Chronic Treatment with Novel GPR40 Agonists Improve Whole-Body Glucose Metabolism Based on the Glucose-Dependent Insulin Secretion

Hirotugu Tanaka, Shigeru Yoshida, Hiroyuki Oshima, Hideaki Minoura, Kenji Negoro, Takao Yamazaki, Shuichi Sakuda, Fumiyoshi Iwasaki, Tetsuo Matsui, and Masayuki Shibasaki

Pharmacology Research Laboratories (H.T., S.Y., H.O., H.M., T.Y., T.M., M.S.), Chemistry Research Laboratories (K.N., F.I.), and Analysis & Pharmacokinetics Research Laboratories (S.S.), Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Japan

Received May 15, 2013; accepted July 9, 2013

ABSTRACT

GPR40 is a free fatty acid receptor that has been shown to regulate glucose-dependent insulin secretion. This study aimed to discover novel GPR40 agonists and investigate the whole-body effect on glucose metabolism of GPR40 activation using these novel GPR40 agonists. To identify novel GPR40-specific agonists, we conducted high-throughput chemical compound screening and evaluated glucose-dependent insulin secretion. To investigate the whole-body effect on glucose metabolism of GPR40 activation, we conducted repeat administration of novel GPR40 agonists more deeply, we conducted an insulin tolerance test and a euglycemic-hyperinsulinemic clamp test. These results indicate that improvement of glucose-dependent insulin secretion leads the improvement of whole-body glucose metabolism chronically. In conclusion, AS2034178 and other GPR40 agonists may become useful therapeutics in the treatment of type 2 diabetes mellitus.

Introduction

Type 2 diabetes mellitus, the most common form of diabetes, is mainly caused by dysfunction of pancreatic insulin secretion or peripheral insulin sensitivity. At present, two types of medications are mainly used to treat type 2 diabetes mellitus as follows: insulin secretagogues and insulin sensitizers. Sulfonylureas, dipeptidyl peptidase-IV (DPP-IV) inhibitors, and GLP-1 analogs are generally used as insulin secretagogues; however, sulfonylureas increase insulin secretion regardless of glucose level, thereby carrying the risk of promoting hypoglycemia and accelerating the exhaustion of pancreatic β-cells (Pfeifer et al., 1984; Melander et al., 1990), whereas DPP-IV inhibitors and GLP-1 analogs exhibit glucose-dependent insulin secretion and carry a low risk of hypoglycemia (Herman et al., 2006; Engel et al., 2010; Bode, 2011). It is widely reported that long-term use of insulin secretagogues lead to reduction in blood hemoglobin A₁c (HbA₁c) level in human (Charbonnel et al., 2013; Hanefeld et al., 2007; Sakamoto et al., 2013; Wang et al., 2011).

Among insulin sensitizers, pioglitazone and metformin are generally used. Pioglitazone is a peroxisome proliferator-activated receptor (PPAR)-γ agonist that improves insulin resistance by miniaturizing adipocytes and increasing glucose uptake in skeletal muscle (Smith, 1991; Hauner, 1998), whereas metformin improves insulin resistance by suppressing gluconeogenesis in the liver and increasing glucose uptake in skeletal muscle (Klip and Leiter, 1990; Campbell et al., 1996; Hundal et al., 2000). Long-term use of insulin sensitizers also leads to reduced blood HbA₁c levels in humans.

GPR40 is a free fatty acid (FFA) receptor and Gq-type, Gq-coupled G protein-coupled receptor that is highly expressed in pancreatic β-cells and whose stimulation by FFAs promotes insulin secretion (Briscoe et al., 2003; Itoh et al., 2003). This FFA signaling pathway is believed to be β-cell-specific, as FFA-stimulated insulin secretion was found to be inhibited on treatment with small interfering RNA of GPR40 (Itoh et al., 2003). Stimulation of Gq type G protein-coupled receptors is known to result in phospholipase C activation and inositol phospholipid hydrolysis (Briscoe et al., 2003; Itoh et al., 2003), which leads to activation of phospholipase C and inositol phospholipid hydrolysis (Briscoe et al., 2003; Itoh et al., 2003). This Gq-coupled G protein-coupled receptor is activated by FFAs, and its activation leads to the release of insulin from pancreatic β-cells (Itoh et al., 2003).

