










Object Recognition. Scopolamine produced a significant
degradation in performance in the object recognition task
(Fig. 7). Both SB-277011A and U99194 prevented these
effects of scopolamine at both 10 and 30 mg/kg. Reboxetine
was also effective in preventing scopolamine-induced perfor-
mance effects at 10 and 30 but not at 3 mg/kg (Fig. 7).
The ability of SB-277011A to enhance novel object recogni-

tion on its ownwas also evaluated. In this experiment, a 3-hour
instead of 3-minute delay was imposed before presentation of
the novel object. Under these conditions, performance com-
pared with the 3-minute condition was degraded to a level like
that imposed by scopolamine. The percent time exploring the
novel object was: vehicle 5 48.9%, 10 mg/kg SB-277011A 5
56.7%, and 30 mg/kg SB-277011A 5 46.4%. Although there
was a trend for an effect with 10 mg/kg, these effects were not
significantly different than vehicle control values.
To evaluate the potential for D3 receptor blockade to en-

hance the efficacy of reboxetine, lower doses of SB-277011A
were tested. Neither 1 nor 3 mg/kg SB-277011A significantly
prevented the effects of scopolamine (Fig. 8). When these
doses of SB-277011A were tested against a noneffective dose
of reboxetine (3 mg/kg), SB-277011A dose-dependently aug-
mented the protective effects of reboxetine (Fig. 8).
Dopamine Transporter Null Mice. DAT2/2 mice had

markedly enhanced basal locomotor activity levels than age-

matched WT controls (Fig. 9). d-Amphetamine (3 mg/kg, i.p.)
significantly decreased activity levels in the KO mice and
significantly increased activity of WT mice (two-way ANOVA
shows significant interaction between genotype and treat-
ment, F1,31 5 52.9; P , 0.0001). In contrast to the effects of
d-amphetamine, SB-277011A (3–30 mg/kg, i.p.) (two-way
ANOVA showed significant interaction between genotype
and treatment with F3,39 5 13; P , 0.0001) and U99194 (30
and 60 mg/kg, i.p.) (two-way ANOVA showed significant
interaction between genotype and treatment, with F3,34 5
3.02; P , 0.05) significantly attenuated the hyperactivity of
DATKOmice without significantly altering the activity of WT
mice. Reboxetine (an analog of atomoxetine, a nonstimulant
drug with proven efficacy in patients with ADHD) was also
studied. Under these conditions, reboxetine significantly
decreased locomotor hyperactivity of the DAT KO mice at
doses of 5 and 10 mg/kg i.p. without affecting levels of activity
of WT mice (two-way ANOVA shows significant interaction
between genotype and treatment of F2,61 5 5.1; P , 0.001).

Discussion
The present report provides a new method for determining

in vivo receptor occupancy of dopamine D3 receptors, the first
study to use an antagonist ligand and a technique that does

Fig. 4. Effects of SB-277011A on tissue levels of ACh, choline, and the
ratio choline:ACh in the hippocampus, cortex, and striatum of rats. Each
point represents the mean 6S.E.M. of six rats. *P , 0.05, **P , 0.01
compared with vehicle (0 mg/kg).

Fig. 5. Effects of U99194 on tissue levels of ACh, choline, and the ratio
choline:ACh in the hippocampus, cortex, and striatum of rats . Each point
represents the mean 6S.E.M. of six rats. *P , 0.05, **P , 0.01, ***P ,
0.001 compared with vehicle (0 mg/kg).
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not require radioactivity. The method capitalizes on the
acceptable tracer characteristics of epidepride for D3 recep-
tors in combination with the selective expression of D3

receptor in lobules 9 and 10 of the cerebellum. In vivo
receptor occupancy was readily measured by comparison of
the binding of epidepride to lobules 9 and 10 of cerebellum

with nonspecific binding in the lateral cerebellum. A powerful
addition to the present method was the ability to simulta-
neously measure the occupancy of D2 receptors in the same
rats by comparisons of epidepride binding in dorsal striatum
versus cerebellum. Although with more painstaking efforts,
simultaneous D2 and D3 receptor occupancy can be measured

Fig. 6. Effects of methylphenidate, reboxetine, SB-277011A, and U99194 on the acquisition of behavior of male Sprague Dawley rats. All compounds
were dosed i.p., 30 minutes prior to testing. Each point represents the mean 6 S.E.M. of 7–10 rats. Solid circles represent vehicle values.
Methylphenidate: open circles, 1 mg/kg; inverted triangle, 3 mg/kg. Reboxetine: inverted triangle, 3 mg/kg; triangle, 10 mg/kg. SB-277011A: inverted
triangle, 10 mg/kg; triangle, 30 mg/kg. U99194: inverted triangle, 10 mg/kg; triangle, 30 mg/kg.

