Pharmacology of JNJ-37822681, a Specific and Fast-Dissociating D$_2$ Antagonist for the Treatment of Schizophrenia
d
Xavier Langlois, Anton Megens, Hilde Lavreysen, John Atack, Miroslav Cik, Paula te Riele, Luc Peeters, Ria Wouters, Jef Vermeire, Herman Hendrickx, Gregor Macdonald, and Marcel De Bruyn
Janssen Research and Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
Received December 20, 2011; accepted April 4, 2012

ABSTRACT
All marketed antipsychotics act by blocking dopamine D$_2$ receptors. Fast dissociation from D$_2$ receptors may be one of the elements contributing to the lower incidence of extrapyramidal symptoms (EPS) exhibited by newer antipsychotics. Therefore, we screened for specific D$_2$ receptor blockers with a fast rate of dissociation. Radioligand binding experiments identified N-[1-(3,4-difluorobenzyl)piperidin-4-yl]-6-(trifluoromethyl)pyridazin-3-amine (JNJ-37822681) as a fast-dissociating D$_2$ ligand. Its D$_2$ receptor specificity was high compared with atypical antipsychotics, with little activity at receptors associated with unwanted effects [e.g., α_1, α_2, H$_3$, muscarinic, and 5-hydroxytryptamine (5-HT) type 2C] and for receptors that may interfere with the effects of D$_2$ antagonism (D$_1$, D$_3$, and 5-HT$_{2A}$). JNJ-37822681 occupied D$_2$ receptors in rat brain at relatively low doses (ED$_{50}$ 0.39 mg/kg) and was effective in animal models of psychosis (e.g., inhibition of apomorphine-induced stereotypy or d-amphetamine/phenycyclidine-induced hyperlocomotion). Prolactin levels increased from an ED$_{50}$ (0.17 mg/kg, peripheral D$_2$ receptors) close to the ED$_{50}$ required for apomorphine antagonism (0.19 mg/kg, central D$_2$ receptors), suggesting excellent brain disposition and minimal prolactin release at therapeutic doses. JNJ-37822681 induced catalepsy and inhibited avoidance behavior, but with a specificity margin relative to apomorphine antagonism that was larger than that obtained for haloperidol and similar to that obtained for olanzapine. This larger specificity margin (compared with haloperidol) may reflect lower EPS liability and less behavioral suppression after JNJ-37822681. JNJ-37822681 is a novel, potent, specific, centrally active, fast-dissociating D$_2$ antagonist with optimal brain disposition, and it is the first compound that allows the evaluation of the potential value of fast D$_2$ antagonism for the treatment of schizophrenia and bipolar disorder.

Introduction

Schizophrenia is a severe and chronic mental illness. The etiology of the disease is still unknown, but aberrant neurotransmitter activity has been hypothesized to underlie the symptoms of schizophrenia. The dopaminergic hypothesis is the one that is most widely accepted; it proposes that hyperactivity of dopaminergic transmission is responsible for the positive symptoms observed in schizophrenic patients. This hypothesis is based on the observation that dopamine-enhancing drugs, such as amphetamine or cocaine, may induce psychosis and on the correlation that exists between clinical doses of antipsychotics and their potency in blocking dopamine D$_2$ receptors (Kapur and Mamo, 2003). All marketed antipsychotics mediate their therapeutic efficacy against positive symptoms through blockade of the dopamine D$_2$ receptor (Seeman, 2006). Apart from the clinical efficacy, it seems that the major adverse effects (AEs) of antipsychotics, such as extrapyramidal symptoms (EPS) and tardive dyskinesia, are also related to dopamine antagonism. Those debilitating effects appear most frequently with “typical” (first-generation) antipsychotics (e.g., haloperidol). They are less pronounced with the “atypical” (second-generation) antipsychotics (e.g., risperidone and olanzapine) and virtually absent with clozapine, which is considered to be the prototypical atypical antipsychotic.
chotic. Currently available antipsychotics are also well known to cause prolactin release. Hyperprolactinemia can cause a number of AEs (e.g., menstrual disturbances, galactorrhea, sexual dysfunction, decreased fertility, movement disorders, and behavioral disturbances) (Dickson and Glazer, 1999).

Among the different theories proposed for explaining the lower incidence of EPS observed with atypical antipsychotics, the one that has received the most attention during the last 15 years is the multireceptor hypothesis (Meltzer, 2000). Receptor binding studies showed that many atypical antipsychotics interact with various other neurotransmitter receptors in addition to dopamine D₂ receptors, in particular with serotonin 5-HT₂ receptors (Meltzer et al., 1989). In contrast, typical antipsychotics, like haloperidol, bind more specifically to D₂ receptors. Although all major atypical antipsychotics fully occupy the serotonin 5-HT₂ receptors at clinically relevant dosages, they differ in their propensity to induce motor side effects. Moreover, they show interactions with additional receptors, some of which may be responsible for undesirable effects, such as 5HT₂C receptors (weight gain), α₁-adrenoceptors (orthostatic hypotension, reflex tachycardia, and hypnosedation), α₂-adrenoceptors (tachycardia), histamine H₁ receptors (sedation and weight gain), and muscarinic receptors (blurred vision, dry mouth, constipation, and cognitive impairment).

As an alternative to the “balanced serotonin 5-HT₂A-dopamine D₂” hypothesis, it has been proposed that the rates at which they dissociate from dopamine D₂ receptors may better distinguish atypical from typical antipsychotics (Kapur and Seeman, 2001). Fast dissociation from the D₂ receptor would allow more physiological dopamine transmission, permitting an antipsychotic effect with fewer adverse motor effects. It is noteworthy that clozapine and quetiapine have the fastest rate of dissociation from dopamine D₂ receptors and carry the lowest risk of inducing EPS in humans. Conversely, typical antipsychotics associated with a high prevalence of EPS are the slowest-dissociating dopamine D₂ antagonists. Thus, identifying new drugs based on their rate of dissociation from the D₂ receptor could be a valid strategy for developing atypical antipsychotics with an improved tolerability profile.

Preparation of Test Article and Controls and Sources

The purity of all batches used in pharmacological studies was assessed to be equal to or more than 95% by using standard analytical methods. JNJ-37822681, clozapine, aripiprazole, haloperidol, ziprasidone, risperidone, olanzapine, and quetiapine were acquired from internal sources and dissolved in dimethyl sulfoxide for in vitro studies. [³⁵S]clozapine was purchased from GE Healthcare, Chalfont St. Giles, Buckinghamshire, UK. [¹⁵⁹T]4-amino-N-[1-(3,4-difluorophenyl)piperidin-4-yl]-6-(trifluoromethyl)pyridazin-3-amine (JNJ-37822681), a novel compound identified from this program. JNJ-37822681 (Fig. 1) was compared with seven pharmacologically and chemically diverse reference antipsychotics: three tricyclics (the azapines clozapine and olanzapine and the thiapine quetiapine), the benzosxazolone risperidone, the benzothiazole ziprasidone, the butyrophenone haloperidol, and the dihydroquinolinolone aripiprazole (see Fig. 1 for chemical structures).
to determine nonspecific binding of these radioligands were also synthesized internally and dissolved in dimethyl sulfoxide.

For in vivo prolactin release studies, JNJ-37822681 was dissolved in distilled water containing one equivalent of tartaric acid. For all other in vivo studies, JNJ-37822681 was dissolved in 10% hydroxypropyl-β-cyclodextrin in distilled water containing one equivalent of tartaric acid. The solutions were stored at room temperature in closed containers protected from light. The preparations were subcutaneously injected in volumes of 10 ml/kg. Solvent was also tested to control for solvent-related effects.

In Vitro Binding Affinity for hD2L Receptor and Specificity Profile

Unlabeled JNJ-37822681, clozapine, aripiprazole, haloperidol, ziprasidone, risperidone, olanzapine, and quetiapine were used in different radioligand competition binding assays to assess their affinity for a set of receptors. First, membranes expressing the different receptors of interest were prepared as follows. Cells were transfected with cloned human receptor cDNA, collected by scraping and homogenized in 50 mM Tris-HCl, pH 7.4, aliquoted, and stored at -80°C. The homogenate was centrifuged for 10 min at 23,500 g in a Sorvall RC-5C Plus centrifuge (Goffin Meyvis, Overijse, Belgium) (4°C). The cells were then suspended in 5 mM Tris-HCl, pH 7.4, and after recentrifugation for 20 min at 30,000 g at 4°C, the pellet was homogenized in 50 mM Tris-HCl, pH 7.4, aliquoted, and stored at -80°C.