ABBREVIATIONS: CHO, Chinese hamster ovary; DPP-IV, dipeptidyl peptidase-IV; GLP-1, glucagon-like peptide-1; FFA, free fatty acid; HbA₁c, hemoglobin A₁c; OGTT, oral glucose tolerance test; PPAR, peroxisome proliferator-activated receptor.
1,4,5-triphosphate production (Taylor et al., 1991), leading to increased levels of intracellular Ca\(^{2+}\) and restricted initiation of insulin secretion (Prentki et al., 1997). Because this cascade potentiates glucose-induced insulin secretion, GPR40 activation increases glucose-dependent insulin secretion (Fujiwara et al., 2005; Nagasumi et al., 2009).

A number of chemical compounds reported to be GPR40 agonists have exhibited glucose-dependent insulin secretion in vitro and in vivo (Christiansen et al., 2008; Tan et al., 2008; Lin et al., 2011; Tsujihata et al., 2011), suggesting that GPR40 agonists can increase glucose-dependent insulin secretion with low risk of hypoglycemia compared with sulfonylureas. We investigated the chronic whole-body effect of GPR40 on glucose metabolism after screening and modifying novel chemical compounds with GPR40-specific agonist activity.

Materials and Methods

Chemicals. Sodium 3-[2-fluoro-4-[[1-(2-phenoxyethyl)-1,2,3,4-tetrahydroquinolin-5-yl]methyl]amino]phenyl]propanoate magnesium (AS2031477, Fig. 1A), sodium 2-[(4-[[2',6'-dimethyl][1,1'-biphenyl]]-3-yl)methoxy]phenyl)methyl]-3,5-dioxo-1,2,4-oxadiazolidin-4-ide (AS1975063, Fig. 1B), bis[2-[(4-[2-hydroxyethoxy]-2-methyl[1,1'-biphenyl]-3-yl)methoxy]phenyl)methyl]-3,5-dioxo-1,2,4-oxadiazolidin-4-ide tetrahydrate (ASP2034178, Fig. 1C), and 5-[4-[2-(5-ethyl-2-pyridyl)ethyl]benzy]-2,4-thiazolidinedione used (pioglitazone, Ikeda et al., 1990) in the present study were synthesized by Astellas Pharma Inc. (Ibaraki, Japan). Purity of each compound was over 99% analyzed by Waters Xbridge C18, 3.5 μm, 4.6 × 100 mm (Waters, Milford, MA) on HITACHI L-7000 high-pressure liquid chromatography system (Hitachi High-Technologies, Tokyo, Japan), with a mobile phase of acetonitrile: 0.05M KH2PO4 aq. (70:30 or 40:60). Metformin was purchased from Sigma-Aldrich (St. Louis, MO).

Animals. Male ICR mice (age, 5 weeks) were purchased from Japan SLC, Inc. (Shizuoka, Japan) and fed standard rodent chow (CRF-1; Oriental Yeast, Tokyo, Japan). Six-week-old ob/ob and ob/lean mice (litter of ob/ob mice) were purchased from Charles River (Yokohama, Japan). Male ob/ob mice were fed special breeding rodent chow (CMF; Oriental Yeast, Tokyo, Japan), and ob/lean mice were fed CRF-1. Male Zucker fatty and Zucker lean rats (age, 11–12 weeks) were purchased from Japan SLC and fed CRF-1. Water was provided ad libitum, and all animals were subjected to a standard 12-hour light/dark cycle. All animal experimental procedures were approved by the Instrumental Animal Care and Use Committee of Astellas Pharma Inc., and the Tsukuba Research Center at Astellas Pharma Inc. was awarded Accreditation Status by the Association for Assessment and Accreditation of Laboratory Animal Care International.

Cell-Based Ca\(^{2+}\) Flux Assay. Chinese hamster ovary (CHO) cells stably expressing human GPR40 were transfected with a pcDNA 3.1(+) expression vector (Invitrogen, Carlsbad, CA) encoding the HER293 cell–derived GPR40 cDNA. Lipofectamine 2000 transfection reagent (Invitrogen) was used for stable transfection, and G-418 was used as a selection agent. Cells were incubated with a calcium 3 assay kit (Molecular Devices, Sunnyvale, CA) for 2 hours, with compounds added as a 5× solution. Fluorescence over time was measured using a fluorometric imaging plate reader (Molecular Devices). This assay was also used for high-throughput screening and modification chemosynthesis screening.

