7-tert-Butyl-6-(4-Chloro-Phenyl)-2-Thioxo-2,3-Dihydro-1H-Pyrido[2,3-d]Pyrimidin-4-One, a Classic Polymodal Inhibitor of Transient Receptor Potential Vanilloid Type 1 with a Reduced Liability for Hyperthermia, Is Analgesic and Ameliorates Visceral Hypersensitivity

Mark S. Nash, Peter McIntyre, Alex Groarke, Elliot Lilley, Andrew Culshaw, Allan Hallett, Moh Panesar, Alyson Fox, and Stuart Bevan

Novartis Institutes for BioMedical Research, Horsham, United Kingdom (M.S.N., A.G., E.L., A.C., A.H., M.P., A.F.); Department of Pharmacology, University of Melbourne, Victoria, Australia (P.M.); and Wolfson Centre for Age-Related Diseases, King’s College, London, United Kingdom (S.B.)

Received January 14, 2012; accepted May 4, 2012

ABSTRACT

The therapeutic potential of transient receptor potential vanilloid type 1 (TRPV1) antagonists for chronic pain has been recognized for more than a decade. However, preclinical and clinical data revealed that acute pharmacological blockade of TRPV1 perturbs thermoregulation, resulting in hyperthermia, which is a major hurdle for the clinical development of these drugs. Here, we describe the properties of 7-tert-butyl-6-(4-chloro-phenyl)-2-thioxo-2,3-dihydro-1H-pyridopyrimidin-4-one (BCTP), a TRPV1 antagonist with excellent analgesic properties that does not induce significant hyperthermia in rodents at doses providing maximal analgesia. BCTP is a classic polymodal inhibitor of TRPV1, blocking activation of the human channel by capsaicin and low pH with IC₅₀ values of 65.4 and 26.4 nM, respectively. Similar activity was observed with rat TRPV1, and the inhibition by BCTP was competitive and reversible. BCTP also blocked heat-induced activation of TRPV1. In rats, the inhibition of capsaicin-induced mechanical hyperalgesia was observed with a D₅₀ value of 2 mg/kg p.o. BCTP also reversed visceral hypersensitivity and somatic inflammatory pain, and using a model of neuropathic pain in TRPV1 null mice we confirmed that its analgesic properties were solely through the inhibition of TRPV1. We were surprised to find that BCTP administered orally induced only a maximal 0.6°C increase in core body temperature at the highest tested doses (30 and 100 mg/kg), contrasting markedly with N-[4-{6-[4-(trifluoromethyl)phenyl]pyrimidin-4-yl}oxy]-1,3-benzothiazol-2-yl]acetamide (AMG517), a clinically tested TRPV1 antagonist, which induced marked hyperthermia (>1°C) at doses eliciting submaximal reversal of capsaicin-induced hyperalgesia. The combined data indicate that TRPV1 antagonists with a classic polymodal inhibition profile can be identified where the analgesic action is separated from the effects on body temperature.

INTRODUCTION

Transient receptor potential vanilloid type 1 (TRPV1) is a nonselective cation channel highly expressed by nociceptive sensory neurons that is sensitive to noxious heat, protons, and endogenous lipid mediators such as anandamide, in addition to capsaicin (Caterina et al., 2000; Hwang et al., 2000; McIntyre et al., 2001). The role of TRPV1 in somatic inflammatory and neuropathic pain has been extensively characterized, with multiple TRPV1 inhibitors shown to be effective analgesics both clinically and preclinically in conditions with marked hyperalgesia (Szallasi et al., 2007; Broad et al., 2008; Gunthorpe and Chizh, 2009; Pal et al., 2009).

There is also a growing body of evidence for the involvement of TRPV1 in altered visceral sensation. The majority of

ABBREVIATIONS: TRPV1, transient receptor potential vanilloid type 1; CRD, colorectal distension; VMR, visceromotor response; IBS, irritable bowel syndrome; ANOVA, analysis of variance; DMSO, dimethyl sulfoxide; CHO, Chinese hamster ovary; CFA, complete Freund’s adjuvant; TNBS, trinitrobenzene sulfonic acid; BCTP, 7-tert-butyl-6-(4-chloro-phenyl)-2-thioxo-2,3-dihydro-1H-pyridopyrimidin-4-one; AMG517, N-[4-{6-[4-(trifluoromethyl)phenyl]pyrimidin-4-yl}oxy]-1,3-benzothiazol-2-yl]acetamide; AMG8562, (R,E)-N-(2-hydroxy-2,3-dihydro-1H-inden-4-yl)-3-(2-piperidin-1-yl)-4-(trifluoromethyl)phényl)-acrylamide; WIN 55212-2, (2,3-dihydro-5-methyl-3-((4-morpholinyl)methyl)pyrrolo-(1,2,3-de)-1,4-benzoazin-6-yl)[1-naphthalenyl]methanone monomethanesulfonate.
primary sensory afferents innervating the colon express TRPV1 (Robinson et al., 2004), and TRPV1-expressing neurons are more prevalent within colonic afferents than muscle or skin (Christianson et al., 2006), suggesting that TRPV1 will have at least as important a role in visceral pain conditions as in somatic pain. TRPV1 channels are markedly up-regulated and/or sensitized in inflammatory conditions (Yiangou et al., 2001; Chan et al., 2003; Geppetti and Trevisani, 2004), and mucosal biopsy samples from patients with irritable bowel syndrome (IBS) show elevated TRPV1 expression that correlates with the degree of reported pain (Akbar et al., 2008). Activation of TRPV1 in the viscera also elicits pain in humans (Hammer et al., 1998; Drewes et al., 2003; Schmidt et al., 2004), and mechanosensitivity of mouse colon is impaired in TRPV1 knockout mice (Jones et al., 2005). Furthermore, work has shown that the activation of TRPV1 plays a key role in the development of visceral pain and hypersensitivity in animal models (Miranda et al., 2007; Winston et al., 2007; Hong et al., 2009; Ravnøjé et al., 2009).