Binding assays were carried out under incubation conditions as summarized in Table 1. JNJ-37822681 was also tested at a concentration of 1 μM by CEREP (Celle L’Evescault, France) for its inhibition of radioligand binding to a battery of other neurotransmitter receptors, peptide receptors, and neurotransmitter transporters.

Dissociation Rate from the hD2L Receptor

Indirect Dissociation. The dissociation rate of compounds was evaluated by using an indirect assay adapted from a previously described method (Leysen and Gommeren, 1984). Membranes were prepared from Chinese hamster ovary (CHO) cells stably expressing the hD2L receptor as described above. After thawing, membranes were homogenized by using an UltraTurrax and suspended in ice-cold binding buffer containing 50 mM Tris-HCl, 120 mM NaCl, 5 mM KCl, 1 mM MgCl2, 2 mM CaCl2, pH 7.4, 0.1% ascorbic acid, and 10 μM pargyline.

After incubating hD2L membranes with four times IC50 of compound for 1 h at 25°C (final volume of 2 ml), incubation mixtures were poured on GF/C filters on top of a 40-well multivisor. Vacuum was briefly applied to filter compound-membrane mixtures over the GF/C filters. Two hundred microliters of buffer or 200 μl of 4 μM butaclamol (blank; final concentration 2 μM) together with 200 μl of 2 nM [3H]spiperone was then added for 1, 3, 5, 7, or 10 min (final concentration 1 nM [3H]spiperone). Incubation was stopped by initiating full vacuum and immediate rinsing with ice-cold buffer. After the addition of 3 ml of Ultima Gold MV (PerkinElmer Life and Analytical Sciences), filter-bound radioactivity was measured in a liquid scintillation counter.

Direct Dissociation. The off rate of [3H]JNJ-37822681 was determined and compared with off rates for [3H]-labeled reference antipsychotics by typical radioligand binding experiments. Membranes were prepared from CHO cells stably transfected with hD2L receptor cDNA as described above. After thawing, membranes were homogenized by using an UltraTurrax and suspended in ice-cold binding buffer containing 50 mM Tris-HCl, 120 mM NaCl, 5 mM KCl, 1 mM MgCl2, and 2 mM CaCl2, pH 7.7. Assay mixtures, containing 50 μg for [3H]JNJ-37822681 and [3H]clozapine or 10 μg for [3H]haloperidol, [3H]risperidone, and [3H]paliperidone of membranes were incubated for 1 h in a volume of 0.45 ml at room temperature and 37°C. Final concentrations of 10 nM radioligand were used for [3H]JNJ-37822681 and [3H]clozapine, whereas 2 nM was applied for the other [3H]-labeled compounds. Dissociation kinetics were measured by adding 10 μM raclopride (50 μl) at different times before filtration. Filtration was performed by using a 40-well multivisor. In a parallel set of tubes, nonspecific binding was determined in the presence of 10 μM butaclamol. Time intervals were chosen to provide an optimal estimate of the rate of dissociation (time points were 10, 20, 30, 40, 60, 120, 300, and 600 s for [3H]clozapine and [3H]JNJ-37822681 and 20, 30, 40, 60, 180, 600, 1200, and 3600 s for [3H]haloperidol, [3H]paliperidone, and [3H]risperidone).

Animals (Species, Weight, and Sex)

Female Sprague-Dawley rats were used for the prolactin assay; male Lewis rats were used for the compound 48/80 lethality assay; Dunkin-Hartley-Pirbright guinea pigs of both sexes were used for the histamine lethality assay; and male Wiga Wistar rats were used for all other assays. The rats ranged in body weight between 175 and 275 g, and the guinea pigs were between 300 and 500 g. All animals were obtained from Charles River Breeding Laboratories (Sulzfeld, Germany) and housed under standard laboratory conditions (21 ± 2°C; 45–65% relative humidity; light/dark cycle set at 12 h). Except for the occupancy assay, the animals were fasted overnight before the start of the experiments (tap water remained available ad libitum). During the test period, they were housed in individual cages. The local Ethical Committee in compliance with the Declaration of Helsinki approved all studies.

D2 Receptor Occupancy

Rats were treated subcutaneously with vehicle or test compounds at five to eight dosages ranging from 0.0025 to 40 mg/kg body weight. Three to six animals were used per dose of compound. [3H]Raclopride (8 μCi/animal) was injected intravenously 30 min after drug administration. The animals were decapitated 30 min after the [3H]raclopride injection. Brains were immediately removed and rapidly frozen.

TABLE 1

<table>
<thead>
<tr>
<th>Receptor Source</th>
<th>Assay Conditions (Incubation Buffer, Time, and Temperature)</th>
<th>Radioligand</th>
<th>Nonspecific Binding</th>
</tr>
</thead>
<tbody>
<tr>
<td>hD2L-Adrenergic</td>
<td>CHO 50 mM Tris-HCl, 120 mM NaCl, 5 mM KCl, 1 mM MgCl2, 2 mM CaCl2, 0.1% BSA, pH 7.7, room temperature, 20–24 h</td>
<td>[3H]prazosin, 0.5 nM</td>
<td>Aceperone, 1 μM</td>
</tr>
<tr>
<td>hD2L</td>
<td>GH4C1 50 mM Tris-HCl, 120 mM NaCl, 5 mM KCl, 1 mM MgCl2, 2 mM CaCl2, 0.1% BSA, pH 7.7, 25°C, 60 min</td>
<td>[3H]SCH23390, 1 nM</td>
<td>Pfixutixol, 1 μM</td>
</tr>
<tr>
<td>hD2L</td>
<td>CHO 50 mM Tris-HCl, 120 mM NaCl, 5 mM KCl, 1 mM MgCl2, 2 mM CaCl2, 0.1% BSA, pH 7.7, room temperature, 60 min</td>
<td>[3H]spiperone, 0.2 nM</td>
<td>(+)-Butaclamol, 1 μM</td>
</tr>
<tr>
<td>hD3</td>
<td>CHO 50 mM Tris-HCl, 120 mM NaCl, 5 mM KCl, 1 mM MgCl2, 2 mM CaCl2, 0.1% BSA, pH 7.7, room temperature, overnight</td>
<td>[125I]iodosulpride, 0.2 nM</td>
<td>Risperidone, 1 μM</td>
</tr>
<tr>
<td>h5-HT1A</td>
<td>L929 50 mM Tris-HCl, 120 mM NaCl, 5 mM KCl, 1 mM MgCl2, 2 mM CaCl2, 0.1% BSA, pH 7.4, 37°C, 60 min</td>
<td>[125I]909150, 0.1 nM</td>
<td>BW501A, 1 μM</td>
</tr>
<tr>
<td>h5-HT2C</td>
<td>SB 50 mM Tris-HCl, 4 mM CaCl2, pH 7.7, 37°C, 30 min</td>
<td>[3H]mesulergine, 1 nM</td>
<td>Ritanserin, 1 μM</td>
</tr>
<tr>
<td>h1A</td>
<td>CHO 50 mM Na-K phosphate, 0.05% BSA, pH 7.5, 25°C, 30 min</td>
<td>[3H]pyrilamine, 2 nM</td>
<td>Astemizole, 1 μM</td>
</tr>
</tbody>
</table>

* Scintillation proximity assay technology was used to quantify radioligand binding, whereas for the other assays filtration using a Packard Filtermate Harvester Hewlett Packard (Palo Alto, CA) was done to separate bound from free radioligand.
in dry ice-cooled 2-methylbutane (-40°C). Twenty-micrometer-thick frozen sections were thaw-mounted on slides. Two striatal sections and one cerebellum section were collected per slide. Brain sections were loaded in a β-imager (Biospace Lab, Paris, France) for 12 h. Digital autoradiograms were quantified by using the Beta vision program (Biospace Lab). The binding potential of [3H]raclopride was given as the difference between the radioligand binding quantified in the striatum (a brain area showing a high density of D₂ receptors) and the cerebellum (a brain area where D₂ receptors are virtually absent). The binding potential of [3H]raclopride in striatum of drug-treated animals was expressed as the percentage of the binding potential of [3H]raclopride in vehicle-treated animals. Percentages of receptor occupancy by the drug administered to the animal correspond to 100% minus the percentage of the binding potential of [3H]raclopride in the treated animal.