Insulin Secretion Assay. MIN6 cells were incubated and washed once and then stimulated with compounds containing 2.8 or 22.4 mM glucose for 20 minutes. Insulin secreted into the supernatant was measured using an enzyme immunoassay (Shibayagi, Gunma, Japan).

Oral Glucose Tolerance Test and Single Administration Test in Normal Mice. Male ICR mice and male Zucker fatty rats were fasted for 16 hours and then orally administered vehicle (0.5% methylcellulose) alone or containing compounds. After 30 minutes, glucose was orally administered at 2 g/kg/10 ml body weight in the oral glucose tolerance test (OGTT). Blood was collected for plasma preparation from the tail vein into capillary tubes (Chase Scientific Glass, Rockwood, TN) each 10 μl at baseline and 5, 15, 30, 60, and 120 minutes after administration of glucose in the OGTT and AS2034178 in the single-administration test.

Repeat Administration Study. Male ob/ob mice (age, 7 weeks) were divided into 10 animals per group. Group allocation was performed a day before administration to ensure that there were no significant differences in fed plasma glucose levels and body weights. Vehicle (0.5% methylcellulose) alone or with AS2031477, AS2034178, pioglitazone, or metformin was orally administered vehicle (0.5% methylcellulose) alone or with 1 mg/kg AS2034178 or pioglitazone divided into six groups (10 animals per group). Either vehicle (0.5% methylcellulose) alone or with 1 mg/kg AS2034178 or pioglitazone was orally administered once daily (at 5:00 PM) for 10 days. After final administration by inferior vena cava each 300 μl under isoflurane anesthesia. Euthanasia was performed by cervical dislocation after blood collection. Pancreatic tissue was also collected, weighed, homogenized, and extracted with 2 ml of 1.5% HCl-75% ethanol buffer for 2 hours and then centrifuged for 10 minutes at 3000g.

Pharmacokinetic Study in Vivo. Sixteen hours after administering the final dose of the 2- or 4-week repeat administration of vehicle alone or with AS2031477 or AS2034178 to ob/ob mice, an additional dosing in 0.5% methylcellulose was orally administered to mice at 10 ml/kg body weight (3 animals per group). Blood was collected from the tail vein into capillary tubes each 20 μl at baseline and 0.5, 1, 2, 4, 8, 12, and 24 hours after dosing, and plasma concentration of AS2031477 and AS2034178 was measured using an XTerra MS C18 column (Waters) on a TSQ Quantum Ultra system (Thermo Scientific, Waltham, MA), with a mobile phase of 20 mM AcONH4:MeCN (50:50).

Insulin Tolerance Test. Male ob/ob mice (age, 7 weeks) were divided into six groups (10 animals per group). Either vehicle (0.5% methylcellulose) alone or with 1 mg/kg AS2034178 or pioglitazone was orally administered once daily (at 5:00 PM) for 10 days. After final administration, mice were fasted overnight (16 hours) and then injected intraperitoneally with biosynthetic human insulin (Novolin R; Novo Nordisk, Bagsvard, Denmark) at 0.5 or 1 U/kg body weight. Blood was collected from the tail vein into capillary tubes each 10 μl at baseline and 30 and 60 minutes after insulin injection.