Despite the early promise shown by TRPV1 inhibitors in clinical trials of inflammatory pain (Chizh et al., 2007), there is concern that the associated hyperthermia induced by TRPV1 blockade may ultimately limit their therapeutic potential (Gavva et al., 2008). Administration of N-[4-(6-[4-(trifluoromethyl)phenyl]pyrimidin-4-yl)oxy]-1,3-benzothiazol-2-yl]acetamide (AMG517) resulted in a body temperature of 40.2°C in one patient during a clinical trial, effectively terminating further development of this compound (Gavva et al., 2008). Moreover, although tolerance to hyperthermia is evident upon repeat dosing in preclinical species (Gavva et al., 2007a), body temperatures remained elevated with the administration of multiple doses of AMG517 to humans (Gavva et al., 2008). At present, the mechanisms underlying the effect of TRPV1 inhibitors on body temperature are unclear, but they do not seem to involve a direct effect on the thermoregulatory centers of the hypothalamus. Rather they seem to arise from the inhibition of TRPV1 on afferents innervating the viscera (Steiner et al., 2007; Romanovsky et al., 2009). Although it was originally suggested that all TRPV1 inhibitors share the same hyperthermic liability (Gavva et al., 2007b), other work has shown that compounds with different profiles of block to the classic polymodal inhibitors fail to induce hyperthermia (Gavva, 2008; Lehto et al., 2008). For example, Lehto et al. (2008) described a compound, \((R,E)-N-(2-hydroxy-2,3-dihydro-1\text{H}-inden-4-yl)-3-(2-piperidin-1-yl)-4-(trifluoromethyl)phenyl)-acrylamide (AMG562), with novel pharmacology: inhibition of capsaicin-induced activation of TRPV1, no effect on noxious heat-induced activation, and potentiation of proton-induced activation that had no effect on core body temperature. However, compounds of this type provide only modest analgesia in preclinical models of inflammatory pain (Lehto et al., 2008). Moreover, the potential detrimental effect of potentiating proton-induced activation of TRPV1 in inflammatory conditions where local acidification can occur may be of concern for their future clinical development.

Here, we demonstrate the key role played by TRPV1 in inflammatory visceral pain by studying TRPV1 null mice and describe a novel TRPV1 inhibitor, 7-tert-butyl-6-(4-chlorophenyl)-2-thioxo-2,3-dihydro-1H-pyrido[2,3-d]pyrimidin-4-one (BCTP). BCTP is a polyatomic inhibitor of TRPV1 that is an effective analgesic and reverses inflammation- and stress-induced visceral hypersensitivity in animal models. In contrast to other TRPV1 inhibitors, BCTP does not induce hyperthermia at doses providing significant analgesia. This important finding suggests that it may be possible to avoid a major hurdle to the clinical development of TRPV1 inhibitors.

Materials and Methods

Materials. For in vitro experiments all compounds were dissolved in DMSO and diluted in assay buffer to give final DMSO concentrations of 0.5 to 3%. For in vivo studies capsaicin (Tocris Bioscience, Bristol, UK) was dissolved to a stock solution of 10 mM with dilutions in saline and administered intraplantarly in a volume of 10 μl. BCTP, AMG517 (Doherty et al., 2007), alosetron, and diclofenac (Sigma, St. Louis, MO) were dissolved (w/v) in 0.5% methylec cellulose, 20% cremophor EL/80% saline (9%), or saline for oral, intravenous, or subcutaneous administration, respectively. (2,3-Dihydro-5-ethyl-3-[(4-morphololinyl)methyl] pyrrolo-(1,2,3-de)-1,4-benzoxazin-6-yl)1-naphthalenyl)methane monomethanesulfonate (WIN 55212-2) (Tocris Biosciences) was administered subcutaneously (2.5 ml/kg) in a mixture of 20% DMSO, 1% Tween 80, 1% ethanol, and 78% saline.

Animals. Colorectal distension studies were carried out by using adult male Sprague-Dawley rats (250–280 g; Charles River, Margate, Kent, UK). Water avoidance stress and mechanical hyperalgesia studies were carried out by using adult male Wistar rat (280–350 g; Charles River). Abdominal alldynia experiments used male C57BL/6 mice (50–30 g; Charles River) or TRPV1 knockout mice (Caterina et al., 2000; The Jackson Laboratory, Bar Harbor, ME). Animals were housed in plastic cages with up to six animals per cage with a 12-h light/dark cycle (lighting from 6 AM to 6 PM) and had free access to food and water. The housing facilities were kept at constant temperature and humidity. Animals were used in groups of six to eight assigned randomly to treatment groups with the experimenter blind to treatments. All experiments were performed according to Home Office (United Kingdom) guidelines and with the approval of the local Novartis Animal Welfare and Ethics Committee.