Apomorphine-Induced Stereotypy

Apomorphine is a dopamine receptor stimulant and mimics the agonistic action of dopamine at the D₂ receptor. Apomorphine (1.0 mg/kg i.v.)-induced stereotypy (compulsive sniffing, licking, and chewing) was scored every 5 min over the first hour after injection of apomorphine. The score system was: 3, pronounced; 2, moderate, 1, absent. Criteria for drug-induced inhibition of stereotypy were: fewer than six scores of 3, fewer than six scores of 2, or fewer than seven scores ≥1 (0.14% false positives in >5000 solvent-pretreated control rats). Criteria for drug-induced blockade were: fewer than two scores of ≥1 and zero scores of ≥2 (0.0% false positives).

Clonidine-Induced Antidiarrheal Activity

Clonidine (0.02 mg/kg i.v.)-induced antidiarrheal activity in rats challenged simultaneously with castor oil (1 ml p.o.) was assessed 120 min later (modified after Megens et al., 1986). Criterion for drug-induced reversal was: presence of diarrhea (3.2% false positive controls; n = 154). Clonidine antagonism reflects blockade of peripheral α₂-adrenoceptors. To investigate whether intrinsic antidiarrheal activity might have masked the peripheral α₂-adrenoceptor blockade, the ability of inactive compounds to block castor oil-induced diarrhea was also studied after the injection of saline instead of clonidine. Criterion for antidiarrheal activity was: absence of diarrhea (6.7% false positive controls; n = 194).

Clonidine-Induced Mydriasis

The pupil diameter of the right eye was measured with a graduated microscope (Gant type 55017; 1 unit = 1/24 mm) just before administration of the test compound or solvent, immediately before injection of clonidine (0.16 mg/kg i.v.), and at 5, 15, and 30 min after the clonidine challenge. The median pupil diameter over the 5- to 30-min interval after clonidine challenge was used for further evaluation. A pupil diameter <25 units after clonidine (occurrence in 0.8% of the control rats) was adopted as all-or-none criterion for inhibition of clonidine-induced mydriasis.

Compound 48/80-Induced Lethality

Compound 48/80 (0.30 mg/kg i.v.)-induced lethality was recorded up to 240 min after injection. Criterion for drug-induced protection was: >240 min survival (in controls: 1.2%; n = 750). Histamine H₁ antagonists protect against compound 48/80-induced lethality.

Conditioned One-Way Active Avoidance Test

The apparatus consisted of an inner transparent box (length × width × height: 30 × 30 × 30 cm) with an open top surrounded by an outer box. The inner box was equipped with a grid floor made of 15 pairs of iron bars (2-mm diameter; 6-mm interbar distance). Odd and even bars were connected with a source of alternative current [1.0 mA; Coulbourn Instruments (Allentown, PA) solid-state shocker/distributor], which could be interrupted by a switch. The outer box (length × width × height: 40 × 40 × 36 cm) had an open top and was a distance of 5 cm from the inner box at all sides. Only the front wall of the outer box was transparent to allow inspection of the animal during the test. The upper edges of the outer and inner boxes served as targets for the rats on which to jump with fore- and hind-paws, respectively.

Rats were trained to avoid an electric shock during five sessions at 15-min time intervals during a 1-h period: the rat was placed on the nonelectrified grid floor and the grid was electrified 10 s later for not more than 30 s, if the rat did not jump out of the box. Only rats that showed a correct conditioned avoidance response (CAR) in the last three training sessions were included for further experiments and received test compound or solvent immediately after the last training session.

The rats were tested three times, at 60, 90, and 120 min after the injection of test compound or solvent. Latency to avoidance (i.e., responding within the 10-s interval before the grid was electrified) or escape (i.e., responding after the grid had been electrified; cutoff time, 10 s) was recorded. The median avoidance response and the maximum escape response obtained over the three experimental sessions per rat were used. A median avoidance latency >8 s occurred in only 1.8% of solvent-pretreated control rats (n >400) and was selected as an all-or-none criterion for drug-induced inhibition of avoidance. A maximum escape response ≥10 s over the three trials never occurred in these control rats and was adopted as an all-or-none criterion for inhibition of escape behavior.

Histamine-Induced Lethality in Guinea Pigs

Histamine (1.25 mg/ml/kg i.v.)-induced lethality was recorded in guinea pigs up to 120 min after the histamine challenge. Criterion for drug-induced protection was: >120 min survival (0.6% false positive controls; n >300). Histamine H₁ antagonists were active in this test.

Locomotor Activity Assays

Motor activity was measured in microprocessor-based motor activity cages (length × width × height: 43.5 × 43.5 × 41.5 cm; MED Associates, St. Albans, VT) over 30 min. The distance traveled was measured by light beam interruptions [32 infrared light beams (1.3 cm apart) were located in two arrays perpendicular to each other in a horizontal plane at 2.9 cm above the floor]. Rats were pretreated with test compound or solvent (10 ml/kg s.c.) and placed in individual cages. The rats were challenged with either D-amphetamine (1.25 mg/kg s.c.) 30 min later or phencyclidine (PCP; 1.25 mg/kg i.v.) 1 h later. Locomotion was measured over 30 min in motor activity cages starting 1 h after test compound administration (i.e., 30 min after D-amphetamine and immediately after PCP challenge). All-or-none criteria for drug-induced inhibition were: total distance <5000 cm for inhibition of D-amphetamine-induced hyperlocomotion (8.4% false positives in >450 solvent-pretreated control rats) and total distance <11,000 cm for inhibition of PCP-induced hyperlocomotion (4.3% false positives in >600 solvent-pretreated control rats).

Mast Cell Serotonin-Induced Gastric Lesions

Compound 48/80 (1.0 mg/kg i.v.)-induced gastric lesions were scored 4 h after challenge in rats (175–275 g) that were protected against lethality by injection, 1 h earlier, of the histamine H₂ antagonist (5-[4-(diphenylmethyl)piperazin-1-yl]methyl-1-methyl-1H-benimidazol-2-yl)methanold (R037617) (10 mg/kg s.c.). The scoring system was: 3, red areas covering more than half the glandular tissue; 2, large red areas covering less than half the glandular tissue; 1, at least one distinct red area; 0.5, traces of superficial erosion; and 0, absent. Criterion for drug-induced effects were: score ≤1 for inhibition (7.1% false positives in controls; n = 162) and score <1 for blockade (0.6% false positives in controls). Cyanosis of the ears was scored (0, 0.5, and 1) 5 min after the injection of compound 48/80. Scores <0.5 were adopted as criteria for antagonism of cyanosis (0.0% false positives). Protection from gastric
lesions and reversal of cyanosis was obtained with peripheral serotonin 5HT2A antagonists.

Medetomidine-Induced Loss of Righting

The duration of medetomidine (0.10 mg/kg i.v.)-induced loss of righting was recorded. Criterion for drug-induced reversal was: duration = 0 min (2.4% false positive controls; \(n > 500 \)). Centrally acting \(\alpha_2 \)-adrenoceptor antagonists or behavioral stimulants antagonize the loss of righting; sedative compounds may result in prolongation.

Norepinephrine-Induced Lethality

Survival time after norepinephrine (0.63 mg/kg i.v.) was recorded up to 1 h after challenge. Survival times >60 min were considered to reflect significant norepinephrine antagonism (0% false positives in controls; \(n = 175 \)). Protection against norepinephrine lethality evaluates blockade of peripheral \(\alpha_1 \)-adrenoceptors.