Euglycemic-Hyperinsulinemic Clamp Test. Male Zucker fatty rats (age, 11–12 weeks) were divided into 4 groups (8–9 animals per
group). Either vehicle (0.5% methylcellulose) alone or with 30 mg/kg AS2034178 or 10 mg/kg pioglitazone was orally administered once daily (at 5 PM) for 14 days. After final administration, rats were fasted overnight (16 hours) and then a euglycemic-hyperinsulinemic clamp test was conducted. The clamp procedure was performed according to methods described by previous paper (Minoura et al., 2005) with minor modifications. Rats were anesthetized with pentobarbital given intraperitoneally (50 mg/kg) and maintained by administering additional pentobarbital. Ventilation was performed by inserting a catheter into the respiratory tract. Catheters were inserted in one side of femoral veins for blood sampling and in both sides of jugular veins for insulin and glucose infusions. Next, $[^{14}C]Glucose\ (d-[^{14}C]glucose, 310 \text{ mCi/mmol}; \ GE\ Healthcare\ LIFE\ SCIENCE,\ Amersham,\ Buckinghamshire,\ UK)$ was administered in a priming bolus (10 ACi/0.1 ml in saline) followed by constant infusion (25 ACi/ml in saline 0.4 ml/h). At 55 and 60 minutes after the infusion, basal plasma glucose level was determined in a whole-blood sample using ACCU-CHEK Active II (Roche Diagnostics, Indianapolis, IN). Basal plasma insulin level and $[^{14}C]glucose$ radioactivity was determined as described later in this section. After this basal blood collection, infusion of insulin (Humulin R; Eli Lilly Japan Co., Ltd., Hygo, Japan) was performed, and the time was defined as 0 minutes. Insulin was intravenously infused at rates of 90 (0–3 minutes), 60 (3–6 minutes), 37.5 (6–10 minutes) and 30 mU/kg/min (>10 minutes). Blood samples were drawn at 4-minute intervals for determination of plasma glucose level from 10 minutes after starting the infusion of insulin. Glucose solution [40% (w/v)] was infused at an adequate rate to maintain the plasma glucose level at approximately 100 mg/dl. Three consecutive samples of blood were then collected for determination of plasma glucose, insulin levels, and radioactivity before the end of the clamp procedure. Plasma samples (50 μl each) were mixed with 75 μl of 0.15 M Ba(OH)2 and 75 μl of 0.15 M ZnSO4 and then centrifuged after being allowed to sit at room temperature for 20 minutes to obtain supernatant. A total of 150 μl of supernatant was then applied to AG anion exchange resin (AG1-X8 or AG2-X8; Bio-Rad Laboratories, Hercules, CA) and eluted twice with 0.75 ml of distilled water. Elution was mixed with aqueous scintillant (Aquazol-2; Packard Instrument Company Inc., Meriden, CT), and its radioactivity was counted by using a liquid scintillation analyzer (1900TR or 2200CA; Packard Instrument Company Inc.). Hepatic glucose production and glucose disappearance rate (peripheral glucose utilization) were calculated using Steele’s equation (Steele, 1959).

PPAR-γ Transactivation Assay. This assay was performed according to methods previously described in which CV-1 cells were transfected with an expression and reporter plasmids (Minoura et al., 2004). After transfection, the cells were harvested and seeded into a 96-well plate at a density of 18,000 cells/well in 50 μl of Dulbecco’s modified Eagle’s medium with 10% delipidated and charcoal-treated fetal calf serum. After the cells had adhered, test compound was added. Cells were lysed, and the luciferase activity was measured in a luminometer (MLX Microtiter Plate Luminometer, Dynatech Laboratories, Chantilly, VA) using the Dual-Luciferase Reporter Assay System (Promega, Madison, WI).

In Vivo Sample Measurement Methods. Plasma glucose levels were measured using glucose CII-test reagent (Wako Pure Chemical Industries, Tokyo, Japan). Plasma and pancreas insulin levels were measured using the murine insulin ELISA kit (Shibayagi). Blood HbA1c levels were measured using a DCA2000 Analyzer (Bayer, Leverkusen, Germany). Plasma triglyceride and FFA levels were determined using the Triglyceride E-test (Wako) and the NEFA C-test (Wako).

![Fig. 2.](image_url) In vitro effects of AS2034178 on Ca$^{2+}$ increase and glucose-stimulated insulin secretion. (A) Ca$^{2+}$ increase in GPR40-overexpressing CHO cells. (B–D) Glucose-stimulated insulin secretion in MIN6 cells. Data are presented as mean ± S.E.M. from three (A) and five (B–D) independent experiments. *P < 0.05, **P < 0.01 vs. no compound control cells.
Statistical Analysis. Statistical analyses were conducted using GraphPad Prism 5 software (GraphPad Software, San Diego, CA) with data expressed as the mean ± S.E.M. Statistically significant differences between pairs of groups were determined using Student’s t test, whereas those across multiple groups were assessed using Dunnett’s multiple range test. Statistical significance was established as P < 0.05.

Results

Novel GPR40 Agonists AS2031477, AS1975063 and AS2034178. We identified novel GPR40-specific agonists via high-throughput screening. Because GPR40 is a Gq-coupled receptor that signals through an increase in intracellular Ca$^{2+}$ levels, we developed GPR40-overexpressing CHO cells and evaluated the increase in intracellular Ca$^{2+}$ concentration caused by each chemical compound. High-throughput screening of a chemical library containing approximately 166,000 low-molecular weight compounds showed that several compounds markedly increased Ca$^{2+}$ concentration. To identify agonists with excellent in vivo activity, we next narrowed down our selection to those which also demonstrated lengthy persistence in blood on oral administration in mice. We also conducted modification chemosyntheses on approximately 250 compounds, ultimately selecting AS2031477, AS1975063, and AS2034178, which demonstrated the greatest increase in intracellular Ca$^{2+}$ levels dose-dependently (Fig. 2A).