In Vitro Pharmacology. Experiments were carried out by using CHO cells expressing either human or rat TRPV1. Changes in intracellular calcium concentration evoked by capsaicin and acidic solutions were measured in cells loaded with the fluorescent Ca²⁺ indicator Fura-2 as described previously (McIntyre et al., 2001) by using a Flexstation (Molecular Devices, Sunnyvale, CA). Fluorescence emission (>510 nm) was measured at 5-s intervals with alternate excitation at 340 and 380 nm before and after injection of either capsaicin or pH 5.5 solution as the agonist. The mean of the peak fluorescence ratio after agonist injection minus the basal ratio was used for plotting concentration response curves. Experiments were performed in quadruplicate, and data represent the mean ± S.E.M. of three to four independent experiments.

The effects of BCTP on heat-evoked increases in intracellular calcium concentration were determined by using a microscope-based imaging system as described by Andersson et al. (2007). Coverslips of Fura-2-loaded CHO cells were mounted in a chamber (volume 200 μl) and locally superfused (3 ml/min) with extracellular solution. The temperature of the superfusate was regulated by a peltier device attached to a temperature control unit (Marlow Industries, Dallas, TX) and monitored by a thermistor attached at the tip of the inflow tube. The baseline temperature was maintained at 30°C, and heat responses were evoked by two linear temperature ramps to 48°C (60-s duration; first ramp, control; second ramp, test solution) with a 5-min interval at 30°C between heat challenges. Responses to capsaicin (60 μM) were tested at the end of each experiment after wash-out of BCTP to ensure expression of TRPV1. Increases in Fura-2 ratio evoked by the heat ramps were determined for 30 to 90 cells per coverslip, and the mean increase in Fura-2 ratio for the second heat challenge was expressed as a percentage of the first (control) response for each coverslip. Each concentration of BCTP was tested on three to five coverslips, and the results were expressed as mean ± S.E.M.
For determinations of antagonist IC₅₀ values (concentrations of antagonist that inhibits responses to either pH 5.5 or capsaicin by 50%) the nonlinear regression analysis in Origin version 5.0 (Origin-Lab Corp., Northampton, MA) was used. To determine the pA₂ for BCTP, concentration response curves to capsaicin were carried out in the presence of various concentrations of BCTP. The dose ratio for each concentration of antagonist was calculated, and the log (dose ratio-1) was plotted against the log [antagonist] to give a Schild plot. The pA₂ value was then determined as the intercept of the x-axis.

Pharmacokinetics. Male Wistar rats (approximately 200 g) were used for these studies. For oral administration studies animals were fasted for at least 18 h (no longer than 24 h) before dosing. BCTP was either ground in 0.5% methylcellulose for oral administration (1 ml) as a suspension or dissolved in cremophor before diluting it to 20% cremophor with phosphate-buffered saline for intravenous administration (0.3-ml injection volume). Blood was collected from animals at a single time point postadministration via cardiac puncture and centrifuged, and the plasma was stored at −20°C before analysis. Brains were removed and then washed with distilled water before freezing at −20°C before analysis.

Plasma samples were extracted from 200 μl of plasma of animals dosed with BCTP by using a 50-mg C8 SPE column and analyzed by using liquid chromatography/mass selective detection (HP1100 mass selective detector; Hewlett Packard, Palo Alto, CA). The results obtained were then compared with a standard curve that was obtained by using similarly processed plasma samples from naïve rats spiked with compound and plasma from animals that had received only vehicle (1 h after oral administration and 2 min after intravenous administration). Brain samples were extracted from 100 μl of a 20% homogenate of the brain (in water). The homogenate was extracted for 1 h in 1.25 ml of diethyl ether, the sample was then spun down, and the supernatant was dried. The dried sample was made up in 100% methanol, analyzed by liquid chromatography/mass selective detection, and compared with a standard curve of known concentrations of BCTP extracted from brain homogenates at the same time.

Capsaicin-Induced Hyperalgesia Model. Mechanical hyperalgesia was assessed by measuring hindpaw withdrawal thresholds to an increasing pressure stimulus by using an algosymeter (Ugo Basile, Comerio, Italy) with a cutoff threshold of 250 g. The endpoint was taken as the first sign of pain response (struggling, vocalization, or paw withdrawal). Withdrawal thresholds of both hind paws were measured immediately before oral administration of vehicle or BCTP. Capsaicin (10 nmol) was injected intraplantarly into one hind paw 1 h later, and paw withdrawal thresholds were determined after another 30 min. Reversal of established hyperalgesia was calculated according to the formula:

\[
\text{% Reversal} = \left(\frac{\text{Postdose threshold} - \text{Predose threshold}}{\text{Naive threshold} - \text{Predose threshold}} \right) \times 100
\]

\[(1) \]

Inflammatory Somatic Pain. A similar method to that outlined above was used to assess BCTP in an inflammatory pain model. Paw withdrawal thresholds to a mechanical stimulus were measured with an algosymeter before and 24 h after intraplantar injection of 25 μl of complete Freund’s adjuvant (CFA) into one hind paw, and then up to 24 h after oral administration of vehicle or BCTP. The cyclooxygenase-2 inhibitor celecoxib (Celebrex, Pfizer, New York, NY) was included as a positive control.

Inflammation-Induced Allodynia Model. Mice were anesthetized with isoflurane and mustard oil (0.25% in 70% ethanol; 50 μl per mouse), which was administered by inserting a fine cannula with a rounded tip (3 cm long) into the colon via the anus. After administration of mustard oil the animals were immediately placed in a clear box (Perspex, Lancashire, UK). After allowing 10 min for the mice to recover from the anesthetic, spontaneous pain-related behaviors (e.g., licking of the abdomen, abdominal writhing, and retraction) were observed and counted for 20 min.