Norepinephrine-Induced Mydriasis

The pupil diameter of the right eye was measured (in 1/24 mm units) with a graduated microscope (Gant type 55017) 1, 2, 3, 4, and 5 min after the norepinephrine (0.08 mg/kg i.v.) challenge. A pupil diameter <25 units at 1 min after norepinephrine challenge was used as all-or-none criterion for inhibition of the norepinephrine-induced mydriasis (3.7% false positives in >200 solvent-pretreated control rats).

Observation Test

Catalepsy, palpebral opening (before and after manipulation), and body temperature (°C; using an esophageal thermistor probe) were assessed at hourly intervals over 8 h after the administration of test compound or solvent. The scoring system for catalepsy was: score 1, pronounced; 2, moderate; 1, slight; and 0, absent. The scoring system for palpebral opening was: 5, exophthalmos; 4, wide open; 3, open for three-quarters; 2, half open; 1, open for one-quarter; and 0, closed. Evaluations of catalepsy and palpebral opening were based on the sum of the scores from two independent observers. Criterion for drug-induced catalepsy was: score 6 (not observed in controls). Criteria for drug-induced palpebral ptosis (assessed after manipulation) were: score <8 for slight ptosis (in controls: 0.8%) and score <4 for pronounced ptosis (not observed in controls). Criteria for drug-induced hypothermic effects were: ≥1.0°C decrease of temperature for the 1-h interval (not observed in controls) and ≥2.0°C decrease of temperature for other time intervals (0% false positives).

Physostigmine-Induced Lethality

Physostigmine (1.0 mg/kg i.v.)-induced lethality was recorded up to 120 min after challenge. Criterion for drug-induced protection was: > 120 min survival (0.0% false positives in >200 solvent-pretreated control rats). Immediately before the physostigmine injection, the pupil diameter of the rats was measured with a microscopic micrometer (1 unit = 1/24 mm). Criteria for drug-induced effects were: pupil diameter >25 units for mydriasis (in controls: 2.4%) and <10 units for miosis (in controls: 0.5%). Protection against physostigmine-induced lethality was observed with centrally acting antimuscarinics. Mydriasis is an expression of peripheral antimuscarinic activity.

Prolactin Release

Rats were treated with test compound or solvent, and 1 h later they were decapitated. Blood was collected in Vacutainer SST tubes (Becton Dickinson, Plymouth, United Kingdom) and centrifuged at 3000 rpm for 10 min. Serum was transferred into secondary tubes and subsequently frozen. Samples were kept at < −18°C until analysis. Serum prolactin was measured with a commercially available radioimmunoassay (Rat Prolactin [125I] Assay System; GE Healthcare). The detection limit of the assay was 0.8 ng/ml. The interassay
coefficient of variation was 9.7% at 25 ng/ml and 14% at 192 ng/ml. In solvent-pretreated control rats, the average prolactin level was 3.8 ± 5.7 ng/ml (mean ± S.D.; n = 200), ranging from 0.8 to 35 ng/ml. The following all-or-none criteria for drug-induced effects on prolactin release were adopted: prolactin concentration >20 ng/ml for a pronounced increase (0.0% false positives) and prolactin concentration >300 ng/ml for a pronounced increase (0.0% false positives).

Tryptamine-Induced Behavior

Tryptamine (25.0 mg/kg i.v.)-induced bilateral clonic seizures of the forepaws and hunched back and palpebral opening were scored the first minute after the injection of tryptamine. The direction of locomotion (backward, sideward, or forward) was also noted. The scoring system for bilateral clonic seizures and hunched back was: 3, pronounced; 2, moderate; 1, slight; and 0, absent. The scoring system for palpebral opening was: 5, exophthalmos; 4, wide open; 3, open for three-quarters; 2, half open; 1, open for one-quarter; and 0, closed. Criteria for drug-induced inhibition or decrease were: bilateral clonic seizures, score <3 for inhibition (1.5% false positives; n = 300), score <2 for blockade (0.0% false positives); palpebral opening, score <4 for decrease (0.0% false positives), score <3 for hunched back (0.0% false positives); and locomotion, sideward or forward direction for reversal of backward locomotion (0.0% false positives). Tryptamine-induced hyperemia or cyanosis of the ears, an expression of serotonin-induced vascular congestion, was evaluated 2 min after the injection of tryptamine. Criterion for reversal of cyanosis was: hyperemia of the ears (red ears; 0.0% false positives).

In Vitro Data Analysis

Data from radioligand competition binding experiments were calculated as the percentage of total binding measured in the absence of test compound. Inhibition curves, plotting the percentage of total binding versus the log concentration of the test compound, were analyzed by using nonlinear regression analysis for one- or two-site curve fitting (Becker and Chambers, 1984). Data from indirect displacement binding experiments for each compound. Data for olanzapine, risperidone, haloperidol, and clozapine were obtained from Table 2. JNJ-37822681 had a moderate binding affinity for the dopamine D2L receptor (Kᵢ = 158 nM), similar to olanzapine and clozapine. JNJ-37822681 displayed a weak affinity for the human dopamine D₃ receptor.

![Graph](https://example.com/graph.png)

Fig. 2. Evaluation of the dissociation speed of JNJ-37822681 and reference antipsychotics from hD₃L receptor.

Determination of ED₅₀ Values

The percentage of receptor occupancy was plotted against dosage, and the sigmoidal log dose-effect curve of best fit was calculated by nonlinear regression analysis, using Prism software (Motulsky, 1999). From these dose-response curves, the ED₅₀ values (the doses producing 50% occupancy) with their 95% confidence limits were calculated. For the other in vivo studies, all-or-none criteria for significant (p < 0.05) effects were defined by analyzing a frequency distribution of a series of historical control data. The fraction of animals responding to these criteria was determined per dose level (n = 5 in the relevant dose range). ED₅₀ values (the doses producing 50% responders to criterion) and corresponding 95% confidence limits were determined according to the modified Spearman-Kaerber estimate, using theoretical probabilities instead of empirical ones (Tsutakawa, 1982). This modification allows the determination of the ED₅₀ and its confidence interval as a function of the slope of the log dose-response curve (Lewi et al., 1977).

Spearman Correlation and Linear Regression Statistics

The inter-relationship between the ED₅₀ values obtained in the two tests was studied by calculating Pearson correlation statistics and performing and graphing linear regression with Prism software (Motulsky, 1999).

Results

Receptor Binding Affinity

JNJ-37822681 and reference antipsychotics were tested in radioligand competition binding experiments to investigate their affinity for various monoaminergic neurotransmitter receptors (Table 2). JNJ-37822681 had a moderate binding affinity for the dopamine D₂L receptor (Kᵢ = 158 nM), similar to olanzapine and clozapine. JNJ-37822681 displayed a weak affinity for the human dopamine D₃ and serotonin 5-HT₂A receptors.
receptors (Table 2) and did not interact with the human receptors dopamine D1, adrenergic α1A, serotonin 5-HT2C, and histamine H1, up to the highest (10 μM) concentration tested. Further profiling at CEREP did not reveal any additional interactions except a high affinity to α1A receptors (K_i 8.9 nM) (see Supplemental Data). Overall, JNJ-37822681 shows a high D2 specificity, especially compared with the second-generation antipsychotics that display a moderate to high brain disposition.

Models Predictive for Antipsychotic Activity in Rats

The antipsychotic-like activity of JNJ-37822681 was evaluated in several established animal models.

Antagonism of Apomorphine-Induced Stereotypy. Inhibition of apomorphine-induced stereotypy directly reflects the ability of the compounds to block central D2 receptors and thereby inhibit the D2 agonistic action of apomorphine. Indeed the ED_{50} values for apomorphine antagonism weak affinity for the D_2 receptor, such as olanzapine, clozapine, and quetiapine.

Indirect Dissociation Assay with D_2 Receptor

It is assumed that the faster a compound dissociates from the D_2 receptor after a 1-h incubation period, the faster [^3H]Hisperone binds to the D_2 receptor. JNJ-37822681 was initially selected after a 5-min incubation with [^3H]Hisperone (data not shown), which is the time point used in our dissociation screening assay (Tresadern et al., 2011). To further characterize this property, an association experiment of [^3H]Hisperone was performed in the presence of JNJ-37822681 and reference antipsychotics. [^3H]Hisperone had a faster association to D_2 receptor in the presence of JNJ-37822681 than in the presence of reference antipsychotics, including clozapine (Fig. 2). This indicates that JNJ-37822681 is a fast-dissociating D_2 ligand.