The maximum efficacy of this increase in Ca$^{2+}$ was nearly equal to that of linolenic acid, an endogenous ligand of GPR40, and the potencies of AS2031477, AS1975063, and AS2034178 were much higher than that of linolenic acid (Fig. 2A).

We also developed human GPR41-, GPR43-, GPR119-, and GPR120-overexpressing CHO cells and evaluated the increase in intracellular Ca$^{2+}$ concentration caused by AS2034178 using these cells (data not shown). Only GPR40-expressing cells exhibited increased intracellular Ca$^{2+}$ (showing no increase at doses of 10 µM in other cells). Because some GPR40 agonists have been reported to exhibit glucose concentration-dependent insulin secretion, we evaluated this activity using AS2031477, AS1975063, and AS2034178 in pancreas β-cell–derived MIN6 cells. These compounds induced dose-dependent and significant insulin secretion only under high-glucose conditions (22.4 mM), with no increase in secretion under low-glucose conditions (2.8 mM) (Fig. 2, B–D). Taken together, these data indicated that these compounds are GPR40-specific.
agonists that increase glucose-dependent insulin secretion in a pancreatic β-cell–derived cell line.

Effect of a Single Dose of AS1975063 and AS2034178 on Oral Glucose Tolerance under Fasting Conditions in Normal Mice and Zucker Fatty Rats. To examine the glucose-dependent insulin secretion in vivo, we first conducted an OGTT using normal mice and diabetic model Zucker fatty rats using AS1975063. After a 16-hour fast, single-dose oral administration of AS1975063 at 1, 3, or 10 mg/kg 30 minutes before glucose administration induced dose-dependent suppression of plasma-glucose increase after oral glucose administration in both species (Fig. 3, A and C). At the same time, plasma insulin levels after oral glucose administration increased dose-dependently in both species (Fig. 3, B and D).

Next, we conducted an OGTT using AS2034178 at 0.3 to 10 mg/kg in normal mice. AS203418 also induced dose-dependent suppression of plasma-glucose increases after oral glucose administration, and the decrease in area under the plasma glucose concentration-time curve was significant at doses over 1 mg/kg (Fig. 4, A and B). At the same time, plasma insulin levels after oral glucose administration increased, and plasma insulin levels at 5 minutes after glucose administration were dose-dependently and significantly increased at dosages of AS2034178 over 3 mg/kg (Fig. 4, C and D).

To clarify the glucose dependency of AS2034178, we then conducted a single-dose administration test of AS2034178 at doses ranging from 1 to 10 mg/kg in fasting normal mice without oral glucose administration. Results showed that plasma glucose levels after AS2034178 administration were unchanged at any dose (Fig. 4E), and plasma insulin levels were also unchanged (Fig. 4F).

Effect of AS2031477 and AS2034178 after Repeat Administration and Plasma Concentration Transition in Diabetic ob/ob Mice. To examine the long-term effect of GPR40 agonists on diabetic model mice in vivo, first AS2031477 was administered orally twice daily for 2 weeks to ob/ob mice, which are leptin-code-gene deficient and the major mouse model of type 2 diabetes. AS2031477 was administered at 3 to 30 mg/kg. As a result, plasma glucose levels and blood HbA1c level were significantly decreased (Fig. 5, A and B). Further, plasma insulin levels significantly decreased dose-dependently (Fig. 5C) and pancreatic insulin content showed a tendency to increase at higher doses (Fig. 5D). In this study, body weights of all dose AS2031477 administration groups were unchanged (Fig. 5E).

We sequentially measured plasma concentration of AS2031477 after single (3 mg/kg) or repeated (3 mg/kg twice daily for 2 weeks) administration in ob/ob mice. Maximum concentrations exhibited some decrease by repeat administration (1.7 vs. 0.84 μg/ml), but plasma half-lives were slightly extended ($t_{1/2} = 2.0$ vs. 2.7 hours) (Fig. 5F).