Withdrawal thresholds to the application of von Frey filaments (Semmes-Weinstein Monofilaments; Linton Instrumentation, Norfolk, UK) to the abdomen were measured as a test for referred allodynia before (baseline) and 24 to 48 h after administration of mustard oil. Animals were placed in a raised Perspex ventilated box with a wire mesh floor and allowed to acclimate. Allodynia was tested by touching the lower to mid abdomen with von Frey filaments in ascending order of force (0.02–15 g) for up to 6 s. A sharp abdominal retraction, jumping, or immediate licking or scratching of the site of application of the filament was taken as a response. The lowest amount of force required to elicit a response was recorded as withdrawal threshold (in grams).

Inflammation-Induced Visceral Hypersensitivity Model. Trinitrobenzene sulfonic acid (TNBS; 40 mg/kg in 1:1 ethanol/saline; 1 ml/kg) was administered intracolonically through a polyethylene catheter introduced 7 cm through the anus under light anesthesia with isoflurane. Control rats were treated with an identical volume of vehicle (saline). Visceral hypersensitivity to colorectal distension was determined after resolution of overt inflammation (10 days).

Animals were habituated to the experimental environment for 1 h daily for 5 to 6 days to minimize stress during the experiment. At the beginning of each experiment, a balloon (5 cm long; 0.5-cm diameter) attached to a catheter was inserted through the anus into the colon of the animals for the application of colorectal distension stimuli. A pair of disposable cutaneous electromyographic electrodes (8 × 12 mm) was temporarily attached onto the abdominal skin (bilaterally 10 mm distal to the rib bones; 10 mm apart) for the measurement of striated muscle contractions reflecting visceromotor pain responses to colorectal distension (CRD). The balloon catheter and the wires of the electrodes were taped onto the tail of the animals. Thereafter, the animals were placed in a Bolman cage, and CRD was performed by graded increases in intensity of phasic isobaric distensions (base line = 0, 10, 20, 30, 40, 50, and 60 mm Hg) by using a computer-controlled barostat system. Each isobaric distension lasted for 3 min separated by a 1-min break. The electromyographic activity of the abdominal musculature in response to CRD was recorded, amplified, and stored for later analysis (PowerLab; ADInstruments Ltd., Oxford, Oxfordshire, UK).

Acute Stress-Induced Visceral Hypersensitivity Model. Rats were submitted to a 1-h session of water-avoidance stress or sham stress (control). The procedure involved placing the rat on a Perspex platform (6 × 6 cm) in the middle of a plastic tank filled with water (room temperature) up to 1 cm to the top of the platform. Rats tried to avoid the aversive stimulus (water) by remaining on the platform for 1 h. Control rats were placed on the same platform in a waterless container for 1 h. Visceral hypersensitivity to colorectal distension was assessed as described for TNBS above.

Neuropathic Pain Model. Mechanical hyperalgesia was assessed 11 to 15 days after partial sciatic nerve ligation as described previously (Fox et al., 2003). Withdrawal thresholds were measured on the ipsilateral (ligated) and contralateral (nonligated) hind paws by using the paw pressure technique described above, before and up to 24 h after oral administration of vehicle or BCTP. Data were combined from three separate experiments for each compound. Lamotrigine (10 mg/kg) administered subcutaneously in saline was included in these behavioral experiments as a positive control. Reversal of hyperalgesia at each time point was calculated according to the following formula:

\[
\text{% Reversal} = \left(\frac{\text{Postdose ipsilateral threshold} - \text{Predose ipsilateral threshold}}{\text{Predose contralateral threshold} - \text{Predose ipsilateral threshold}} \right) \times 100
\]

\[(2) \]
Body Temperature Measurement. Rectal temperatures were measured by using a rectal probe thermistor before and 1, 3, and 6 h after oral administration of BCTP.

Statistics. For behavioral studies statistical analysis was carried out on raw data (paw withdrawal threshold, latency, and temperature) by using two-way ANOVA followed by Dunnett’s or post hoc Tukey’s tests comparing time-matched, drug-treated groups to vehicle. Plots for percentage reversal of hyperalgesia versus dose were fitted by linear or nonlinear regression for the calculation of D₅₀ values defined as a 50% reversal of hyperalgesia.

Results

In Vitro Characterization of BCTP. BCTP was identified from a medicinal chemistry lead optimization program after a high-throughput screen (Culshaw et al., 2006; Fig. 1). BCTP antagonized both capsaicin- and low pH-evoked increases in intracellular calcium in CHO cells expressing human (Fig. 1A) or rat (Fig. 1B) TRPV1. The compound was more potent at inhibiting rat (IC₅₀ = 11.4 ± 3.3 nM) than human TRPV1 (IC₅₀ = 65.4 ± 6.7 nM) when capsaicin was the agonist, but showed no clear species selectivity for acid-induced activation (human TRPV1, IC₅₀ = 26.4 ± 6.3 nM; rat TRPV1, IC₅₀ = 28.2 ± 1.5 nM). BCTP (1 μM) also inhibited the response of human and rat TRPV1 to a noxious heat stimulus (48°C; Fig. 1C) with IC₅₀ values of 10.4 ± 1.6 nM (human) and 12.2 ± 1.8 nM (rat). The inhibition of TRPV1 by BCTP was reversible after 1-h washing (data not shown), and it behaved as a competitive antagonist for capsaicin at both human (Fig. 2A) and rat (Fig. 2B) TRPV1. Incubation with increasing concentrations of BCTP caused a surmountable rightward shift in the log (concentration)-response curves for capsaicin, indicating competitive antagonism. Schild analysis gave pA₂ values of 7.24 ± 0.13 (slope of 1.28 ± 0.13) for human TRPV1 (Fig. 2C) and 7.93 ± 0.29 (slope of 1.02 ± 0.14) for rat TRPV1 (Fig. 2D).