Direct Dissociation Assay with D_2 Receptor using [^3H]JNJ-37822681

[^3H]JNJ-37822681 dissociated faster than [^3H]Haloperidol, [^3H]Risperidone, and [^3H]Paliperidone, and its dissociation rate was similar to that of [^3H]Clozapine (Fig. 3). These data indicate that [^3H]JNJ-37822681 is a fast-dissociating D_2 antagonist, confirming the indirect dissociation assay data.

D_2 Receptor Occupancy

The ED_{50} for JNJ-37822681 (ED_{50} 0.39 mg/kg) was similar to those obtained for aripiprazole, olanzapine, risperidone, and ziprasidone, approximately 20 times greater than that obtained for haloperidol and 20 to 35 times smaller than those of clozapine and quetiapine (Table 3). The order of potencies in this occupancy assay differs from that in the affinity assay, presumably because of differences in central nervous system penetration and time of peak effect. Considering the moderate in vitro affinity of JNJ-37822681, the relative high potency for occupying D_2 receptor indicates its high brain disposition.

TABLE 3

<table>
<thead>
<tr>
<th>Test Compound</th>
<th>D_2 Occupancy In Vivo</th>
<th>Inhibition of Apomorphine-Induced Stereotypy</th>
<th>Blockade of Apomorphine-Induced Stereotypy</th>
<th>Inhibition of 3,4-Methylenedioxymethamphetamine Hyperlocomotion</th>
<th>Inhibition of Phencyclidine Hyperlocomotion</th>
</tr>
</thead>
<tbody>
<tr>
<td>JNJ-37822681</td>
<td>0.29 (0.31–0.49)</td>
<td>0.19 (0.14–0.26)</td>
<td>8.1 (6.0–11)</td>
<td>1.0 (0.68–1.5)</td>
<td>4.7 (3.3–6.6)</td>
</tr>
<tr>
<td>Aripiprazole</td>
<td>0.58 (0.44–0.76)</td>
<td>0.59 (0.43–0.80)</td>
<td>5.4 (4.0–7.3)</td>
<td>0.26 (0.16–0.41)</td>
<td>3.6 (2.0–6.5)</td>
</tr>
<tr>
<td>Clozapine</td>
<td>8.5 (6.2–12)</td>
<td>16 (12–22)</td>
<td>>160</td>
<td>2.0 (1.5–2.8)</td>
<td>3.6 (2.4–5.3)</td>
</tr>
<tr>
<td>Haloperidol</td>
<td>0.018 (0.014–0.022)</td>
<td>0.028 (0.023–0.035)</td>
<td>0.26 (0.19–0.35)</td>
<td>0.064 (0.048–0.087)</td>
<td>0.112 (0.075–0.17)</td>
</tr>
<tr>
<td>Olanzapine</td>
<td>0.15 (0.13–0.17)</td>
<td>0.22 (0.15–0.33)</td>
<td>7.1 (5.2–9.6)</td>
<td>1.0 (0.75–1.4)</td>
<td>1.0 (0.68–1.5)</td>
</tr>
<tr>
<td>Quetiapine</td>
<td>13 (9.6–17)</td>
<td>12 (8.3–18)</td>
<td>>160</td>
<td>4.7 (3.1–7.0)</td>
<td>14 (12–18)</td>
</tr>
<tr>
<td>Risperidone</td>
<td>0.11 (0.09–0.14)</td>
<td>0.26 (0.16–0.40)</td>
<td>2.7 (2.0–3.6)</td>
<td>0.44 (0.36–0.55)</td>
<td>0.51 (0.32–0.83)</td>
</tr>
<tr>
<td>Ziprasidone</td>
<td>0.24 (0.18–0.36)</td>
<td>0.28 (0.20–0.38)</td>
<td>4.7 (3.4–6.3)</td>
<td>0.29 (0.19–0.35)</td>
<td>1.2 (0.78–1.8)</td>
</tr>
</tbody>
</table>
were close to the ED50 values for D2 receptor occupancy (Table 3), the ED50 ratio between both tests ranging from 0.52 for JNJ-37822681 to 2.3 for risperidone (median factor 1.3). There was an excellent correlation between both tests, with a slope close to unity for the corresponding linear regression line (Fig. 4). It is noteworthy that the fast dissociating D2 antagonist JNJ-37822681 is the only compound that achieved apomorphine antagonism at doses below 50% occupancy of the D2 receptor, whereas 50% or above is required for the reference antipsychotics (Fig. 5A). It should also be mentioned that all compounds selected in this drug discovery program and further profiled all share this property (results not shown). Complete blockade of the apomorphine-induced stereotypy was less readily obtained with JNJ-37822681 than with the other compounds (Fig. 5B).

Antagonism of D-Amphetamine-Induced Hyperlocomotion. The ED50 values for the inhibition of D-amphetamine-induced hyperlocomotion deviated somewhat from those obtained for apomorphine antagonism (Table 3; Fig. 5C). The specificity margin ranged from 0.12 for clozapine to 5.3 for JNJ-37822681, although the median was close to 1.0 (1.4). The correlation with D2 receptor occupancy was less than in the case of apomorphine stereotypy, and the slope of the linear regression line was far from unity (Fig. 4), suggesting that, apart from D2 receptor blockade, other factors may be involved.

Antagonism of Phencyclidine-Induced Hyperlocomotion. The ED50 values for inhibition of PCP-induced hyperlocomotion deviated from those obtained for apomorphine antagonism (Table 3). The specificity margin varied highly from 0.22 for clozapine to 24 for JNJ-37822681 (median factor 4.1). Although the correlation with D2 receptor occupancy was quite high (r^2 0.79), the slope of the linear regression line was far from unity (Fig. 4), suggesting that, apart from D2 receptor blockade, other factors may be involved.

Adverse Effects Related to D2 Receptor Blockade

Prolactin Release. Whereas most compounds started to increase prolactin release from doses slightly below or equal to those required for antagonism of apomorphine-induced behavior, risperidone, quetiapine, and aripiprazole were already active in this respect at 56, 22, and 4.3 times below the ED50 for apomorphine antagonism (Tables 3 and 4; Fig. 6A). Prolactin levels progressively increased with increase of dose (Fig. 7). As a direct consequence, risperidone and quetiapine already induced pronounced prolactin release at doses below the ED50 for apomorphine antagonism (Fig. 6B). At the ED50 for apomorphine antagonism, prolactin levels were approximately 575 ng/ml for risperidone, 400 ng/ml for quetiapine, 250 ng/ml for aripiprazole, 95 ng/ml for ziprasidone, 75 ng/ml for olanzapine, 55 ng/ml for clozapine, 35 ng/ml for haloperidol, and 30 ng/ml for JNJ-37822681 (Fig. 7 Insets). Thus, JNJ-37822681 induces minimal prolactin release at the lowest doses required for central D2 receptor blockade.

Inhibition of Conditioned Avoidance Response and Escape Behavior. All compounds dose-dependently inhibited the CAR, and, at slightly higher doses, also the escape response (ESC) (Table 4). The specificity margin between the inhibition of CAR and apomorphine antagonism ranged between 0.19 for clozapine and 28 for aripiprazole (median 5.3; Fig. 6C). The smallest margin was obtained with nonspecific D2 receptor antagonists, such as clozapine and risperidone, whereas the largest specificity was obtained with aripiprazole and JNJ-37822681. Blockade of ESC was also most readily obtained with the nonspecific D2 receptor blockers clozapine and risperidone and least readily with the specific D2 receptor blockers (aripiprazole, JNJ-37822681, and haloperidol; Fig. 6D).

Cataplexy, Palpebral Ptosis, and Hypothermia. With the exceptions of clozapine and quetiapine within the dose range tested, all compounds induced cataplexy (Table 4). Relative to antagonism of apomorphine-induced stereotypy, the largest specificity margin was obtained for olanzapine and JNJ-37822681, whereas haloperidol induced cataplexy most readily (Fig. 6E). All compounds also induced palpebral ptosis and hypothermia (Table 4). D2 receptor blockers with associated α_1-adrenoceptor blocker activity (clozapine, quetiapine, and risperidone; see below) already induced palpebral ptosis at doses below the ED50 for apomorphine antagonism, whereas specific D2 receptor blockers such as JNJ-37822681 and haloperidol were devoid of effect on palpebral, opening at up to >30-fold higher dose levels (Fig. 6F). A very similar profile was observed for the induction of hypothermia (Fig. 6G).