Fig. 7. Effects of SB-277011A, U99194, and reboxetine on scopolamine-disrupted novel object–recognition performances of rats. Each bar represents the
mean 6 S.E.M. of six to eight rats. Statistical comparisons were made by Dunnett’s test after significant ANOVA with P , 0.05 (*) compared with
scopolamine (scop).
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by the agonist radioligand [11C]-PHNO, a second radioligand
(e.g., 3H-raclopride) is often employed for establishment of
dopamine D2 occupancy (Kiss et al., 2011). Availability of
a method for detection of the occupancy of D3 receptor ligands
to D3 receptors and their selectivity for the closely related D2

receptors, as described here, provides another important tool
for making inroads into the discovery and development of
novel dopamine D3 receptor compounds. By leveraging the
LC–MS/MS version of this technique, simultaneous measure-
ments were possible, linking occupancy at multiple central
receptor sites. Additionally, this technique alleviates the costs
associated with using radioactive ligands and increases the
speed of compound evaluation relative to similar recently
published techniques (Kiss et al., 2011).
Using these methods, we determined that both SB-277011A

and U99194 can achieve significant occupancy of D3 receptors
in rat brain upon systemic administration. Further, both SB-
277011A and U99194 can selectively occupy D3 over D2

receptors. SB-277011A was more potent than U99194 in vivo
in accord with its higher affinity for D3 receptors. Significant
D3 receptor occupancy (∼60%) was achieved at 3 mg/kg SB-
277011A and 90% occupancy was observed at 10 mg/kg. In
contrast, U99194 was about 10-fold less potent in occupying
D3 receptors and at the highest dose tested of (30 mg/kg) only
occupied ∼80% of the D3 sites. In addition, SB-277011A was
more selective for D3 than D2 receptors. At the lowest dose of
each molecule that occupied at least 80% D3 receptors, the
occupancy of D2 receptors by SB-277011A was ,5%, whereas
the occupancy of D2 receptors by U99194 was about 20%. The
ability to measure occupancy of receptors in vivo is key to
defining the relationship of target engagement to biologic
effect. The receptor occupancy data on these molecules
extends the limited findings in the published literature. The
occupancy of D3 receptors in vivo by SB-277011A is thus
consistent with one dose–response finding reported with an

agonist radioligand (Rabiner et al., 2009). We cannot find any
data in the literature on the occupancy of dopamine receptors
in vivo by U99194. Our current data on U99194 is a key
testament to the need for such in vivo target-engagement
bioassays in assessing the value of research tools. It is
generally appreciated that high in vitro potency or selectivity
do not necessarily translate in vivo (e.g., Perachon et al.,
2000). Although SB-277011A is 100-fold more selective for D3

receptors in its binding profile than for D2 receptors (Reavill
et al., 2000), U99194 is only 20-fold selective (Waters et al.,
1993), suggesting that the compound at higher doses will
cross over significantly to D2 receptors in vivo. Indeed, it is
often assumed that low potency or selectivity in vitro trans-
lates to poor potency or selectivity in vivo. However, the high
occupancy of D3 receptors by U99194 at 60 mg/kg (81%) and
the ability of U99194 to block a D3-mediated behavioral effect
(Collins et al., 2005) indicate that the low selectivity of this
molecule in vitro is less of a liability than previously
supposed.
Both of the D3 receptor antagonists studied produced large

increases in ACh efflux in medial prefrontal cortex of rats as
did the ADHD medication atomoxetine (Tzavara et al.,
2006a). Lacroix et al. (2003) had also reported increases in
ACh efflux measured from rat cingulate cortex. To under-
stand these effects further we examined ACh and choline
tissue levels and determined the ratio of choline:ACh that is
considered a measure of ACh turnover rate in three brain
areas (hippocampus, striatum, and cortex). Both D3 receptor
antagonists dose-dependently decreased ACh tissue levels,
probably due to its enhanced release, and increased ACh
turnover rate, most likely due to an increase in its synthesis
and release, in all three brain regions studied. Combined,
these neurochemical results, thus, demonstrate that the two
D3 receptor antagonists given at doses that engage the
receptor stimulate ACh release and synthesis in the brain,
as captured by both in vivo and ex vivo methods. To the best of
our knowledge the effects of D3 receptor blockade on brain
tissue levels of ACh and choline have not previously been
reported. Importantly, the fact that the effects on tissue ACh
and choline levels mirror the findings in ACh efflux in
response to D3 receptor antagonists offers an additional
robust and reliable tool in the study of neurochemical coupling
to dopamine D3 receptor blockade in the brain.
Corresponding to the increases in cortical ACh and

increases in brain ACh turnover, the dopamine D3 receptor
antagonists prevented the effects of scopolamine in a novel
object recognition task while occupying D3 receptors. The
positive effects of both compounds, in this behavioral model of
cognitive impairment, that are associated with enhancements
in ACh function in the brain were also observed with
reboxetine, an analog of the ADHD-treatment drug atom-
oxetine, which also prevents scopolamine-induced deficits
(Tzavara et al., 2006a). SB-277011A also enhanced the effects
of reboxetine in this task. In addition, U99194 enhanced the
learning of rats in a five-trial shuttle box procedure that is
also sensitive to the ADHD drug methylphenidate and to
reboxetine (present study) as well as to other procognitive
mechanisms (e.g., Fox et al., 2003). These findings implicate
D3 receptors as negative regulators of attentional processing
and are consistent with a literature of cognitive improve-
ments with D3 receptor antagonism (Laszy et al., 2005;
Braszko, 2010; Micale et al., 2010) opposing the cognitive