The selectivity of BCTP was tested in binding assays against a panel of 61 common ion channels and G protein-coupled receptors at the Novartis Central Receptor Screening Laboratory. No significant binding to the majority of targets was noted (IC₅₀ > 10 μM), although high concentrations of BCTP inhibited binding of specific ligands to the dopamine transporter (IC₅₀ = 1.6 μM) and phosphodiesterase 4D (IC₅₀ = 22 μM).

Pharmacokinetic Properties of BCTP. To determine the pharmacokinetic profile of BCTP, plasma concentrations were measured at different time points after intravenous administration (0.3 mg/kg; 20% cremophor EL-saline solution) or oral administration (3 mg/kg; suspension in 0.5% methyl cellulose) after terminal bleeding and sampling (Fig. 3). Two minutes after intravenous administration, BCTP plasma levels were 3478 ± 337 pmol·ml⁻¹, which fell to 75 ± 12 pmol·ml⁻¹ by 24 h postadministration. After oral administration, BCTP was detectable in the plasma at 10 min with levels of 1559 ± 194 pmol·ml⁻¹ and reached a Cₓₙₓₓ of 8573 ± 449 pmol·ml⁻¹ by 1 h postadministration, falling to 698 ± 94 pmol·ml⁻¹ by 24 h. The terminal half-life of the compound after oral administration was ~7.5 h with an estimated bioavailability of 100%. Brain exposure for BCTP reached levels of 2873 ± 213 pmol·g⁻¹·h⁻¹ and 2947 ± 237 pmol·g⁻¹·h⁻¹ 3 h after oral administration, giving mean brain/plasma ratios of 3 and 2.6, respectively. In a separate series of experiments, exposure of BCTP (10 mg/kg p.o.) in the hypothalamus was found to closely match levels detected in the brain (data not shown). A summary of the key pharmacokinetic parameters for BCTP after oral dosing is shown in Table 1.

BCTP Inhibits TRPV1 Activation In Vivo. The ability of BCTP to inhibit capsaicin-induced hyperalgesia in the rat was examined to provide in vivo proof-of-mechanism (Fig. 4). Intraplantar injection of capsaicin produced a pronounced

Fig. 1. BCTP inhibited responses to capsaicin (A), pH 5.5 (B), and noxious heat (C) in CHO cells recombinantly expressing either human or rat TRPV1. The results represent the mean increase in fluorescence ratio evoked by capsaicin (0.1 μM, human; 0.03 μM, rat) (A), pH 5.5 (B), or an increase in temperature to 48°C in the presence of different concentrations of BCTP (C) as a percentage of the control response. Data points in C also show the percentage responses of two heat challenges in the absence of BCTP and the inhibition seen in the presence of a higher (1 μM) concentration of BCTP. Data are the mean ± S.E.M. from three to five independent experiments.
mechanical hyperalgesia with a reduction in ipsilateral paw withdrawal threshold from a naive level of approximately 105 g to 40 to 45 g after capsaicin. BCTP (3–30 mg/kg), administered orally 30 min before capsaicin, inhibited the development of hyperalgesia in a dose-dependent manner with a D_{50} value of approximately 2 mg/kg (Fig. 4A). Near-complete inhibition (97%) was observed with the highest dose tested (30 mg/kg). BCTP was also effective at reversing CFA-induced mechanical hyperalgesia (Fig. 4B, D_{50} value 5.6 mg/kg), confirming that BCTP has similar analgesic properties to other TRPV1 antagonists for somatic inflammatory pain in rodents (Pomonis et al., 2003; Gavva et al., 2004; Honore et al., 2005).

Effects of BCTP Are Absent in TRPV1(-/-) Mice. To confirm that the antihyperalgesic effects of BCTP were caused by a specific action at TRPV1 we compared its effects in normal and TRPV1 null mice. The development of hyperalgesia after inflammation is impaired in mice lacking TRPV1 (Caterina et al., 2000; Davis et al., 2000); so this model could not be used. We noted, however, that the development and magnitude of mechanical hyperalgesia after partial nerve ligation is not different in wild-type mice compared with TRPV1 knockout mice; so we used this model to investigate the specificity of the compound. In wild-type mice BCTP displayed a dose-dependent antihyperalgesic effect, with a maximal reversal of 57% observed 1 h after oral administration (Fig. 5A). In contrast, no significant antihyperalgesic effect was noted in the TRPV1 knockout mice (Fig. 5B). The reversal of hyperalgesia by the sodium channel blocker lamotrigine was similar in wild-type and TRPV1 knockout mice (Fig. 5).

TRPV1 Mediates Visceral Pain. To determine the role of TRPV1 in acute and established visceral pain we first studied inflammation-evoked effects in TRPV1 knockout mice. As shown in Fig. 6A, instillation of mustard oil into the colon of wild-type mice evoked a marked acute increase in spontaneous pain behaviors compared with age-matched TRPV1 knockout mice. Moreover, there was a profound abdominal allodynia 24 h after mustard oil administration with
withdrawal thresholds reduced from >6 g before treatment to less than 2 g after mustard oil treatment (Fig. 6B). This response was absent in mice lacking the TRPV1 channel where withdrawal thresholds were comparable with vehicle-treated controls (Fig. 6B). These data strongly support an involvement of TRPV1 in visceral pain, in addition to its more widely established role in somatic pain.