Additional Receptor Interactions

Serotonin 5HT2A Receptor Antagonism. Relative to the ED50 for apomorphine antagonism, risperidone and clozapine showed 5-HT2A antagonism at >10-fold lower doses, whereas haloperidol and JNJ-37822681 were devoid of 5-HT2A antagonism up to >100-fold higher doses (Tables 3 and 5; Fig. 8A). The other compounds showed an intermediate profile. Note that all compounds were able to block the tryptamine-induced bilateral...
convulsions. In the absence of the effects related to peripheral 5-HT2 receptor antagonism, however, the inhibition of bilateral convulsions was in these cases probably related to behavioral depressant effects rather than to the blockade of central 5-HT2 receptors. The wide specificity margin between central and peripheral 5-HT2 receptor antagonism observed for risperidone confirms its less optimal brain disposition already evidenced above by the specificity margin between apomorphine antagonism and prolactin release.

Serotonin 5HT2C Receptor Antagonism. Only clozapine and olanzapine showed antagonism of both 5HT2C effects, and only with clozapine were these effects observed at doses below the ED50 for apomorphine antagonism (Tables 3 and 5; Fig. 8B). Both compounds were the only ones that displayed higher affinity for 5HT2C than for D2 receptors (Table 2). Haloperidol and ziprasidone antagonized only hunched back behavior. No 5HT2C receptor-related effects could be demonstrated for JNJ-37822681.

Histamine H1 Receptor Antagonism. Antihistaminergic activity was generally observed at comparable dose levels in both species (Table 5; Fig. 8C). However, aripiprazole was 10-fold more potent in guinea pigs than in rats. JNJ-37822681 and haloperidol were devoid of histamine H1 antagonistic activity up to 100 times their apomorphine antagonistic dose (Tables 3 and 5; Fig. 8C). Conversely, olanzapine, risperidone and, in particular, quetiapine and clozapine were potent antihistamines. JNJ-37822681 was completely devoid of histamine H1 antagonism up to 40 mg/kg in rats and protected against histamine-induced lethality in guinea pigs at only a very high dose level (28.3 mg/kg).

a1-Adrenoceptor Antagonism. Because olanzapine and clozapine have associated antimuscarinic activity (see below) and induce mydriasis per se, the antagonism of norepinephrine-induced mydriasis could be tested only up to the doses having intrinsic mydriatic activity. Risperidone, quetiapine, and clozapine showed antagonistic activity at a1-adrenoceptors at doses slightly below those required for apomorphine antagonism (Tables 3 and 6; Fig. 8D). JNJ-37822681 was completely devoid of a1-adrenoceptor blocking activity up to the highest dose tested.

a2-Adrenoceptor Antagonism. Reversal of the antidiarrheal effect of clonidine reflects an interaction with peripheral a2-adrenoceptors, whereas reversal of medetomidine-induced loss of righting and antagonism of clonidine-induced mydriasis are centrally mediated. Reversal of the antidiarrheal effect of clonidine could be tested only at doses devoid of...
TABLE 4
ED50 values (milligram/kilogram, subcutaneously; 95% confidence limits are in parentheses) of JNJ-37822681 and seven reference compounds for slight and pronounced prolactin release, inhibition of avoidance and escape behavior, and induction of catalepsy, palpebral ptosis, and hypothermia.

<table>
<thead>
<tr>
<th>Test Compound</th>
<th>Conditioned Avoidance, 1 h</th>
<th>Observational Test, 1–8 h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ED50</td>
<td>Inhibition of Blockade of</td>
</tr>
<tr>
<td></td>
<td>Slight, ng/ml</td>
<td>Escape</td>
</tr>
<tr>
<td>JNJ-37822681</td>
<td>0.17 (0.11–0.25)</td>
<td>3.1 (2.1–4.6)</td>
</tr>
<tr>
<td>Aripiprazole</td>
<td>0.14 (0.094–0.20)</td>
<td>5.4 (3.6–8.0)</td>
</tr>
<tr>
<td>Haloperidol</td>
<td>0.030 (0.024–0.038)</td>
<td>0.078 (0.056–0.11)</td>
</tr>
<tr>
<td>Olanzapine</td>
<td>0.15 (0.11–0.21)</td>
<td>3.1 (2.1–3.3)</td>
</tr>
<tr>
<td>Quetiapine</td>
<td>0.55 (0.41–0.73)</td>
<td>0.83 (0.28–1.3)</td>
</tr>
<tr>
<td>Risperidone</td>
<td>0.0046 (0.0036–0.0058)</td>
<td>0.088 (0.058–0.14)</td>
</tr>
<tr>
<td>Ziprasidone</td>
<td>0.14 (0.10–0.18)</td>
<td>0.83 (0.28–1.3)</td>
</tr>
</tbody>
</table>

The lowest ED50 obtained over the 8-h period is listed.

Discussion

After selection with an indirect assay, the dissociation rate of JNJ-37822681 from the D2 receptor was directly measured and found to be similar to that of clozapine and faster than that of representative first- and second-generation antipsychotics (e.g., haloperidol and risperidone), indicating that JNJ-37822681 is a fast-dissociating D2 ligand. Because an inverse correlation between dissociation speed and affinity is generally assumed, one might ask whether we simply selected a low-affinity D2 antagonist. However, fast dissociation does not necessarily mean only low affinity; properties other than D2 receptor affinity (e.g., lipophilicity and molecular weight) influence dissociation speed (Tresadern et al., 2011). In fact, JNJ-37822681 had moderate in vitro binding affinity for the human dopamine D2L receptor (K_i 158 nM), similar to olanzapine and clozapine, displayed a weak affinity for dopamine D3 and serotonin 5-HT2A receptors, and did not interact with dopamine D1, adrenergic α1A, serotonin 5-HT2C, and histamine H1 receptors, up to the highest (10 μM) concentration tested. JNJ-37822681 showed a remarkably high D2 selectivity and specificity, especially compared with antipsychotics that display a moderate to weak D2 affinity. JNJ-37822681 is a fast-dissociating D2 ligand. Because an inverse correlation between dissociation speed and affinity is generally assumed, one might ask whether we simply selected a low-affinity D2 antagonist. However, fast dissociation does not necessarily mean only low affinity; properties other than D2 receptor affinity (e.g., lipophilicity and molecular weight) influence dissociation speed (Tresadern et al., 2011). In fact, JNJ-37822681 had moderate in vitro binding affinity for the human dopamine D2L receptor (K_i 158 nM), similar to olanzapine and clozapine, displayed a weak affinity for dopamine D3 and serotonin 5-HT2A receptors, and did not interact with dopamine D1, adrenergic α1A, serotonin 5-HT2C, and histamine H1 receptors, up to the highest (10 μM) concentration tested. JNJ-37822681 showed a remarkably high D2 selectivity and specificity, especially compared with antipsychotics that display a moderate to weak D2 affinity (e.g., olanzapine, clozapine, and quetiapine).

In vivo, JNJ-37822681 was a relatively potent, centrally active D2 antagonist as measured by the occupancy of central D2 receptors and antagonism of apomorphine-induced stereotypy in rats. JNJ-37822681 was more potent against apomorphine-induced stereotypy than against stimulant-induced hyperlocomotion (similar to haloperidol), whereas the reverse was found for nonspecific D2 antagonists such as clozapine and, to a lesser extent, quetiapine. Across compounds, the two hyperlocomotion models showed less correlation with D2 receptor occupancy than the apomorphine-induced stereotypy model. The effects obtained in the hyperlocomotion models depend on central D2 antagonism, but associated, intrinsic constipating effects. Likewise, the antagonism of clonidine-induced mydriasis could be evaluated for olanzapine and clozapine only up to the doses that induce mydriasis per se (both compounds have associated antimuscarinic activity; see below).