Next, we conducted this repeat administration study in detail using AS2034178 at 0.03 to 1 mg/kg with 1 mg/kg pioglitazone, and 200 mg/kg metformin as control agents in ob/ob mice. As a result, plasma glucose levels significantly decreased after repeat administration at higher doses (Fig. 5C). In this study, body weights of all dose AS2034178 administration groups were unchanged (Fig. 5E).

Fig. 4. Effect of single administration of AS2034178 on glucose-dependent insulin secretion in normal mice. (A) Time course of changes in plasma glucose levels during the OGTT. (B) Area under the plasma glucose concentration-time curve during the OGTT until 120 minute after glucose administration. (C) Time course of changes in plasma insulin levels during the OGTT. (D) Plasma insulin levels 5 minute after glucose administration. (E) Plasma glucose levels after only AS2034178 administration. Data are presented as mean ± S.E.M. of each group of six to eight animals. *P < 0.05, **P < 0.01 vs. vehicle control group.
decreased in mice receiving AS2034178 and pioglitazone, and the effect of AS2034178 was dose-dependent and reached maximum efficacy at dosages over 0.1 mg/kg (Fig. 6A). Blood HbA1c levels significantly decreased in mice receiving all compounds, and this effect in mice receiving AS2034178 was also dose-dependent (Fig. 6B). Plasma insulin levels significantly decreased upon administration of all compounds, and the decrease with AS2034178 was dose-dependent (Fig. 6C). Pancreatic insulin content was significantly increased by AS2034178 and pioglitazone, and the effect of AS2034178 was dose-dependent and reached maximum efficacy at dosages over 0.1 mg/kg (Fig. 6D). Plasma FFA levels significantly decreased with pioglitazone and metformin (Fig. 6E) but plasma triglyceride levels were unchanged in all groups (Fig. 6F). With the exception of a significant decrease in body weight at 1 mg/kg dose, all other doses of AS2034178 had no effect on body weight (Fig. 6G).

Maximum concentrations of AS2034178 were nearly equal after single or repeated dosing respectively (0.13 vs. 0.10 µg/ml), and plasma half-lives were also nearly equal respectively (t1/2 = 7.1 vs. 7.4 hours). These results indicate that AS2034178 exhibited no plasma concentration accumulation by repeat administration (Fig. 6H), and the t1/2 of AS2034178 was longer than that of AS2031477 in ob/ob mice.

These results suggest that GPR40 agonists do indeed improve whole-body glucose metabolism in diabetic ob/ob mice.

Insulin Resistance Improvement Effect of AS2034178 on Long-Term Treatment. The effects of AS2034178 on repeat administration to ob/ob mice resembled those of the insulin sensitizer pioglitazone, suggesting that AS2034178 may have the potential to improve insulin resistance as a result of whole-body glucose metabolism improvement. To examine this possibility, we conducted an insulin tolerance test and a euglycemic-hyperinsulinemic clamp test.

In the insulin tolerance test, we first conducted a 10-day trial of once-daily repeat administration to ob/ob mice of AS2034178 (1 mg/kg), pioglitazone (1 mg/kg), or vehicle only. After repeat administration and overnight fasting, we conducted an insulin tolerance test via insulin administration (0.5 and 1 U/ml). At both insulin doses, AS2034178 and pioglitazone caused significant decreases in plasma glucose at 30 and 60 minutes after insulin administration compared with vehicle only (Fig. 7, A and B). These results indicate that repeat administration of AS2034178 can increase insulin sensitivity as a result of chronic treatment.

For the euglycemic-hyperinsulinemic clamp test, we first conducted a 14-day trial of once-daily repeat administration of AS2034178 (30 mg/kg), pioglitazone (10 mg/kg), or vehicle only to Zucker fatty rats and vehicle only to normal rats. After repeat administration and overnight fasting, we conducted an insulin tolerance test via insulin administration (0.5 and 1 U/ml). At both insulin doses, AS2034178 and pioglitazone caused significant decreases in plasma glucose at 30 and 60 minutes after insulin administration compared with vehicle only (Fig. 8A). These results indicate that repeat administration of AS2034178 can increase insulin sensitivity as a result of chronic treatment.
significantly decreased, although the decrease was also smaller than those in the pioglitazone administration group (Fig. 8B). Body weights of the AS2034178 administration group were significantly increased, although the increase was smaller than those in the pioglitazone administration group (Fig. 8C). Then, we conducted a euglycemic-hyperinsulinemic clamp test by infusing d-$[U-^{14}C]$glucose, insulin, and glucose. After the infusion reached a steady state, we collected plasma samples and calculated peripheral glucose utilization and hepatic glucose production by examining the data of influx d-$[U-^{14}C]$glucose, influx cold-glucose, clamp-state plasma d-$[U-^{14}C]$glucose level and plasma cold-glucose level. Results showed that peripheral glucose utilization in the AS2034178 administration group was significantly increased compared with the vehicle administration group (Fig. 8D), and hepatic glucose production in the AS2034178 administration group was significantly decreased compared with the vehicle administration group (Fig. 8E). These effects, however, were weaker than those observed in the pioglitazone administration group.