BCTP Prevents Mustard Oil-Induced Visceral Pain.

The role of TRPV1 in mustard oil-induced visceral pain was further confirmed by using the novel antagonist BCTP. Intracolonic mustard oil administration induced spontaneous pain behaviors for 30 min after administration (24.0 ± 3.0 behaviors; Fig. 7A). BCTP (3–30 mg/kg p.o.; dosed 1 h before mustard oil instillation) reduced the number of pain behaviors in a dose-dependent manner. The maximum dose tested (30 mg/kg) produced an equivalent degree of inhibition (8.1 ± 3.7 behaviors) to the 5-hydroxytryptamine type 3 receptor antagonist alosetron (1 mg/kg; 7.9 ± 1.6 behaviors) and diclofenac (30 mg/kg; 13.4 ± 0.8 behaviors), a nonsteroidal anti-inflammatory drug.

Abdominal alldynia was assessed by using calibrated Von Frey filaments 24 h before and 48 h after mustard oil treatment (Fig. 7B). Mustard oil produced a powerful alldynia (72.9 ± 4.5% reduction in pain threshold), which was dose-dependently inhibited in mice dosed with BCTP (3–30 mg/kg p.o.; dosed 1 h before alldynia assessment). Here, the maximum dose tested (30 mg/kg) produced an equivalent degree of inhibition as alosetron (1 mg/kg; -3.3 ± 11 and 1.7 ± 12.9% reduction in pain threshold, respectively). Diclofenac did not have any effect on the mustard oil-induced alldynia.

Visceral Hypersensitivity. Rats treated with TNBS intracolonically and tested 7 days after treatment were hypersensitive to colorectal balloon distension (as indicated by a leftward shift of the visceromotor response to increasing pressures with respect to vehicle control). Significant reversal of the TNBS-induced hypersensitivity was observed with the 5-hydroxytryptamine type 3 receptor antagonist alosetron (1 mg/kg p.o.), whereas the nonsteroidal anti-inflammatory drug diclofenac (30 mg/kg p.o.) was ineffective (data not shown). Oral administration of BCTP (1–10 mg/kg) produced dose-dependent reversal of the TNBS-induced visceral hypersensitivity (Fig. 8A). At both 3 and 10 mg/kg BCTP fully reversed hypersensitivity (95.4 ± 10.2 and 110.4 ± 6.2%...
reversal, respectively). Brief exposure of rats to water-avoidance stress also produced a hypersensitivity to colorectal balloon distension. Oral administration of BCTP (3–100 mg/kg) produced a dose-dependent reversal of this hypersensitivity. At 10 mg/kg BCTP fully reversed the stress-induced visceral hypersensitivity (99.6 ± 39.1%). Alosetron (3 mg/kg) also fully reversed (104.3 ± 40.1%) the stress-induced visceral hypersensitivity (Fig. 8).

Body Temperature. Oral administration of BCTP (3–100 mg/kg) produced a modest increase in core body temperature at higher doses (30 and 100 mg/kg only) that reached a maximum of 0.6°C (100 mg/kg) 1 h after administration (Fig. 9A). The cannabinoid receptor-1 agonist WIN 55,212-2 (6 mg/kg), included as a positive control, produced a significant hypothermic response that reached a maximum at 3 h postdose (−1.23°C change in core temperature; Fig. 9A). Plotting the effect of different doses of BCTP against inflammation-induced visceral hypersensitivity and core-body temperature revealed a 10-fold window between the two parameters (Fig. 9B), with 3 mg/kg providing maximal reversal of the hypersensitivity and 30 mg/kg providing the threshold for induction of hyperthermia. The analgesic and hyperthermic effects of BCTP were compared with another TRPV1 antagonist, AMG517, which induced significant hyperthermia in clinical trials (Gavva et al., 2008). Comparison of the reversal of capsaicin-induced mechanical hyperalgesia and change in body temperature showed that AMG517 evoked hyperthermia at low doses that were not analgesic. In contrast, marked analgesia was seen with BCTP at doses that did not raise body temperature (Fig. 9C).

Discussion

Visceral pain is a key symptom associated with multiple gastrointestinal conditions, including inflammatory bowel disease, gastroesophageal reflux disease, functional dyspepsia, and irritable bowel syndrome (Knowles and Aziz, 2009; Sengupta, 2009). For IBS in particular, clinical studies have revealed that 50 to 70% of patients exhibit a heightened sensitivity to colorectal distension, termed visceral hypersensitivity, that seems to underlie the pathophysiology of the persistent abdominal pain/discomfort (Delvaux 2002). The current hypotheses around visceral hypersensitivity suggest that tissue irritation, inflammation, and/or stress-induced changes in gut function result in sensitization, in particular to mechanical stimuli, of extrinsic sensory nerves as well as second-order spinal neurones (Mayer and Gebhart 1994; Azpiroz et al., 2007; Akbar et al., 2009). This sensitization is reminiscent of the hyperalgesia observed after somatic inflammation (Sandkühler, 2009). Our studies with TRPV1 knockout mice have revealed that TRPV1 plays an important role in the development of visceral pain after inflammation, and we therefore characterized the effects of BCTP, a novel TRPV1 inhibitor, in a range of visceral pain paradigms.