Risperidone was the only compound showing all of the effects of an α2-adrenoceptor blocker. Interaction with peripheral α2-adrenoceptors was observed from doses only slightly above the ED50 for apomorphine antagonism (Tables 3 and 6; Fig. 8E). To obtain central α2-adrenoceptor blocking activity, 10-fold higher doses were required, consistent with the poor central nervous system disposition of this compound. For clozapine, reversal of medetomidine-induced loss of righting occurred at doses close to that required for apomorphine antagonism. The intrinsic constipating and mydriatic activity of this antimuscarinic compound hampered evaluation of the other two effects. α2-Adrenoceptor blocking activity was not detected for any other compound.

Muscarnic Receptor Antagonism. Olanzapine and clozapine were the only compounds showing both pharmacological characteristics of an antimuscarinic, and clozapine was the only compound doing so at doses below the ED50 for apomorphine antagonism (Tables 3 and 6; Fig. 8F). Quetiapine protected against phystostigmine-induced lethality but did not induce mydriatic effects.
nondopaminergic effects (e.g., sedation, cardiovascular complications, and altered energy consumption) undoubtedly affect hyperlocomotion to a larger extent than stereotypy. This suggests that antagonism of dopamine agonist-induced stereotypy is more reliable than antagonism of stimulant-induced hyperlocomotion for evaluating specific blockade of central D2 receptors. Thus, antagonism of apomorphine-induced stereotypy was used as a basis for calculating specificity margins for all effects discussed below (CAR, catalepsy, and in vivo D2 specificity). Our results demonstrate the specific blockade of central D2 receptors by JNJ-37822681 at moderate doses, comparable with those required for most atypical antipsychotics.

Inhibition of CAR closely correlates with clinical antipsychotic potency (Janssen et al., 1965; Wadenberg et al., 2000b). JNJ-37822681 dose-dependently inhibited CAR and ESC, as did all test compounds, in excellent agreement with published data (Wadenberg et al., 1997; Shannon et al., 1999; Millan et al., 2000; Natesan et al., 2006; Olsen et al., 2006). Inhibition of CAR was generally obtained at doses exceeding several times the ED50 for apomorphine antagonism. The nonspecific compounds clozapine and risperidone were relatively more potent than the specific D2 antagonists. Indeed, it has been reported that the inhibition of CAR by central D2 antagonism can be potentiated by 5-HT2A antagonism, 1-adrenoceptor blockade, and 5-HT1A agonism (Wadenberg and Hicks, 1999; Wadenberg et al., 2000a). JNJ-37822681 and aripiprazole showed the widest specificity margin among the tested compounds. Therefore, fast dissociation from the D2 receptor (JNJ-37822681) and functional-selective actions at different D2 receptor signaling pathways for aripiprazole (Urban et al., 2007) may differentiate these compounds from haloperidol. A wide specificity margin between the inhibition of CAR and central D2 receptor occupancy has previously been observed with aripiprazole (Natesan et al., 2006).

Although the inhibition of CAR is considered predictive for antipsychotic activity, inhibition of an appropriate response to danger may be analogous to EPS, which include retarded
initiation of motor movements. Thus, the large specificity margin between the inhibition of CAR and apomorphine antagonism may be consistent with a high neurological safety margin for JNJ-37822681 and aripiprazole. Relative to apomorphine antagonism, ESC was less readily suppressed with specific D₂ antagonists such as JNJ-37822681, aripiprazole, and haloperidol than with nonspecific D₂ antagonists (Wadenberg et al., 2000a). The specificity margin obtained with specific D₂ antagonists is apparently maximal and independent from the nature of the interaction with the D₂ receptor (fast dissociation for JNJ-37822681; functional selectivity for aripiprazole). Nonspecific compounds may cause a more potent inhibition of ESC because of their additional AEs. Therefore, the wide margin obtained with JNJ-37822681 attests to its high specificity as a central D₂ antagonist.

The larger specificity margin between the inhibition of CAR and apomorphine antagonism with JNJ-37822681 than with haloperidol suggests that a fast-dissociating D₂ antagonist allows the organism to respond more readily to a sudden rise in dopamine levels than a slowly dissociating D₂ antagonist, thereby sparing CAR (which is a rapid process) at moderate doses. A large margin was not obtained with the fast-dissociating compounds quetiapine and clozapine, probably because their nonspecific nature counteracts the beneficial effect of their fast dissociation. Fast dissociation from the D₂ receptor may also explain the wide margin between the inhibition and blockade of apomorphine-induced behavior observed with JNJ-37822681. Similar and even wider margins were consistently observed with other fast-dissociating D₂ antagonists within this drug discovery program. JNJ-37822681 is rapidly displaced from the D₂ receptor by the rapidly increasing synaptic apomorphine concentrations after the intravenous injection of apomorphine, but is considerably more potent in counteracting the declining apomorphine concentrations during the final stage of the apomorphine-induced behavior.

In contrast to CAR, ESC is apparently not affected by the rate of dissociation from the D₂ receptor. At the high doses...
TABLE 5
ED₅₀ values (milligram/kilogram, subcutaneously; 95% confidence limits are in parentheses) of JNJ-37822681 and reference antipsychotics in various in vivo models looking at interaction with peripheral and central receptors

<table>
<thead>
<tr>
<th>Test Compound</th>
<th>Blockade of Tryptamine</th>
<th>Reversal of Tryptamine Antagonism</th>
<th>Antagonism of Compound 48/80 Cyanosis</th>
<th>Histamine Lethality</th>
<th>Locomotion</th>
<th>Bilateral Cyanosis</th>
<th>Antagonism of Antagonism of Compound 48/80 Gastric Lesions</th>
<th>Antagonism of Antagonism of Tryptamine Inhibition of Antagonism of Histamine Lethality, Guinea Pigs</th>
</tr>
</thead>
<tbody>
<tr>
<td>JNJ-37822681</td>
<td>0.15 (0.09-0.25)</td>
<td>0.041 (0.029-0.06)</td>
<td>0.13 (0.094-0.19)</td>
<td>0.029 (0.022-0.036)</td>
<td>0.042 (0.036-0.046)</td>
<td>0.029 (0.022-0.036)</td>
<td>0.029 (0.022-0.036)</td>
<td>0.029 (0.022-0.036)</td>
</tr>
<tr>
<td>Clozapine</td>
<td>0.34 (0.25-0.46)</td>
<td>0.67 (0.50-0.91)</td>
<td>0.11 (0.092-0.14)</td>
<td>0.029 (0.022-0.036)</td>
<td>0.042 (0.036-0.046)</td>
<td>0.029 (0.022-0.036)</td>
<td>0.029 (0.022-0.036)</td>
<td>0.029 (0.022-0.036)</td>
</tr>
<tr>
<td>Haloperidol</td>
<td>0.008 (0.005-0.013)</td>
<td>0.013 (0.009-0.018)</td>
<td>0.017 (0.012-0.023)</td>
<td>0.017 (0.012-0.023)</td>
<td>0.017 (0.012-0.023)</td>
<td>0.017 (0.012-0.023)</td>
<td>0.017 (0.012-0.023)</td>
<td>0.017 (0.012-0.023)</td>
</tr>
<tr>
<td>Quetiapine</td>
<td>0.043 (0.036-0.051)</td>
<td>0.041 (0.036-0.051)</td>
<td>0.043 (0.036-0.051)</td>
<td>0.043 (0.036-0.051)</td>
<td>0.043 (0.036-0.051)</td>
<td>0.043 (0.036-0.051)</td>
<td>0.043 (0.036-0.051)</td>
<td>0.043 (0.036-0.051)</td>
</tr>
<tr>
<td>Risperidone</td>
<td>0.0003 (0.0002-0.0005)</td>
</tr>
<tr>
<td>Ziprasidone</td>
<td>0.062 (0.046-0.081)</td>
</tr>
</tbody>
</table>

and corresponding high synaptic concentrations required for the suppression of ESC, antagonist molecules that dissociate from the receptor are probably immediately replaced by other antagonist molecules rather than by dopamine.