Discussion

Two types of medications are primarily used to treat type 2 diabetes—insulin secretagogues and insulin sensitizers. Although these two types of medicine have different mechanisms and are prescribed based on the pathology of an individual patient’s disease, both types of medicine can improve whole-body glucose metabolism and decrease blood HbA1c levels by long-term use.

Here, we discovered the novel GPR40 agonists AS2031477, AS1975063, and AS2034178 and how they can improve not only acute impairment of glucose-dependent insulin secretion but also chronically impaired whole-body glucose metabolism. Although previous reports have demonstrated beneficial effects of GPR40 agonists on acute glucose-dependent insulin secretion, to our knowledge, ours is the first to show such a chronic effect on glucose metabolism improvement.

Insulin secretagogues promote acute insulin secretion and improve acute glucose metabolism by single dosing. However,
long-term use of insulin secretagogues produce whole-body glucose metabolism improvement and decrease blood HbA1c levels (Charbonnel et al., 2013; Hanefeld et al., 2007; Sakamoto et al., 2013; Wang et al., 2011). It is believed that long-term correction of acute glucose metabolism by insulin secretagogues decreases glucotoxity and improves whole-body glucose metabolism while secondarily improving insulin resistance. Our data indicate that long-term treatment with GPR40 agonists improves whole-body glucose metabolism and insulin resistance. These effects may be caused secondarily by the decrease of glucotoxity produced by ongoing glucose-dependent insulin secretion. The insulin sensitizer pioglitazone improves insulin resistance, mainly in peripherally organized adipocytes and skeletal muscles. Indeed, chronic treatment with pioglitazone resulted in decreased plasma glucose levels and blood HbA1c (Fig. 6, A and B), increased responsiveness to insulin in an insulin tolerance test (Fig. 7, A and B), increased peripheral

Fig. 7. Effect of AS2034178 repeat administration on insulin tolerance test. (A and B) Time course of changes in plasma glucose levels after insulin administration. Biosynthetic human insulin at 0.5 (A) or 1 U/kg body weight (B) was administered intraperitoneally. The change in the plasma glucose levels were exhibited as the delta glucose average from baseline. Data are presented as means ± S.E.M. for five animals. */#/P < 0.05, **/##P < 0.01 vs. vehicle control group.

Fig. 8. Effects of repeat administration of AS2034178 in diabetic model Zucker fatty rats. Vehicle alone (V), AS2034178, and pioglitazone were orally administered once daily for 2 weeks. (A) Plasma glucose levels. (B) Plasma insulin levels. (C) Body weight. (D and E) Effect of AS2034178 repeat administration on euglycemic-hyperinsulinemic clamp test. (D) Peripheral glucose utilization. (E) Hepatic glucose production at clamp state. Data are presented as means ± S.E.M. for eight to nine animals. ##P < 0.01 vs. normal control group; *P < 0.05, **P < 0.01 vs. vehicle control group.
glucose utilization, and decreased hepatic glucose production in the euglycemic-hyperinsulinemic clamp test (Fig. 8, D and E)—all effects believed to be due to enhancement of insulin sensitivity. AS2034177 also exhibited similar effects to pioglitazone (Figs. 6, A and D, 7, A and B, and 8, D and E), although the effects on insulin resistance improvement are weaker than those seen with pioglitazone. Metformin is one of the insulin sensitizers that suppresses gluconeogenesis in the liver and increases glucose uptake in skeletal muscle, and it exhibited decreases of blood HbA1c and plasma insulin levels (Fig. 6, B and C). However, because these effects were weaker than those seen with pioglitazone and it was not effective on decreasing plasma glucose or increasing pancreatic insulin content, the whole-body glucose metabolism improvement effect of metformin is thought to be limited in this ob/ob mouse model.