In vitro BCTP acts as a polymodal inhibitor and inhibited TRPV1 activation by capsaicin, low pH, and noxious heat by Schild analyses of capsaicin concentration-response curves, which yielded slopes close to unity for both human and rat TRPV1. In vivo BCTP showed excellent oral bioavailability and inhibited the development of mechanical hyper-

Fig. 6. Effect of genetic knockout of TRPV1 on visceral pain. Spontaneous pain (A) and delayed referred allodynia to the flank (B) after intracolonic treatment with mustard oil were reduced in TRPV1 knockout mice relative to wild-type controls. Data are mean ± S.E.M. from eight mice per treatment group. **, *P < 0.01 and ***, *P < 0.001 compared with wild-type vehicle control by ANOVA followed by Dunnett's test.

Fig. 7. BCTP inhibited mustard oil-induced acute spontaneous pain behaviors (A) and referred allodynia (B). BCTP, alosetron, or diclofenac were administered orally in 0.5% methylcellulose or subcutaneously in saline, respectively, 1 h before mustard oil and again 48 h later, 1 h before allodynia testing. Each column represents mean ± S.E.M. from eight animals per group. **, *P < 0.05; ***, **P < 0.001 compared with wild-type vehicle control using ANOVA followed by Dunnett's test.
Fig. 8. A, intracolonic administration of TNBS induced a marked visceral hypersensitivity monitored as an increase in abdominal contractions [the visceral motor response (VMR)] to increasing pressures of colorectal distension. Oral administration of BCTP in 0.5% methylcellulose dose-dependently reversed this hypersensitivity. B, acute water avoidance stress induced a similar visceral hypersensitivity to colorectal distension that was reversed by BCTP and alosetron. Data are mean ± S.E.M. from eight animals per group. *P < 0.05; **P < 0.01; ***P < 0.001 compared with TNBS- or water avoidance stress-vehicle control by using ANOVA followed by Dunnett’s test.

Fig. 9. Effect of BCTP on core body temperature. A, dose-response curve for the effect of BCTP on core body temperature after oral administration. Data are mean ± S.E.M. from six rats per group. *P < 0.05; **P < 0.01 compared with vehicle control by using ANOVA followed by Dunnett’s test. B, plot comparing the effects of BCTP on visceral hypersensitivity to colorectal distension after intracolonic instillation of TNBS and core body temperature. Data are from Figs. 8A and 9A, respectively. C, plot comparing the effects of BCTP with AMG517 on capsaicin-induced mechanical hyperalgesia and core body temperature. Data are mean ± S.E.M. from six to eight animals per group.

peralgesia evoked by a local injection of capsaicin into the paw, a mechanistic model for TRPV1 activation in vivo, with a D₅₀ value of 2 to 3 mg/kg. Visceral pain differs from somatic pain in that it is poorly localized, diffuse, and often referred to the body wall through sensitization of common second-order spinal neurons after activation of visceral sensory afferent nerves. Intracolonic instillation of mustard oil models this referred alldynia to the somatic tissues, and oral administration of BCTP prevented the acute spontaneous pain and attenuated the delayed referred alldynia to the flank after intracolonic administration of mustard oil in mice. BCTP also reversed inflammation (TNBS)- and stress-induced visceral hypersensitivity to colorectal distension. It is noteworthy that in separate studies we found that neurogenic pain caused by sciatic nerve injury, in contrast to inflammatory visceral pain, developed normally in TRPV1 knockout mice, and we capitalized on this finding to confirm that the analgesic properties of BCTP occur solely through an action on TRPV1. The efficacy of BCTP in a model where genetic knockout is ineffective represents something of a paradox; however, this is probably caused by compensatory mechanisms during development that allow nociceptive responses to be retained in the knockout mice, which is a recognized phenomenon in pain research (Mogil et al., 2000).

The site of action of BCTP for the inhibition of visceral pain in these animal models after systemic exposure is currently uncertain, but probably includes a combination of peripheral and central activity. It was originally thought that TRPV1 was expressed exclusively in peripheral sensory neurons, but other evidence shows that TRPV1 is also located at sites within the central nervous system. TRPV1 is expressed both presynaptically and postsynaptically in the superficial laminae of the spinal cord (Valtschanoff et al., 2001) and at supraspinal sites involved in the transmission or modulation of pain (Szabo et al., 2002; Roberts et al., 2004), including the periadqueductal gray where microinjection of capsaicin evokes hyperalgesia (McGaraughty et al., 2003). In common with other TRPV1 antagonists, BCTP readily crosses the blood-brain barrier and produced a moderate reversal of hyperalgesia after direct injection into the spinal cord (data not
shown), so a peripheral site of action cannot be assumed. Although it is likely that the inhibition of TRPV1 on nociceptive sensory neurons is a major mechanism for the antihyperalgesic effects of BCTP, additional actions at central sites could contribute to the behavioral effects of the compound.

It is well established that the central administration of capsaicin in experimental animals produces hyperthermia via regulation of warm sensitive neurons in the preoptic/anterior hypothalamic nucleus via TRPV1 (Jancsó-Gábor et al., 1970; Gavva, 2008; Romanovsky et al., 2009). In addition to direct injection of capsaicin into the hypothalamus, administration of brain-penetrant TRPV1 agonists can directly activate warm-sensitive neurons in the hypothalamus (Caterina, 2007) to elicit robust hypothemic responses. Although such data do not per se indicate that TRPV1 antagonists will affect body temperature, reports provide evidence that hyperthermia is a pharmacodynamic effect of TRPV1 inhibition (Gavva et al., 2007a,b; Gavva, 2008). This hyperthermic response seems to be triggered by blockade of the action of an as-yet- unidentified endogenous agonist of TRPV1 expressed on peripheral afferents innervating the viscera (Steiner et al., 2007) that polysynaptically activate neurons in the preoptic/ anterior hypothalamus.