JNJ-37822681 showed a high margin between the induction of catalepsy and apomorphine antagonism, exceeding that obtained for haloperidol and at least as high as that measured for atypical antipsychotics (although exact values could not be determined for clozapine and quetiapine). Because catalepsy in rats is generally considered to be predictive of EPS in humans, this wide margin supports the hypothesis that fast dissociation from the D₂ receptor decreases EPS liability and can make specific D₂ antagonists behave similarly to multireceptor atypical antipsychotics.

Most dopamine antagonists induce palpebral ptosis in the rat, which generally relates well to α₁-adrenergic blocking activity but poorly to apomorphine antagonism (Janssen et al., 1965; Niemegeers, 1974). However, butyrophenone dopamine antagonists (e.g., haloperidol) are virtually devoid of α₁-adrenergic receptor blocking activity and nevertheless induce palpebral ptosis because of their sedative liability. JNJ-37822681 is completely devoid of α₁-adrenergic blocking activity and shows an even wider specificity margin between the induction of palpebral ptosis and apomorphine antagonism than haloperidol, which may relate to the fast dissociation of JNJ-37822681 from the D₂ receptor. The same may apply for the exceptionally high margin obtained for the induction of hypothermia.

JNJ-37822681, clozapine, olanzapine, haloperidol, and ziprasidone induced slight prolactin release from doses slightly below or equal to those required for central D₂ antagonism and induced pronounced prolactin release only at approximately 10-fold higher doses. In contrast, aripiprazole, quetiapine, and, in particular, risperidone induced slight prolactin release at doses much below those required for central D₂ antagonism and pronounced prolactin release at the dose required for central D₂ antagonism. The apparent preferential action of these compounds at peripheral over central D₂ receptors is consistent with results from ex vivo occupancy studies (Kapur et al., 2002). The aripiprazole-induced prolactin release measured in the present study is at variance with published data showing a smaller increase or even a decrease in prolactin levels in rats (Inoue et al., 1996, 1998). Although a D₂ agonistic component of aripiprazole would be expected to reduce the prolactin release originating from its D₂ receptor blockade (Marchese et al., 2002), we could not establish this. Fast dissociation from the D₂ receptor has been proposed to explain the low prolactin release observed with certain antipsychotics, like clozapine and quetiapine (Kapur and Seeman, 2001). However, the present data instead support the hypothesis that improved brain disposition explains the lower incidence of prolactin release by these compounds.

Because of the moderate D₂ affinity of JNJ-37822681, in vitro binding affinity assays may be less appropriate for demonstrating the compound’s high specificity. However, in vivo tests showed that over a wide dose range JNJ-37822681 is devoid of relevant interactions with receptors such as 5HT₂C, α₁-adrenoceptors, α₂-adrenoceptors, histamine H₁, and muscarinic receptors that are known or suspected to cause the major AEs associated with available antipsychotics. Finally, JNJ-37822681 is also devoid of relevant 5HT₂A...
various in vivo models looking at interaction with peripheral and central receptors

ED50 values (milligram/kilogram, subcutaneously; 95% confidence limits are in parentheses) of JNJ37822681 and reference antipsychotics in

TABLE 6

<table>
<thead>
<tr>
<th>Test Compound</th>
<th>ED50</th>
<th>Peripheral α2 Antagonism of Norepinephrine Lethality</th>
<th>Peripheral α2 Antagonism of Tryptamine Exophthalmos</th>
<th>Antagonism of Antidiarrheal Effect of Clonidine</th>
<th>Antagonism of Medetomidine Loss of Righting</th>
<th>Antagonism of Clonidine Mydriasis</th>
<th>Peripheral Muscarinic Antagonism of Phystostigmine Lethality</th>
<th>Central Muscarinic Antagonism of Phystostigmine Lethality</th>
</tr>
</thead>
<tbody>
<tr>
<td>JNJ-37822681</td>
<td>>40</td>
<td>>40</td>
<td>>40</td>
<td>>10a</td>
<td>>40</td>
<td>>40</td>
<td>>40</td>
<td>>40</td>
</tr>
<tr>
<td>Aripiprazole</td>
<td>32 (22–49)</td>
<td>19 (12–28)</td>
<td>8.2 (4.8–14)</td>
<td>>20a</td>
<td>>40</td>
<td>>40</td>
<td>>40</td>
<td>>40</td>
</tr>
<tr>
<td>Clozapine</td>
<td>4.1 (3.0–5.5)</td>
<td>>2.0c</td>
<td>8.2 (5.1–13)</td>
<td>>1.25a</td>
<td>14 (12–18)</td>
<td>>1.25a</td>
<td>>1.25a</td>
<td>>1.25a</td>
</tr>
<tr>
<td>Haloperidol</td>
<td>8.1 (5.4–12)</td>
<td>1.35 (0.84–2.2)</td>
<td>2.0 (1.4–3.0)</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
</tr>
<tr>
<td>Olanzapine</td>
<td>7.1 (4.6–11)</td>
<td>>4.7c</td>
<td>9.3 (6.9–13)</td>
<td>>1.25a</td>
<td>>10</td>
<td>>10</td>
<td>>1.25a</td>
<td>>2.4 (1.5–3.5)</td>
</tr>
<tr>
<td>Quetiapine</td>
<td>14 (9.5–21)</td>
<td>4.7 (2.9–7.6)</td>
<td>4.4 (3.3–5.8)</td>
<td>>20a</td>
<td>>160</td>
<td>>160</td>
<td>>160</td>
<td>>160</td>
</tr>
<tr>
<td>Ziprasidone</td>
<td>0.19 (0.14–0.26)</td>
<td>0.22 (0.15–0.33)</td>
<td>0.11 (0.085–0.15)</td>
<td>0.51 (0.34–0.76)</td>
<td>25 (16–37)</td>
<td>3.6 (2.9–4.4)</td>
<td>>10</td>
<td>>10</td>
</tr>
<tr>
<td></td>
<td>9.4 (6.9–13)</td>
<td>2.0 (1.5–2.8)</td>
<td>0.95 (0.52–1.7)</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
</tr>
</tbody>
</table>

* Higher doses have intrinsic antidiarrheal activity.

† ED50 for inducing mydriasis per se.

* Higher doses have intrinsic mydriatic activity.
antagonism, in contrast to most atypical neuroleptics, and devoid of affinity for D₃ receptors. Thus, any atypical properties that might be observed with this compound cannot be attributed to 5-HT₂A or D₃ antagonism. JNJ-37822681 is the first potent, specific, fast-dissociating D₂ antagonist characterized, and it shows optimal brain disposition. It achieves an atypical profile without binding to receptors other than dopamine D₂. It is relatively devoid of dopaminergic and non-dopaminergic AEs in animal models. Moreover, fast dissociation from the D₂ receptor may result in more flexible levels of D₂ receptor blockade, allowing D₂ receptors to react rapidly to rising dopamine levels in response to environmental stimuli. A recent phase Ib trial of JNJ-37822681 in schizophrenia confirms antipsychotic efficacy and preclinical findings of atypicality (low EPS and prolactin liability) (Schmidt et al., 2012).

Acknowledgments

Dr. Christopher D. Pericone (Janssen Research and Development, LLC) provided writing assistance, and Dr. Wendy P. Battisti (Janssen Research and Development, LLC) provided additional editorial support for this manuscript.

Authorship Contributions

Participated in research design: Langlois, Megens, and Lavreyse.
Conducted experiments: te Riele, Peeters, Wouters, Vermeire, and Hendrickx.

Performed data analysis: Langlois, Megens, and Lavreyse.
Wrote or contributed to the writing of the manuscript: Langlois, Megens, Lavreyse, Atack, Cik, te Riele, Peeters, Wouters, Vermeire, Hendrickx, Macdonald, and De Bruyne.

References

Lewi P, Niemegeers C, and Gepen L (1977) First hand estimation of the median effective dose (ED₅₀) and its confidence interval, assuming a linear log dose response function, in Department of Global Medical and Scientific Information, Johnson & Johnson Pharmaceutical Research and Development, a Division of Janssen Pharmaceutica, Beerse, Belgium.

Address correspondence to: Xavier Langlois, Neuroscience, Janssen Research and Development, Turnhoutseweg 30, Beerse, Belgium. E-mail: xlanglois@its.jnj.com