We also confirmed that AS2031477 and AS2034178 are GPR40-specific agonists that do not affect the activity of PPAR-γ (<50% of the maximum efficacy of pioglitazone up to 10 μM), GPR41, GPR43, GPR119, or GPR120. These findings suggest that AS2031477 and AS2034178 improve chronic glucose metabolism by activating GPR40. Although GPR40 activation has not been shown to have this effect in animal models, the GPR40 agonist TAK-875 has been reported to reduce fasting plasma glucose and HbA1c levels in clinical trials (Araki et al., 2012; Burant et al., 2012). Taken together, these present and previous findings indicate the possibility that chronic treatment with GPR40 agonists can improve whole-body glucose metabolism in animals and humans with long-term use.

Although both AS2031477 and AS2034178 produced whole-body glucose metabolism improvement, the potency of AS2034178 was higher than that of AS2031477. In ob/ob mice, the t1/2 of AS2034178 was longer than that of AS2031477, and AS2034178 exhibited no plasma concentration accumulation by repeat administration. Taken together, this difference in potency between agents may depend upon the pharmacokinetic profile of these compounds.

By the repeat administration of AS2034178, some body weight changes were observed. Body weight decrease was observed at 1 mg/kg administration group in ob/ob mice, and body weight increases were observed at 30 mg/kg administration group in Zucker fatty rats. The cause of these body weight changes was unknown; however, we think the variations were unrelated to the efficacy of AS2034178 for whole-body glucose metabolism improvement. First, the efficacy of metabolism improvement by AS2034178 was observed from 0.1 mg/kg, and significant improvements in plasma glucose levels, HbA1c insulin levels, and pancreatic insulin contents were observed from 0.1 mg/kg in ob/ob mice; however, body weights were unchanged up to 0.3 mg/kg. Second, AS2031477 also exhibited whole-body glucose metabolism improvement in ob/ob mice with no body weight changes.

Although AS2034178 has the effect of glucose-dependent insulin secretion, chronic treatment with AS2034178 reduced plasma insulin levels and increased pancreas insulin content (Fig. 6, C and D). In ob/ob mice, the animal model for hyperinsulinemia, fed plasma insulin concentration reached 234 ng/ml, whereas the value in normal mice was only 1.4 ng/ml (Fig. 6C). So, we consider that plasma insulin level was decreased to normalize whole-body glucose metabolism in ob/ob mice. Glucotoxicity decreases due to the repeat insulin secretion may improve insulin resistance and decrease the necessity of insulin. Although insulin secretagogues have increased risk of pancreatic β-cell exhaustion, AS2034178 may be associated with a lower risk of pancreatic β-cell exhaustion because pancreatic insulin content increased in response to AS2034178.

HbA1c levels decreased by approximately 1.5% on repeat administration of AS2034178 (Fig. 6B). In patients with type 2 diabetes mellitus, slight reductions of plasma HbA1c levels (<1%) are correlated with significant decreases in the incidence of microvascular complications often responsible for decreased quality of life, such as retinopathy and nephropathy (UK Prospective Diabetes Study Group 1998). AS2034178 therefore has the therapeutic potential to improve the prognosis for patients with type 2 diabetes by potentially reducing microvascular complications.

In conclusion, the novel GPR40 agonists improve whole-body glucose metabolism after long-term treatment. We believe that GPR40 agonists represent a new class of drugs for treating type 2 diabetes, with AS2034178 as a particularly promising candidate.

Acknowledgments

The authors thank Drs. S. Kawabata, T. Kozumi, H. Kayakari, A. Shimaya, E. Kurosaki, and K. Minoura (Astellas Pharma Inc.) for their helpful advice and experimental support.

Authorship Contributions

Participated in research design: Tanaka, Yoshida, Oshima, Minoura, Yamazaki, Matsui, Shibasaki.

Conducted experiments: Tanaka, Yoshida, Oshima, Minoura, Sakuda, Yamazaki.

Contributed new reagents or analytic tools: Negoro, Iwassaki.

Performed data analysis: Tanaka, Yoshida, Oshima, Minoura, Yamazaki, Sakuda.

Wrote or contributed to the writing of the manuscript: Tanaka.

References

Hamfeld M, Patelwardhan R, and Jones NP; Rosiglitazone Clinical Trials Study Group (2007) A one-year study comparing the efficacy and safety of rosiglitazone and