ
TLR7_cy PIALRKYLDLSNNRLYHLHSTAFEELHLKVEVLDSISNYSYFQSEGTJHNLNFTKNNKLQ
TLR7_mo PIALRKYLDLSNNRLYHLHSTAFEELHLKVEVLDSISNYSYFQSEGTJHNLNFTKNNKLQ
TLR8_hu KLMNDNDISSSTR-TMESESLRTLEFRGNHLGRLWICDNSRSSRMLKLELDIS
TLR8_cy KLMNDNDISSSTR-TMESESLRTLEFRGNHLGRLWICDNSRSSRMLKLELDIS
TLR8_mo KLMNDNDISSSTR-TMESESLRTLEFRGNHLGRLWICDNSRSSRMLKLELDIS
TLR7_hu KLMNDNDISSSTR-TMESESLRTLEFRGNHLGRLWICDNSRSSRMLKLELDIS
TLR7_cy KLMNDNDISSSTR-TMESESLRTLEFRGNHLGRLWICDNSRSSRMLKLELDIS
TLR7_mo KLMNDNDISSSTR-TMESESLRTLEFRGNHLGRLWICDNSRSSRMLKLELDIS
TLR8_hu VLLNNLYNNTLTDKYNYKLSILVFGSNTRILWDNQNNHRISIFKGLKNLTLDDL
TLR8_cy VLLNNLYNNTLTDKYNYKLSILVFGSNTRILWDNQNNHRISIFKGLKNLTLDDL
TLR8_mo VLLNNLYNNTLTDKYNYKLSILVFGSNTRILWDNQNNHRISIFKGLKNLTLDDL
TLR7_hu VLLNNLYNNTLTDKYNYKLSILVFGSNTRILWDNQNNHRISIFKGLKNLTLDDL
TLR7_cy VLLNNLYNNTLTDKYNYKLSILVFGSNTRILWDNQNNHRISIFKGLKNLTLDDL
TLR7_mo VLLNNLYNNTLTDKYNYKLSILVFGSNTRILWDNQNNHRISIFKGLKNLTLDDL
TLR8_hu AVILFFFTFFITTMVMLAALSFGVYWDVWFIYHVCLAKVKSISMRKGTKSKLQ
TLR8_cy AVILFFFTFFITTMVMLAALSFGVYWDVWFIYHVCLAKVKSISMRKGTKSKLQ
TLR8_mo AVILFFFTFFITTMVMLAALSFGVYWDVWFIYHVCLAKVKSISMRKGTKSKLQ

TLR7_hu NLILFSISIVSLPFLMVMGMATYLYYFWDNVYIHYFCAKAKIYQRLISPDCCYDARYID
TLR7_cy NLILFSISIVSLPFLMVMGMATYLYYFWDNVYIHYFCAKAKIYQRLISPDCCYDARYID
TLR7_mo NLILFSISIVSLPFLMVMGMATYLYYFWDNVYIHYFCAKAKIYQRLISPDCCYDARYID
TLR8_hu AVLILYFHTTTTMVMLAAHLHFLYWDVFIYVNCLAVKGYRSLTMFGFYDAYSID
TLR8_cy AVLILYFHTTTTMVMLAAHLHFLYWDVFIYVNCLAVKGYRSLTMFGFYDAYSID
TLR8_mo AVLILYFHTTTTMVMLAAHLHFLYWDVFIYVNCLAVKGYRSLTMFGFYDAYSID
Supplemental Fig. 2
Protein sequence comparison of TLR7 and TLR8 from the three species human (hu), mouse (mo), and cynomolgus (cy). Sequences were compared via (A) multiple sequence alignment, (B) % identity scores. In panel B, % identity scores are colored in blue when comparing TLR7 vs TLR7, in red when comparing TLR8 vs TLR8, and in gray when comparing TLR7 vs TLR8 sequences.

All sequences were downloaded from Genbank with the following accession numbers:
TLR7_hu, AAZ9902.1; TLR8_hu, AAI01078.1; TLR7_mo, AAI32386.1; TLR8_mo, AAI32055.1; TLR7_cy, BAG55061.1; TLR8_cy, BAG55068.1.
Supplemental Table 1
Mean pharmacokinetic parameters of GS-9620 following oral administration of GS-9620 at 1 mg/kg in portal vein-cannulated male beagle dogs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sample Collection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Portal Vein</td>
</tr>
<tr>
<td>(C_{\text{max}}) (ng/mL)</td>
<td>248 ± 149</td>
</tr>
<tr>
<td>(T_{\text{max}}) (hr)</td>
<td>0.83 ± 1.00</td>
</tr>
<tr>
<td>AUC(_{\text{last}}) (ng•hr/mL)</td>
<td>302 ± 93</td>
</tr>
<tr>
<td>(F_{\text{ABS}})</td>
<td>82% ± 24%</td>
</tr>
<tr>
<td>(F)</td>
<td>N/A</td>
</tr>
</tbody>
</table>

AUC, area under the concentration-time curve; \(C_{\text{max}} \), maximum plasma/serum concentration; \(F \), bioavailability; \(F_{\text{ABS}} \), absolute bioavailability; \(T_{\text{max}} \), time to reach \(C_{\text{max}} \).
Values are mean ± SD; n = 3.