Our data are in agreement with other reports that TRPV1 antagonists can elicit a transient and acute hyperthermia of approximately 1°C (Swanson et al., 2005; Gavva et al., 2007a,b; Steiner et al., 2007; Mills et al., 2008), an effect that seems to be mediated via TRPV1 because for one compound, at least, the hyperthermic effect is absent in TRPV1 knockout mice (Steiner et al., 2007). In the present study, however, there was a clear separation between the analgesic and hyperthermic activity of BCTP such that significant hyperthermia was observed with only the highest doses of BCTP tested, whereas lower doses that gave good reversal of hyperalgesia in a number of models did not evoke significant increases in body temperature. This contrasts markedly with data on the clinical candidate, AMG517, which elicited significant hyperthermia at doses lower than those that reversed mechanical hyperalgesia. This lack of therapeutic window was noted previously in clinical trials. The difference in profiles of BCTP and AMG517 suggests that not all polymodal TRPV1 inhibitors have the same hyperthermic liabilities (Gavva et al., 2008).

Nonhyperthermic TRPV1 antagonists have been described previously (Lehto et al., 2008; Watabiki et al., 2011). Such compounds differ from BCTP in that they exhibit a distinct pharmacology compared with the classic polymodal inhibitors of TRPV1. Although they inhibit the activity of vanilloid agonists such as capsaicin, they show either a weak ability to block proton activation (Watabiki et al., 2011) or even potentiate proton activation of TRPV1 (Lehto et al., 2008). On the basis of such findings Garami et al. (2010) proposed that inhibition of proton activation of TRPV1 is the critical determinant for hyperthermia induction. Our data demonstrate that it is possible to separate the analgesic and hyperthermic properties of polymodal TRPV1 inhibitors with a compound such as BCTP. In vitro BCTP was almost equipotent at inhibiting capsaicin and proton-evoked activation of TRPV1 (~2-fold difference in IC_{50} values) but there was a 20-fold difference between the analgesic and hyperthermic doses in vivo. The lack of hyperthermia at all maximally effective analgesic doses is therefore difficult to reconcile with the proton inhibition hypothesis. The mechanism underlying the reduced hyperthermic liability with BCTP remains uncertain. It is possible that differences in tissue exposure, temporal onset of TRPV1 inhibition, or a failure to block the effect of the endogenous ligand mediating body temperature changes might explain the observed differences on body temperature between BCTP and AMG516; however, further work will be required to clarify this.

In conclusion, BCTP is a novel, potent, and polymodal TRPV1 inhibitor that shows good antihyperalgesic activity in animal models of somatic and inflammatory- and stress-induced visceral pain. Experiments with TRPV1-null mice demonstrate unequivocally that the analgesic effects of BCTP are mediated by the inhibition of TRPV1. In contrast to the more marked increases in body temperature observed with other TRPV1 inhibitors (e.g., AMG517; Gavva et al., 2007b, 2008), BCTP induced only a modest hyperthermia at doses above those providing maximal therapeutic analgesia. The combined data support the potential clinical utility of TRPV1 inhibitors in the treatment of visceral pain conditions such as IBS and suggest that it is possible to limit the potential for hyperthermia, which currently represents a major hurdle to the future clinical development of TRPV1 inhibitors. Although there is a window between analgesic and hyperthermic doses of BCTP in preclinical studies it will be essential to carefully monitor temperature in any clinical trial to avoid possible hyperthermia.

Acknowledgments
We thank Marcus Peacock, Wai Lee, Clare Davis, Max Peter Seiler, Kaspar Zimmermann, Peter Kotsonis, Rochdi Bouhelal, Katharine Walker, and Mo Yaqoob for assistance and discussion.

Authorship Contributions
Participated in research design: Nash, McIntyre, Groarke, Lilley, Fox, and Bevan.

Conducted experiments: Nash, McIntyre, Groarke, Lilley, Panesar, and Bevan.

Contributed new reagents or analytic tools: Culshaw and Hallett.

Performed data analysis: Nash, Groarke, Lilley, Panesar, and Bevan.

Wrote or contributed to the writing of the manuscript: Nash, McIntyre, Fox, and Bevan.

References

BCTP, a TRPV1 Inhibitor with Reduced Hyperthermia 397

Downloaded from jpet.aspetjournals.org at ASPET Journals on July 10, 2017
Christianson JA, McIlwrath SL, Koerber HR, and Davis BM (2006) Transient receptor potential vanilloid 1-immunopositive neurons in the mouse are more prevalent within colon afferents compared to skin and muscle afferents. Neuroscience 140:257–255.

J Neurosci 15:2702–2710.

J Pharmacol Exp Ther 306:387–393.

J Pharmacol Exp Ther 309:387–393.

J Neurosci 15:2702–2710.

J Pharmacol Exp Ther 309:387–393.

J Pharmacol Exp Ther 309:387–393.

J Pharmacol Exp Ther 309:387–393.

J Pharmacol Exp Ther 309:387–393.

J Pharmacol Exp Ther 309:387–393.

J Pharmacol Exp Ther 309:387–393.

J Pharmacol Exp Ther 309:387–393.

J Pharmacol Exp Ther 309:387–393.

J Pharmacol Exp Ther 309:387–393.

J Pharmacol Exp Ther 309:387–393.

J Pharmacol Exp Ther 309:387–393.