Fig. 8. Augmentation of the behavioral effects of reboxetine by SB-
277011A on novel object recognition of rats after scopolamine disruption.
SB-277011A (i.p.) was given alone 40 minutes prior to testing or with
reboxetine (3 mg/kg s.c. + 40 minutes) and tested against a scopolamine
challenge (1 mg/kg s.c. + 30 minutes). Each bar represents the mean 6
S.E.M. of four rats. Statistical comparisons were made by Dunnett’s test
after significant ANOVA with P , 0.05 (*) compared with vehicle (veh); #,
compared with scopolamine (s); $, compared with reboxetine (r) plus
scopolamine.
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deficits impacted by D3 receptor agonists (Smith et al., 1999).
A polymorphism of the D3 receptor has been associated with
the cognitive impairments in schizophrenia (Szekeres et al.,
2004; Bombin et al., 2008) and D3 receptor blockade might be
associated with some of the beneficial cognitive-impacting
effects of atypical antipsychotic agents and of selective D3

receptor antagonists (Lacroix et al., 2003; Lumme et al., 2007;
Millan and Brocco, 2008). However, clinical data also have
suggested cognitive benefit from the anti-Parkinson D3/2

receptor agonist pramipexole (Levin et al., 2009).
In vivo models for predicted drug efficacy in ADHD are

imperfect. However, although no disease models exist,
multiple in vivo readouts do detect effects of drugs used in
ADHD therapeutics such as methylphenidate, d-amphet-
amine, and atomoxetine (Wickens et al., 2011). In the present
study, effects on cognitive aspects of the disorder, including
attentional deficits, were studied in rats, where methylphe-
nidate and the atomoxetine analog reboxetine were used as
positive controls. Modeling of the hyperactivity symptoms of
ADHD has used the dopamine transporter (DAT)2/2 mouse.
Indeed, several genetic studies show an association between
a polymorphism in the noncoding regions of the DAT gene and
ADHD, suggesting that DAT-mediated processes could
significantly contribute to the pathogenesis of this disorder.
In the DAT KO mice, a five-fold increase in extracellular
dopamine in the brain is associated with dramatic hyperac-
tivity. This hyperactivity, paradoxically, is inhibited by
psychostimulants like amphetamine and methylphenidate,

thereby providing a simple model in which the effects of
ADHD pharmacological agents can be assessed (Gainetdinov
and Caron, 2003).
In the present study, we showed that the ADHD drugs d-

amphetamine and reboxetine decreased the profound hyper-
activity of DAT2/2 mice. This dampening effect was also
observed with two structurally distinct D3 receptor antago-
nists SB-277011A and U99194. In contrast to d-amphetamine
but comparable to that of reboxetine, the D3 antagonists
produced this effect in DAT2/2 mice without stimulating
locomotion in WT control mice (DAT1/1). Thus, in conjunction
with the binding to D3 receptors, the subsequent rise in ACh
efflux in the medial prefrontal cortex, augmentation of ACh
turnover rate, reversal of the cognitive impairments induced
by the known amnestic drug scopolamine, and the aug-
mentation of the procognitive effects of reboxetine, these
antihyperactivity data support the potential application of
dopamine D3 receptor antagonists in the treatment of
ADHD.
Despite the potential therapeutic applications of dopamine

D3 receptor antagonists, there are no selective drugs
approved for clinical use. The present findings encourage
further discovery and development on this interesting
biologic mechanism. The promise of bringing such com-
pounds into clinical use (Micheli and Heidbreder, 2006) has
also been improved recently by the identification of a crystal
structural complex of D3 receptors with eticlopride (Chien
et al., 2010).

Fig. 9. Effects of d-amphetamine, reboxetine, and dopamine D3 receptor antagonists U99194 and SB-277011A on locomotor activity of DAT2/2 mice
(unfilled bars) or DAT+/+ mice (filled bars). Results represent total horizontal locomotor activity (ambulations) over a 60-minute period. Each bar
represents the mean 6S.E.M. of mice (n = 5–7 for SB-277011A and U99194; 7–11 for d-amphetamine, and 6–18 mice/group for reboxetine). *P , 0.05,
**P , 0.01, ***P , 0.001 as compared with vehicle of the same genotype.
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